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Today Plan

•The registration problem

•Camera visual  tracking for AR
– Background – camera model and calibration 

– Fiducials based tracking

– Marker based tracking

•Next class:
– Visual SLAM
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Previously…

•Augmented reality
– Inserting virtual content in the real world

– Real-time

– Registered in 3D

– Eventually Interactive
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The registration problem

•The problem: inserting a 3D virtual object inside an image

•The object has to look “real”
– Appearance 

– It must look integrated in the scene 
• Robust to changes of the point of view

• Eventually, deal with occlusions, light sources etc

4
Project ROM @IRIT eq. Vortex-N7

https://youtu.be/-NS7vzk0t0I  

https://sites.google.com/site/simonegasparini/research/rom
https://youtu.be/-NS7vzk0t0I
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http://www.youtube.com/watch?v=-NS7vzk0t0I


The registration problem

•The main idea:
– Project the 3D model of the object through the camera and render it

We need:

•The 3D model of the object
– 3D mesh + textures + properties

•The camera model
– The intrinsic parameters

– The optical distortion parameters

– [advanced] other settings (focus, depth of focus etc)

•The position
– Of the object in the scene

– Of the camera wrt the scene
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✔

✔



The registration problem

•Known world assumption
– A 3D model of the scene is known (eg. Depth sensors kinect-like)

– The object model is placed in the scene

– Only camera position and orientation to track

– Ideal case for dealing with occlusions

7http://youtu.be/q8jfgTilFmo?t=2m1s 

KinectFusion

Shahram Izadi, Richard A. 
Newcombe, David Kim, Otmar 
Hilliges, David Molyneaux, Steve 
Hodges, Pushmeet Kohli, Jamie 
Shotton, Andrew J. Davison, and 
Andrew Fitzgibbon. 2011. 
KinectFusion: real-time dynamic 
3D surface reconstruction and 
interaction. In ACM SIGGRAPH 
2011 Talks (SIGGRAPH '11).

Real-time with
8 cpu and 2 
gpu…

http://youtu.be/q8jfgTilFmo?t=2m1s
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http://www.youtube.com/watch?v=q8jfgTilFmo&t=121


The registration problem

•Going beyond: Light estimation

9

https://youtu.be/v0HsU8AluAQ  https://www.youtube.com/watch?v=PyP9AwECK2g    

Light direction estimation @IRIT (J.D. Durou) Instant Reality rendering coupled with 
light estimation

https://youtu.be/v0HsU8AluAQ
https://www.youtube.com/watch?v=PyP9AwECK2g
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http://www.youtube.com/watch?v=v0HsU8AluAQ
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http://www.youtube.com/watch?v=PyP9AwECK2g


The registration problem

•Going even further beyond: interaction with real objects
– Semantics!!

12
http://youtu.be/XZZivNnZBpk?t=43m54s  

From the talk given by David Forsyth : Understanding Pictures of Rooms and Inserting Objects into them 

http://youtu.be/XZZivNnZBpk?t=43m54s
http://youtu.be/XZZivNnZBpk?t=43m54s
http://www.youtube.com/watch?v=XZZivNnZBpk&t=2634


The registration problem

•Or maybe when can simply put all together like this: ☺

13Aug(De)Mented Reality https://youtu.be/gpum4nK2wOM   

https://youtu.be/gpum4nK2wOM
http://www.youtube.com/watch?v=gpum4nK2wOM


Trackers 

• AR system must
– Sense the environment
– Track the position of user (6DOF)

• Many choices:
– Mechanical, ultrasonic, magnetic
– GPS
– Radio
– Inertial
– Optical
– Hybrid

• Depends on applications
– Indoor Vs Outdoor
– Level of precision: depends on the distance

•No best solution!
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Trackers – Optical trackers

•Use the camera feed to track the movement
•Track:

– Artificial markers 
• Easy to detect markers in real-time
• Need to set up the environment 

– Natural features 
• not easy
• More freedom but need textured environment

•Good accuracy for slower motions
– Accuracy affected by

• Blur (motion, focus)
• Light changes
• Occlusions
• Textureless objects/environment
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The registration problem

•Main issues to solve is the camera pose estimation

•Camera tracking (suivi de caméra) 
– Estimate the camera position and orientation

•Different technologies
– Type of tracker

•Different algorithms according to the knowledge about the 
scene 
(What do we know?)

– Some 3D references in the scene (fiducials)

– The 3D model of an object to track (model-based tracking)

– Some 2D reference in the scene (markers)

– Nothing? Use the natural features (SLAM)
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Today Topics

•The registration problem

•Optical visual tracking for AR
– Background – camera model and calibration 

– Pose estimation using fiducials
• Model Based tracking

– Pose estimation using markers
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Pinhole camera
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Pinhole camera
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Pinhole camera
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Pinhole camera
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Pinhole camera
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Pinhole camera
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Pinhole camera
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Principal point offset
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CCD cameras – non square pixels
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Internal or Intrinsics parameters of 
the camera



Scale factor ambiguity
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Perspective ambiguity

34This 3D illusion of a little girl in the road gives drivers serious pause - Vancouver Is Awesome 

Anamorphosis

https://www.vancouverisawesome.com/local-news/pavement-patty-3d-illusion-school-zone-1939870


Perspective ambiguity
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Felice Varini - Zigzag dans le disque, 
Station Jean Jaurès, Toulouse

Felice Varini - Huit Carrés, 
Orangerie du château de Versailles



Camera rotation and translation
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A 3d point in camera ref system

A 3d point in world ref system

Camera center in world ref system



Camera rotation and translation
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Camera rotation and translation
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A 3d point in camera ref system

A 3d point in world ref system

Camera center in world ref system



Camera rotation and translation
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A 3d point in camera ref system

A 3d point in world ref system

Camera center in world ref system



Action of a projective camera on points

Forward projection

• In camera coordinates:

•Point in space mapped according to

•Points at infinity 

40

Is the direction of the 3D projection ray of Q



Camera calibration

•How can we estimate the internal parameters of the camera?

•From the projection model:
– q is known as we can measure points on the image

– Q ? Can we know Q?

– K internal parameters (intrinsics) --> to be estimated

– R and t external parameters (extrinsics) --> to be estimated
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Camera calibration

•We can devise a calibration device for which the points Q are 
known with good enough accuracy

•For example:

48

q
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Camera calibration

•How can we estimate the internal parameters of the camera?

•We can have as many as we want associations q <-> Q

•Only P which contains K, R and t is left to be estimated

•What is the minimum number of associations q <-> Q necessary 
to estimate P?

•Let’s develop the projection equation...
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Camera calibration
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Camera calibration

•Each pair q <--> Q provides 2 equations

•We have 12 unknowns but it’s an homogeneous system...

•So we have 11 unknowns and we can set the last element to 1

•So... 2xN = 11

•N=5.5 points in general position are enough to estimate P

51



Camera calibration

•We need to solve an homogeneous linear system

•0 is the trivial solution

•Minimize |Ax|2=0 subject to |x|=1

•How?  SVD!

52



Camera calibration

•The last column of VT gives x
•And x collects the columns of P stacked one on top of another

•This is called the Direct Linear Transformation (DLT)
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Camera calibration

•Once we get P we remember that

•Also KR is a 3x3 square matrix which is the product of a upper 
triangular matrix K and an orthogonal matrix R 

•We can apply a RQ decomposition of this part of P to estimate 
K and R

•RQ decomposition: 

56

Theorem 1. For any square real matrix Anxn there exists a unique pair of a 
orthogonal matrix Q and an upper triangular matrix R with positive diagonal 
entries such that:

A  = Q R



Camera model – Optical distortion

•Projection is a linear model
– Accurate for pure pin-hole cameras

•Optical distortions due to the lens deviate from linearity
– Bad quality lens

– Fish-eyes or wide field of view lenses

•Distortion/Undistortion before applying calibration matrix
– It applies to the projected points in camera coordinates
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Camera model – Optical distortion

• Two main components
– Radial, most important
– Tangential, uncommon

• Assumption: 
– distortion center = principal point

58

tangential

radial

Barrel distortion: magnification decreases radially

Pincushion distortion: magnification increases radially

distorted

Distortion center



Camera model – Optical distortion

•The usual (radial) correction

•The parameters ki estimated during calibration

•Correction
– Undistort points (opencv undistortPoints())

– Distort points when projecting 3D points (opencv projectPoints())

59

Distorted coordinates Undistorted coordinates



Camera calibration in practice

•The full projection model (with distortion) is not linear

•Where f
dist

 is the distortion model to apply
•Camera calibration then should estimate

– Intrinsics parameters (K)
– Distortion parameters (radial, tangential etc)
– External parameters (R and t)

•Normally tackled in two steps:
– 1. first discard distortion and use DLT method to estimate K, R, and t
– 2. re-estimate the full model with distortion through non-linear 

optimization.
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Camera calibration in practice
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Camera calibration in practice
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Camera calibration in practice
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Camera calibration in practice

64

Ported to opencv with automatic checkerboard detection



Today Topics

•The registration problem

•Optical visual tracking for AR
– Background – camera model and calibration 

– Pose estimation using fiducials
• Model Based tracking

– Pose estimation using markers
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The registration problem

•Assumptions about the scene (What do we know?)
– Some 3D references in the scene (fiducials)

– The 3D model of an object to track (model-based tracking)

– Some 2D reference in the scene (markers)

– Nothing? Use the natural features (SLAM)

66



67

https://app.diagrams.net/?page-id=j64_tp50_2wHL4Ww1_Mn&scale=auto#G13sfbN6FB-IcQXhktvRBjysofPTSZBDSg
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https://app.diagrams.net/?page-id=IL0gWhtZSXGAGl-0ib4N&scale=auto#G13sfbN6FB-IcQXhktvRBjysofPTSZBDSg


Fiducial points in the scene

• Insert “artificial” points in the scene 
– easily detectable

– with known, measured (absolute) position

•Laser used to measure exact location of each marker wrt a 
world reference system

•The scene needs to be set up

•Circular marker are preferred as it’s easy to detect their centre

69

Spatial combination allows 
identification

Different patterns allow identification



Circular Markers CCTag

•Normally used in photogrammetry to detect a single point with 
high accuracy (fiducials)

– More pixels are used to fit the ellipse on the image

– The image of the center is estimated in a more robust way

•Work by Lilian Calvet @IRIT, eq. REVA N7
– CCTag, concentric circles

– Allows to estimate the pose with at least 4 markers

– Real time on GPU

70

CCTAG  
https://github.com/alicevision/CCTag 

Fast and accurate CPU-GPU marker 
detection 

https://github.com/alicevision/CCTag
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https://docs.google.com/file/d/1Yyfh4QEGc3sDrtsgfP5lXI8RS97A52Sh/preview


Pose estimation

•Given a set of 3D points expressed in some world reference 
system

•Their corresponding image points

•Estimate the rototranslation [R,t] that “aligns” the 3D points

72

R, t ?



Pose estimation

•Given a set of 3D points expressed in some world reference 
system

•Their corresponding image points

•Estimate the rototranslation [R,t] that “aligns” the 3D points
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Perspective-n-Points problem (PnP)

•How many correspondences are needed?

74

1 is not enough

1 degree of freedom translation
3 d.o.f rotations



PnP problem

•How many correspondences are needed?

75

2 are still not enough

With 2 points we introduce a new 
constraint: their known 3D distance



PnP problem

•How many correspondences are needed?

76

Are 3 enough??

?



PnP problem

•How many correspondences are needed?

• In general it can be proved that 3 points can give at most 4 
possible solutions

– 1 or more points can be used to disambiguate

77

✔



P3P problem

•Remember the law of cosines? (“théorème d'Al-Kashi”)
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P3P problem

•Main idea:
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P3P problem

•Main idea:
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P3P problem

•Main idea:
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P3P problem

Solve the quadratic system in x1, x2, x3

Up to 4 solutions [Grunert 1841]
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P3P problem

Solve the quadratic system in x1, x2, x3

Up to 4 solutions [Grunert 1841]

•Some of them are not physically feasible…

83

Points “behind” the camera Points “crossing” 
the image plane



P3P

•There may be ambiguities
– 2 or more possible (physically feasible) solutions
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P3P

•There may be ambiguities
– 2 or more possible (physically feasible) solutions

85

d

Circumference of radius d



P3P

•There may be ambiguities
– 2 or more possible (physically feasible) solutions

86

A second valid solution



P3P

•Minimal solver
•There may be ambiguities

– 2 or more possible (physically feasible) solutions

•Use a 4th or eventually more points to disambiguate
– Use RANSAC to generate a solution and then evaluate:

• The reprojection error

• Solution with all or most of the points in physically feasible solution

87



Robust estimation with Ransac

RANSAC (RANdom SAmpling Consensus)

•General framework to model estimation/fitting in presence of 
noise, ie outliers

•Main idea:
– Select a sample of data enough to generate a model

• i.e. use a minimal solver

– Compare all the data against the model
• Compute the distance of the data from the model

– Get two sub-sets, inliers and outliers

– Iterate N times and keep the best model and its inliers

– Refine model using only the inliers

88
M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image 
Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981. 

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf


Robust estimation with Ransac

•RANSAC and line fitting:

•Repeat N times:
– Draw s points uniformly at random

– Fit line to these s points

– Find inliers to this line among the remaining points (i.e., points whose 
distance from the line is less than t)

89

Least squares

Ransac - iteration i Ransac - iteration j



PnP

Estimation of R and t

•Once we have computed the d
ij

•Estimate the rototranslation [R t] from 3D-3D correspondences

93

R, t



PnP

Estimation of R and t
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3D points in the camera reference frame 3D points in the world reference frame



PnP

Estimation of R and t
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3D points in the camera reference frame 3D points in the world reference frame

Estimate the mean point (center of mass) of each set



PnP

Estimation of R and t
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3D points in the camera reference frame 3D points in the world reference frame

Move the reference systems so that the mean points are the respective origins



PnP

Estimation of R and t
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3D points in the camera reference frame 3D points in the world reference frame

Now the two sets of points only differs by a 3D rotation around their center of mass

Barycentric coordinates



PnP

Estimation of R and t
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3D points in the camera reference frame 3D points in the world reference frame

Now the two sets of points only differs by a 3D rotation around their center of mass

R



PnP

Estimation of R and t
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3D points in the camera reference frame 3D points in the world reference frame

Now the two sets of points only differs by a 3D rotation around their center of mass

R

3D points in barycentric coordinates 3D points in barycentric coordinates



PnP

Estimation of R and t
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3D points in the camera reference frame 3D points in the world reference frame

Now the two sets of points only differs by a 3D rotation around their center of mass

R

3D points in barycentric coordinates 3D points in barycentric coordinates

Solve as usual with pseudo-inverse + SVD for constraining R to be orthogonal



PnP

101

Pseudo-inverse of

Due to noise, in general, R won’t be orthogonal. Take the “closest” orthogonal (in 
the sense of Frobenius norm) matrix using the SVD decomposition

Remember: an orthogonal matrix S 
decompose into

Multiply by 

In general R won’t be orthogonal, so

Multiply by 

aka Orthogonal Procrustes problem 

https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem


PnP

The translation t is straightforward…

103

The center of mass in of the set in the camera coordinates

The center of mass in of the set in the world coordinates

(1)      the points expressed in their barycentric coordinate systems

We have estimated           so that                                        (2)

Substitute (2) in (1):



Pose estimation with P3P

•Given N 2D-3D correspondences

•Use RANSAC framework to estimate the points in camera frame
– Eliminate unfeasible solutions

– Disambiguate using 4th point or all the others

– Choose the one with the smallest reprojection error

•Compute the pose R,t

•OpenCV provides solvePnPRansac()

104
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https://app.diagrams.net/?page-id=sWVDWK_43wZsNvsqpTrH&scale=auto#G13sfbN6FB-IcQXhktvRBjysofPTSZBDSg


Model based tracking

•What if we know the 3D model of an object in the scene?
– Eg. the CAD model is available

106
Volkswagen MARTA project

https://augmentedblog.wordpress.com/2013/10/11/metaio-and-volkswagen-announce-marta-xl1/


Model based tracking – edge based

•Assuming small motions between frames

•At each frame 
– re-project sampled edge (rendering with occlusions)

– Find the closest edge along its normal

– Find the incremental rototranslation minimizing the distance

107
Real-Time Visual Tracking of Complex Structures

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1017620


Model based tracking

108



Model based tracking

•Edge tracking: the aperture problem
– Remember optical flow tracking?

•We can only estimate the movement along the edge normal

109

Animated example Image t

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html


Model based tracking

•Edge tracking: the aperture problem
– Remember optical flow tracking?

•We can only estimate the movement along the edge normal

110

?

Animated example Image t Image t+1

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html


Model based tracking

•Edge tracking: the aperture problem
– Remember optical flow tracking?

•We can only estimate the movement along the normal

111

?

Animated example

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html


Model based tracking
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To resume

•Exploit the known 3D information

•Fiducial points placed in the scene
– Detect the point

– Solve the resection (PnP) problem

•3D model of an object to track
– Use its CAD model

• To track edges

• To track its point cloud

118



Today Topics

•The registration problem

•Optical visual tracking for AR
– Background – camera model and calibration 

– Pose estimation using fiducials
• Model Based tracking

– Pose estimation using markers
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The registration problem

•Assumptions about the scene (What do we know?)
– Some 3D references in the scene (fiducials)

– The 3D model of an object to track (model-based tracking)

– Some 2D reference in the scene (markers)

– Nothing? Use the natural features (SLAM)

120
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https://app.diagrams.net/?page-id=cV3AB0MJKVoC6zOCMBep&scale=auto#G13sfbN6FB-IcQXhktvRBjysofPTSZBDSg


Marker-based tracking

•Easiest way to do augmented reality
– Use the marker(s) as placeholder(s) for the virtual object(s)

– Standard image processing and computer vision techniques

– Suitable even for common mobile phones

•Technique done for more than 10 years

•Several open source tools available

•Drawbacks
– Set up the scene with markers (not always possible)

– Digitally remove the markers from the image

122



Marker-based tracking

•General pipeline

123



Marker tracking

1. Image acquisition 

2. Preprocessing
– Undistortion

– Low level feature extraction

3. Test candidates
– Fast rejection of non-markers

– Fast acceptance of markers

4. Marker identification
– Decoding (data markers)

– Template matching (template matching)

5. Pose estimation
– Estimation refinement 
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Marker tracking

Image acquisition

•Conversion to greylevel image

•Working with color is hard!
– Automatic white balance

– Color change according to light condition and scene

•Differences in luminance (brightness) are easier to detect

•Therefore markers usually are:
– Black and white: high contrast ease detection

– Squared: 4 points are enough to estimate the pose (see later)
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Marker tracking

Preprocessing

•Undistortion
– Remove the optical distortion (calibrated camera)

– Look-up table to speed-up

– Global undistortion Vs Local undistortion (faster and optimized)

•Thresholding

126

I
thresh

= I < thresh



Marker tracking

Preprocessing

•Adaptive thresholding
– Different threshold values for each pixel to account for light variations

– Smaller image regions are more likely to have uniform illumination

– Histogram-based
• For each region compute the histogram and select the threshold

• Slow

– Statistic-based
• For each pixel compute some statistics for the neighbor pixels

• mean, median,  (min+max)/2 …
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Marker tracking

Preprocessing

•Blob analysis
– Labeling connected regions

– Compute statistics for each blob (size, perimeter, area)

– Used later for fast rejection/acceptance

128



Marker tracking

Preprocessing

•Edge detection
– Detect discontinuity/border  pixel in each blob

– Apply quadrilateral test (4 borders, 4 corners)

– [Local undistortion]

– Line fitting on borders

– Refine corner location to sub-pixel accuracy

129

Extracted edges Filtered edges



Marker tracking

130

Extracted edges Filtered edges

Line fitting Line fitting and corner refinement



Marker tracking

Preprocessing

•Corner refinement
– Critical for high accuracy tracking

– 4 points are the minimum

– Hence they must be as accurate as possible

•Harris corner detection

•Remove optical distortion

•Estimate can be affected by
– Motion blur

– Image noise

– Pixel quantization errors…
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Marker tracking

Pose estimation

•6DOF
– The orientation (3 angles)

– The position (3 coordinates)

•4 points enough in the calibrated case
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Marker tracking

Marker identification

•Homography from 4 corners to eliminate perspective distortion

•Check the pattern
– Decoding (data markers)

– Template matching (template markers)

136



Planar homography

137

projection equation of a point Q of the marker

Since the reference system R, t is arbitrary we can choose one that is aligned with one of the corners and with the 
marker contained in the plane z=0. The coordinates of the point on the marker then can be written as

So the projection equation for points on the marker becomes

with r1 and r2 the first and second 
column of the matrix R, respectively

Homography matrix H



Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t

138To be implemented during the TP!



Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t
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Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t

140

The obtained 
R = [r1 r2 r3] 
is in general not 
orthogonal due to noise:
Use SVD to find the 
“closest” one , ie:

To be implemented during the TP!



Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t

142
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Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t
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Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t

144

r
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p

Another approach (general case)

p is “pointing outwards perpendicularly to this slide”



Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t
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Marker tracking

Pose estimation

•Using Homography
– Estimate the homography from 4 corners

– Decompose the homography to get R and t
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[digression] TP subject

• Idea:
– Detect the chessboard
– Estimate the homography
– Decompose the homography to get the pose

•More than 4 points available
•Estimation of H in a robust way

– The obtained H can give a more stable decomposition

•RANSAC for estimating H    (opencv  findHomography())
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Marker tracking

Pose estimation

•The “artoolkit” method

•Main idea:
– Use the contours lines to estimate the rotation

– Solve for the translation t

– Refine minimizing the reprojection error 
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Marker tracking - jittering

149https://www.youtube.com/watch?v=DqS9Dh1zrqM  

https://www.youtube.com/watch?v=DqS9Dh1zrqM
http://www.youtube.com/watch?v=DqS9Dh1zrqM


Marker tracking

Pose estimation

• In general still have some jittering
– Small errors in detecting the 4 points may be significant

151

An object moving parallel to the optical 
axis generates a smaller movement in 
the image plane

An object moving perpendicularly to 
the optical axis generates a larger 
movement in the image plane

🡪 small detection errors on the image 
plane have a greater effect on the Z 
dimension.
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Marker tracking

Pose estimation

•The Robust Planar Pose (RPP) algorithm (ArtoolkitPlus)
– Intuitive clue: for every chosen α there may exist a second, different 

angle β which also leads to a local minimum of the error function
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Pose estimation
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Marker tracking

Pose estimation
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Marker tracking

Pose estimation

•The Robust Planar Pose (RPP) algorithm (ArtoolkitPlus)
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Marker tracking

Pose estimation

•The Robust Planar Pose (RPP) algorithm (ArtoolkitPlus)
– Intuitive clue: for every chosen α there may exist a second, different 

angle β which also leads to a local minimum of the error function
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Marker tracking

Pose estimation

•The Robust Planar Pose (RPP) algorithm (ArtoolkitPlus)
– Intuitive clue: for every chosen α there may exist a second, different 

angle β which also leads to a local minimum of the error function

•Use a first rough estimation for the pose

•Compute all the possible local minima

•Feed any iterative method with the found poses and choose 
the one with the smallest reprojection error
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Marker tracking

Pose estimation
•Non-linear least-squares optimization

•Minimization of a physical, meaningful error
– Reprojection error: distance from the measured point on the image 

and the reprojected 3D point
– 6 parameters to refine (3 for orientation, 3 for position)
– Better if more point associations are available

•Bundle adjustment
• Iterative methods may fall in local minima

– Initial solution is important!
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Marker tracking

Summing up:

•Detect the marker
– Edges, corners, test candidates

• Identify the marker

•Pose estimation from 4 corners
– Homography, edge back-projection, RPP…
– Refine the estimation with minimization

• Issues:
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occlusions blur lighting jittering Poor quality



Marker tracking

Continuous tracking:
•Use information from previous frame to “guess” the new 
marker position

– Camera movement between consecutive frames is small
– Previous pose can be used as initial guess

• It can be used to
– Deal with occlusions
– Deal with blur
– Deal with markers becoming too small

•Kalman filter
– Predict the new pose
– Calculate the error and refine
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Rendering
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Rendering

164

T
ca

m

K

T
ob

j



Marker types

Template markers
• Black and white with an image 

inside

• The image can be identified by 
template matching against a 
database of markers

• It does not scale up with the 
number of markers

Data matrix marker
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• Black and white data cells that 
encode the information (marker id, 
text, hyperlink…)

• Easier to detect and identify
• Error detection and correction
• Trade-off needed between 

detection robustness and encoded 
data



Data matrix markers

•The data is directly encoded in the marker

•Besides encoding information, part of the bits for error 
detection and correction. (ArTag)
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marker ID: 100 110 101 (= 309)



QR Barcodes

•Good identification
– Error correction

– configurable error correction levels: higher error correction level, less 
storage capacity, and viceversa
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http://www.datagenetics.com/blog/november12013/index.html
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QR Barcodes

•Not meant for pose estimation

•Use 3 points to unwarp the image
– Affine transformation does not compensate for severe perspective 

distortion

•They require a large area of the image for correct decoding
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QR Detection – Examples 
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Data Matrix + QR Code
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Data Matrix + QR Code
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Other markers

• Image markers
– image as marker

– Features (sift, surf…) detection and matching

– estimation and decomposition of H

– Robust to occlusion (sparse detection)

• Infrared markers
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Final remarks

Pros
• Easy setup and low cost

– Even for mobile devices

• Works well with
– Large movement of the camera

– Dynamic environments (as long 
as the marker is visible)

– Texture-less scenes 

• Encodes additional info

• Always correct scale for 3D object

Cons
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• Requires setup

• Markers must be always (at least 
partially) visible

• May require marker digital removal
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