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Previously...

* Tracking using markers
— Detect the marker in the image
— Use the 4 points to estimate the camera pose

* Tracking by detection method
— No history from frame to frame
— Each frame processed independently

e Some information can be passed to the next frame
— The pose of the camera as initial guess (small movement)
— The point position as initial guess

* Can stabilize the tracking
— Eg deal with (partial) occlusions



Previously...

Another approach
* Detect and track

— Detect once

— Use the information of the previous frame to find the new position of
the points

— Estimate the pose
— If no luck, try detection again

* Generalization of the previous problem

— Track the features (not just markers) over images
— Estimate the pose using tracked features

* SLAM approach



Previously... (Marker/fiducial approach)

Pros

e Easy setup and low cost
— Even for mobile devices

 Works well with

— Large movement of the
camera

— Dynamic environments (as
long as the marker is visible)

— Texture-less scenes
* Encodes additional info

* Always correct scale for 3D
object

Cons

* Requires setup

* Markers must be always (at
least partially) visible

* May require marker digital
removal



Feature-based camera tracking

* More general method

* Instead of markers we can track features
— Harris, SIFT, SURF...

* Tracking feature using KLT

* Estimate the pose
— Relax the coplanar point method
— More general approach




Kanade-Lucas-Tomasi (KLT) Tracker

 Find a good point to track (harris corner)
* Find displacement by solving the optical flow equation in a
window around the point

* Get the new position of the point

* Window size
— Small window more sensitive to noise and may miss larger motions

— Large window more likely to cross an occlusion boundary (and it’s
slower)
— Typically 15x15 to 31x31

* OpenCV has it implemented in calcOpticalFlowPyrLK()



Feature Tracking

(X,y)

displacement (u,v) (X+U,y+V)
X+U,y+v

1(x,y,t) I(x,y,t+1)

* Given two consecutive frames and a point on the first image,
estimate the point translation on the second image



Optical flow

* Optical flow: apparent motion of pixels due to the relative
motion between the camera and objects in the scene

Main assumptions
* Small motion: points do not move very far

* Brightness constancy: projection of the same point looks the
same in every frame
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Optical flow

* Assume the image brightness is a continuous and differentiable
function f

— The discrete formulation is straightforward
* x, y are the coordinates of the points inside the image

*fis time
f(x, y, t) Brightness at position x,y at time ¢



Optical flow

* Assume the image brightness is a continuous and differentiable
function f

* x, y are the coordinates of the points inside the image
*fis time

f (I, y, t) Brightness at position x,y at time ¢

Brightness Constancy Equation for dx, dy and dt
flx,y,t) = f(x + dx,y + dy,t + dt)
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Optical flow

* Assume the image brightness is a continuous and differentiable
function f

* x, y are the coordinates of the points inside the image
*fis time

f (CE, y, t) Brightness at position x,y at time ¢

Brightness Constancy Equation for dx, dy and dt
f(z,y,t) =f(z + da,y + dy, t + dt)]

‘ 15t order Taylor Series

_ OF o g2, g2
flx +dr,y+dy,t +dt) = f(x,y, )+da:ax+dyay+dtat




Optical flow

flx +dr,y+dyt+dt) = f(x,y,t)

g The brightness variation along x (known)
Ox  =>image gradient on x
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Optical flow

B Of Of of
f(x+dx,y+ dy,t + dt) —f(a:,y,t)—I—da:ax +d 5 +dt8t

ﬁ The brightness variation along x (known)
Ox  =>image gradient on x

ﬁ The brightness variation along y (known)
33/ => image gradientony
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Optical flow

0 0 ) f
flr+de,y+dy,t+dt) = f(x,y,t) —l—dazﬁ—i +dya—]; + dtt=

ﬁ The brightness variation along x (known)
Ox  =>image gradient on x

ﬁ The brightness variation along y (known)
33/ => image gradientony

of
ot

The brightness variation between the two frames (known)
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Optical flow

Brightness Constancy Equation for dx, dy and dt
f(z,y,t) =|f(z + dz,y + dy,t + dt))

‘ 15t order Taylor Series

flr +dr,y+dy,t +dt) = f(x,y, )+dx—f+dy8‘§ + dt—

f

ox ot
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Optical flow

Brightness Constancy Equation for dx, dy and dt
(1) f(xayat) :[f($+d$,y+dy,t+dt)]

‘ 15t order Taylor Series

_ of . of . 0f
@ flx+dr,y+dy,t+dt)= f(x,v. )—I—dma +dy8y+dtat

‘ Replace (2) in (1)

B of of of
fl@,y.t) = fz,y,1) +dvo> +dyay +dt—-
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Optical flow

Brightness Constancy Equation for dx, dy and dt
f(z,y,t) =|f(z + dz,y + dy,t + dt)]

‘ 15t order Taylor Series

flr +dr,y+dy,t +dt) = f(x,y, )+dx—f+dy8£ + dt—

ox
4
/{ // + dx— cay2l s ad

oy ot
\ 4

f
—I—dy8y+dt

f
ot

f

f
=0
8:1:

ot
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Optical flow

f
8m

+dy8

o
Y

dt ——

f
ot

= 0
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Optical flow

of 40, ,0f
8x+dy8y+dt(9t

‘ rewrite as...

Jzdx + fydy + fidt =0

0

r — g

_ 9Of

_ 9f

Yy 0y

f

_ 9f
Ot
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Optical flow

f
8:1:

+dy8y+

f

f
=0
dt —— Y

‘ rewrite as...
— L a](‘

L = Oz

fodx + fydy + fidt =0 {1 =75

o
St = a{
‘ divide by dt

fxu_l‘fyv_l_ Jt =0

where

u =

f )

dx

dt

dy
dt

Velocity along x (unknown)

Velocity along y (unknown)
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Optical flow

Brightness Constancy Equation

[fa:UJr fyv+ fr = 0]

— dz Velocity along x (unknown) => motion on x for dt=1

U= "a%
v = Z—% Velocity along y (unknown) => motion on y for dr=1

[ fo=9L The brightness variation along x (known) => image gradient on x
Jy = 9 The brightness variation along y (known) => image gradient ony

— 9f The brightness variation between two frames (known)

For each position we have 1 equation with 2 unknown:s...
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Optical Flow — Lucas-Kanade

Main assumptions

* Brightness constancy: projection of the same point looks the
same in every frame

* Small motion: points do not move very far

(o Spatial coherence: points move like their neighbours
— assume that brightness constancy holds for a small neighbourhood
(window) around the point
_ — Use the neighbor pixels to solve the equation at least squares y

Eg, considering a 3x3 window we get 9 equations friu + fylv = —fn

frou + fyov = — fi2

fzou + fyov = — fig



Optical Flow — Lucas-Kanade

friu+ fy1v = —fn
Jzo2u + nyU = — 12

fzou + fyov = — fig

\ 4

[ fxl fyl | [ _ftl |
A f9.62 f%2 B_ —ftz
| fro fyo | | fio

Au=1B



Optical Flow — Lucas-Kanade

Au=B

[ fml
f:l:2

L frO

fyl | [ _ftl |
fl/Q B — _ft2 u— [ U
Jyo ] L fio

Solving with the pseudo-inverse (ATA)_1 AT

ATAu=A"'B
u = (ATA>_1 ATB

ATA hasto be invertible, hence rank(A)=2

Remember the Calibrated
Photometric Stereo...

H(P) =KQ)s” (ss”

)-1
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Feature-based camera tracking

* More general method

* Instead of markers we can track features
— Harris, SIFT, SURF...

* Tracking feature using KLT

* Estimate the pose
— Relax the coplanar point method
— More general approach
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Camera tracking with features

Repeat:
* Track the features in the image

* Estimate the camera pose from 2D-3D correspondences

K.
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Camera tracking with features

Repeat:
* Track the features in the image
* Estimate the camera pose from 2D-3D correspondences

* What about the 3D points?

* They are known if
— we have some kind of 3D model (fiducials, makers...)

— we can have the 3D information with the image (stereocamera,
kinect...)

* General case of monocular camera?
— Use 3D reconstruction



Camera tracking with features

Stereo camera
e 2D-3D associations are available at each frame

* Experimental mobile phone
e CPU dual core ARM® CORTEXTM-A9
* Cameras
— 2x 5.3Mpixel (VGA mode)
— Baseline 6.5cm
* Android 2.3.4
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Using a stereo camera

» Use stereo image to initialize (3D reconstruction)
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Using a stereo camera

» Use stereo image to initialize (3D reconstruction)
* Track the features only in one image
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Using a stereo camera

» Use stereo image to initialize (3D reconstruction)
* Track the features only in one image
* Use stereo image to add new features when needed



Using a stereo camera
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Using a stereo camera




Using a stereo camera




Back to monocular camera

 Stereo camera is a heavy constraint
* How can we track the movement of a single camera?
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The epipolar geometry

Y
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The cross matrix

a,b, —a,b, - 0 -a, a,
axb=| ab,-ab, |= [a]x b=| a, 0 -ag, |b
a,b, —a,b, -a, a O

Property of skew symmetric matrices

Let A be a nxn skew-symmetric matrix = A’ =-A

The determinant of A satisfies det(A)= det(AT) =det(-A) =(-1)"det(A)
If nis odd the determinant vanishes.

Hence, all odd dimension skew symmetric matrices are singular




The Fundamental and Essential matrices

q1~K1[I|0][ Q q, ~K,[Rit]| ¢ ]

1 1

~ K!

Q~Kj'q, = Kj'g,~[RIt]] 7' |=RK;'q,+t
1

Let's multiply both ends by [t]
[t] Ki'q, ~[t] RK['q,+[t] t  but [t] t=0=txt =[t] Ki'q, ~[t] RK]'q,
Let's multiply both ends by (K 'q, )T

qu; [t]x Kz q, ~ quz [ ]X RKl_lql
but q,K;'[t] Ki'q, =0 asitislike doinga' [b] a=a'(bxa)=0

'S

F

Fundamental matrix

q, K;'[t] RK['q, =0=q,K;"EK['q, = q,Fq, _T -1
<1, R F=K;"EK

Essential matrix



The Essential matrix E

* 3x3 matrix relating corresponding points in 2 views

ngflz =0
E=[t] R

- where q, ~ K1_1q1 and q, NK;qZ

* Calibrated case: E de)pends onlyonRand t

e Uncalibrated case: fundamental matrix F

q,Fq,=0=q, K'|[t] RK"q,

Y




Computing F

q,Fq, =0
f q,
[ g q 1 ] f/q, =0 with f' =i-throw of F
f; q,

q;fqul + qgszql + f3Tq1 =0

f, How many points
T voT T _ do we need to
.49, 949 9 f, =0 compute F?

1x9

19x1



Computing F

-9, $q 49 f, | =0

1x9

_ 19x1

For each pair of points we have 1 equation for
9 unknowns

We need at least 8 pairs to solve up to a scale
factor



Computing F

change of notation: for each pair i — q;,Fq,, =0

¢ Q§1Q1T1 qgqul q1T1 £
1 x T y T T 1
Al £ |= %2.(112 %2.(112 q.12 f -0
f3 x T y. T T f3
_ 9913 9sUis  is | -

Once again, solve a system Af=0, i.e.
Solve for |Af]*=0 subject to |f|=1

SVD
As usual, use SVD s.t. A = UDV’

And set x as the last column of V
SVD

A = UDV' — F =reshape(V(:,9),3,3)



Computing F

* Remember that F must have rank 2
* We need to enforce the constraint
* Solution: set last singular value of F to zero.

SVD

F = UDV' =D, , =diag(o>,02,02)

o should be 0 but in general it is not, then take:

A def A
D, ., =diag(c>,02,0) — F=UDV’

* The same can hold for essential matrix E but... It has some
different properties.



The Essential matrix

* Rank(E) = 2 because of [t],
e Also:

A (3 x 3) matrix is an essential matrix if and only if two of its singular
values are equal and the third one is zero

Proof: based on the fact that E = SR with S = [t]x and R € SO(3)
» Define: 010 0 10
w=(5gh) e z=(30)
» S can be decomposed as S = kUZUT with U e O(3) (Property of skew symmetric matrices)

» We have Z = - diag(1,1,0)W and thus:

S ~ U diag(1,1,0)WU"

» A Singular Value Decomposition of E is thus:

E ~ U diag(1, 1,0) (WUTR ) ‘ 60




Computation of the Essential matrix E

* Can be estimated with 8 pairs of corresponding pairs
— Hence the “famous” 8 points algorithm
— Similar estimation procedure to fundamental matrix

* With respect to fundamental matrix, E has 2 constraints

detE=0
2EET — t]/'(EET )E = O 2 equal eigenvalues and

1 null eigenvalue

* Imposing these constraints allows to reduce the number of
corresponding pairs

* 5 corresponding pairs are enough |

— (up to 10 solutions, see later)

* hence the “famous” 5 point algorithm



Decomposition of E - solving for R and t

* Compute E with with the 5 points algorithm
* We need to decompose E in order to find Rand t

* From the property of E we know that if we decompose E with a
SVD we get:

SVD

E ~ Udiag(1,1,0)V'

* Hence also U and V are known (from svd(E))

* We are going to use them for decomposing E into the Rand t
parts



Decomposition of E - solving for R and t

* The tr ansl ation: rank(E) = 2 < min(rank(S),rank(R)) = rank(S) = 2
» Matrix E has rank 2 and its left nullspace is us

» Matrix S is skew symmetric and must have the same nullspace as E, thus:
S ~ [us]x and t~us
% The rotation: SVD

E ~ Udiag(1,1,0)V'
» We write R = UXVT with X € O(3)

» Using S ~ UZUT, we get:

E ~ SR
~ UzUuTuxv’
~ UZXV'T
and thus ZX = diag(1,1,0) giving: Z = =diag(1,1,0)W

X=W or X=W"' 9



Decomposition of E

The Singular Value Decomposition of E is:
E = U diag(1,1,0) V'

then the following two solutions are possible for R:

R = UuUwv'
R = uw'vT
and for t:
t = :IZII3

Among the 4 solutions, 1 is feasible



Four possible solutions

% The sign of t is undetermined

% Combining with the two possible rotations, this gives:
PP~ (UWV" u3) or P~ (UWV'T —uj)
PP~ (UW'VT u3) or P ~UW'VT —uj)
% The us — —ug swaps the position of the cameras

% The UWVT — UWTVT makes a rotation of © around the baseline

% Only one solution is feasible



Four possible solutions

N
N
N
N
N
N
~
N
~
~
~
~
N
N
N
N

t — —t

1

Right solution

A

2

Rotation around

T

the baseline

t — —t

Rotation around
the baseline

O
4]
,
'

= 04 L

11




Initialization with monocular camera

» K-frame based tracking
* Main idea:
— 3D reconstruction only when we have sufficient camera displacement

— Kframe selection based on
* Number of lost features
e Actual movement if available




Initialization with monocular camera

» K-frame based tracking
* Main idea:
— 3D reconstruction only when we have sufficient camera displacement

— Kframe selection based on
* Number of lost features
e Actual movement if available

]

t
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Initialization with monocular camera

» K-frame based tracking
* Main idea:
— 3D reconstruction only when we have sufficient camera displacement

— Kframe selection based on
* Number of lost features
e Actual movement if available

m )

t
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Initialization with monocular camera

» K-frame based tracking
* Main idea:
— 3D reconstruction only when we have sufficient camera displacement

— Kframe selection based on
* Number of lost features
e Actual movement if available

t
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Initialization with monocular camera

» K-frame based tracking
* Main idea:
— 3D reconstruction only when we have sufficient camera displacement

— Kframe selection based on
* Number of lost features
e Actual movement if available

— Then for each new kframe detect and add new features to track

https://www.youtube.com/watch?v=Y9HMn6bd-v8




Initialization with 3 Kframes

* Only once at beginning

* Track and detect markers
— Get 3 Kframes
— Solve the 3 kframe geometry
— 5 points algorithm
— 3D reconstruction

* Then start tracking

* Drawback (inevitable):
— No 3D information during initialization



Initialization with 3 Kframes

* 5 Points algorithm

— Robust algorithm to solve 3 view problem
— Based on solution of a minimal problem

— Multiple solutions possible, other points to choose the correct one

Nistér, D. 2004. An Efficient Solution to the Five-Point Relative Pose Problem. IEEE Trans

Pattern Anal. Mach. Intell. 26, 6 (Jun. 2004), 756-777. doi:http://dx.doi.org/10.1109/

TPAMI.2004.17
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5 Points algorithm

* Estimate E from 2 views (up to 10 solutions)
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5 Points algorithm

* estimate the E (up to 10 solutions)

e for each solution Ei
— decompose EiinRand t
— up to 8 possible solutions for Rand t

Ei>OR,t

8X
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5 Points algorithm

* estimate the E (up to 10 solutions)

* for each solution Ei
— decompose EiinRand t

— up to 8 possible solutions for Rand t
— for each possible Ri and ti

* reconstruct the 5 3D points
* cheirality test (points must be in front of the cameras Ri, ti



5 Points algorithm

* estimate the E (up to 10 solutions) 0 :
* for each solution E; | i
— decompose EiinRand t
— up to 8 possible solutions for Rand t
— for each possible Ri and ti

* reconstruct the 5 3D points b
* cheirality test (points must be in front of the cameras) '

— consider the feasible Ri and ti i
— compute the pose of the 3" camera (resection problem)



5 Points algorithm

* estimate the E (up to 10 solutions)
 for each solution Ei

decompose Eiin Rand t
up to 8 possible solutions for R and t
for each possible Ri and ti

* reconstruct the 5 3D points
* cheirality test (points must be in front of the cameras)

consider the feasible Ri and ti
compute the pose of the 37 camera (resection problem)
reconstruct all the other points

cheirality test to validate the solution
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5 Points algorithm

* estimate the E (up to 10 solutions) 0 :
* for each solution E; i
— decompose EiinRand t
— up to 8 possible solutions for Rand t
— for each possible Ri and ti

* reconstruct the 5 3D points ay
* cheirality test (points must be in front of the cameras) '

— consider the feasible Ri and ti i
— compute the pose of the 3@ camera (resection problem)
— reconstruct all the other points
— cheirality test to validate the solution
* bundle adjustment to refine the poses and the 3D structure

— if more than one solution choose the one with best (lowest) reprojection
error.



An initialization algorithm

\_

Initialization A
New frame
\4
Track feature
detect marker
n Need .
/\< kframe? < Is Init?
\Ly
Save kframe
y
_ n
) 3 Kframes?
y
o > Solve 5
Init = true < points

* Main ldea
— Only once at beginning
— No 3D information during
initialization
— Track and detect markers
— Get 3 Kframes
— Solve the 3 kframe geometry

e 5 points algorithm
— 3D reconstruction
— Then start tracking
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And after the initialization?

* After initialization step we have:
— 3 kframes
— Set of 3D points from reconstruction
— Set of new features detected in Kf; without 3D

3D points visible by all the Features detected in the 3™
3 kframes Kframe not yet reconstructed
o [ )
o ® [ ] L4
° o e ©® °

Kf
Kf Kf
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Tracking with kframes

* For each new frame
— The 3D points are tracked and used to estimate the pose (PnP)
— The new features are tracked
— Kframe selection as in the initialization step

............................... ' New tracked points,
Tracked from initialization ’ T o :
with 3D info A e o . ® no 3D info
........ [ ) Py PY ) ¢
e "*‘S:
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Tracking with kframes

* When a new key frame is needed
— New tracked features reconstructed by triangulation with the last
kframe
— Optimization of all the 3D points and camera poses (bundle
adjustment)

Triangulation with

o [ ] o °
® ° o the last kframe
o ° e ® . ~~~~~~~~~~~~~~~~~~
XN “,
4‘/
Kf,
Kf Kf



A tracking algorithm

4 )

New frame |

* At every frame

/

(e Tracking * Track features and markers

* Estimate pose

0 y * If kframe needed

i — 3D reconstruction of newly

Estimate

pose tracked points

— Bundle adjustment
Need — Detect new points

kframe

>V

Bundle
Adjustment

\ 4

Save kframe




Pose estimation

4
)
g
=
A

Track feature Tracking

Estimate pose

Save kframe 4

Bundle
Adjustment

oY

* 3D — 2D correspondences

* Resection (PnP) problem:

— Estimate the rotation R and the
translation t

q, NK[RH]Qi
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Challenges (2)

* Errors accumulation
* Errors are inevitable due to noise etc...:

— 3D reconstruction
— Pose estimation

e---a
* Errors cumulates 3D-Model’, " *\
: : R S
* Global registration needed .
~ - 1 B _—. -
* Bundle adjustment %,
O
6}.
&
”ha e.‘;b
| N\
ima e\i+2

corresponding nage i+

feature points l ,k’”/ ]I
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Bundle Adjustment

New frame

Track feature
detect marker

A

Tracking

Need kframe?

4

Save kframe

Bundle

Adjustment

\

* Local bundle adjustment
— Optimization over a subset of kframes

* 3D structure and camera pose
* Optimization over:
— The (kframe) camera poses
— The 3D points

* Mitigate error cumulating
— Pose estimation
— 3D reconstruction
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Bundle Adjustment

* Global optimization over:
— The (kframe) camera poses
— The 3D points

* Mitigate the effects of error cumulating

- . L . o _’ _ -
Pose estimation o
— 3D reconstruction Y
// \ .
-l -
4.
O@
Or
%
6/

/ma ) B e'\a,%

corresponding inage i+ ima e\i+2

feature points !




Bundle Adjustment

 Refines a visual reconstruction to produce jointly optimal 3D
structure and viewing parameters

* ‘bundle’ = bundle of light rays leaving each 3D feature and
converging on each camera center.

* Non linear Least-squares fitting
— maximum likelihood estimation of the fitted parameters if the
measurement errors are independent and normally distributed with
constant standard deviation
— The probability distribution of the sum of a very large number of very
small random deviations almost always converges to a normal
distribution



Bundle Adjustment

» Reprojection error for a 3D point wrt its image point (measure)

For a single point in one camera

e(R,t,Qi) = qu — (KRQ, + t)H 3 parameters for the 3D point

6 parameters for the camera (R and t)

Warning: abuse of notation
Scale factor A missing
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Bundle Adjustment

» Reprojection error for a 3D point wrt its image point (measure)

For a single point in one camera

e(R,t,Qi) = qu — (KRQ, + t)H 3 parameters for the 3D point

6 parameters for the camera (R and t)

For M points in one camera

KRQ + t)H 3*M parameters the 3D points
6 parameters for the camera (R and t)

Indicator variable:
1 if point i is visible from the camera
0 otherwise



Bundle Adjustment

» Reprojection error for a 3D point wrt its image point (measure)

For a single point in one camera

e(R,t,Qi) = qu — (KRQ, + t)H 3 parameters for the 3D point Q

6 parameters for the camera (R and t)

For M points in one camera

KRQ + t)H 3*M parameters the 3D points Q,
6 parameters for the camera (R and t)

For M points in N cameras

3*M parameters the 3D points Q,
+t;) '
K R Q t; H 6*N parameters for each camera

(Rjand t)



Bundle Adjustment

* Local bundle adjustment

— Optimization over a subset of kframes rather than all

3D structure and camera pose

— Reduce computation and memory

— only the last C<N cameras are optimized

— reprojection error accounted for last N key frames.

C

Kf ) Kft-n+1 lllllllllllllllllllll Kft-c-l Kft-c

Kf,.,

Kf,

3 parameters for each 3D point
6 parameters for each camera (R and t)

:|> Only 6*C + 3*P variables
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The overall algorithm

Save kframe

N

Init = true

3
Kframes
?

%

Solve 5 points

>

New frame

/

Track feature
detect marker

> Need
AS kframe?
\

Estimate pose

Need
kframe?

Save kframe

>Y

Bundle
Adjustment
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The overall algorithm
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