
Augmented	Reality	

3A	SN	M	
	

Simone	Gasparini	
simone.gasparini@enseeiht.fr	

Previously…	

• Tracking	using	markers	
–  Detect	the	marker	in	the	image	
–  Use	the	4	points	to	esEmate	the	camera	pose	

• Tracking	by	detec/on	method	
–  No	history	from	frame	to	frame	
–  Each	frame	processed	independently	

• Some	informaEon	can	be	passed	to	the	next	frame	
–  The	pose	of	the	camera	as	iniEal	guess	(small	movement)	
–  The	point	posiEon	as	iniEal	guess	

• Can	stabilize	the	tracking	
–  Eg	deal	with	(parEal)	occlusions	

2	

Previously…	

Another	approach	
• Detect	and	track	

–  Detect	once	
–  Use	the	informaEon	of	the	previous	frame	to	find	the	new	posiEon	of	
the	points	

–  EsEmate	the	pose	
–  If	no	luck,	try	detecEon	again	

• GeneralizaEon	of	the	previous	problem	
–  Track	the	features	(not	just	markers)	over	images	
–  EsEmate	the	pose	using	tracked	features	

• SLAM	approach	

3	

Previously…	(Marker/fiducial	approach)	

4	

Pros	

• Easy	setup	and	low	cost	
–  Even	for	mobile	devices	

• Works	well	with	
–  Large	movement	of	the	

camera	
–  Dynamic	environments	(as	

long	as	the	marker	is	visible)	
–  Texture-less	scenes		

• Encodes	addiEonal	info	
• Always	correct	scale	for	3D	
object	

Cons	

• Requires	setup	
• Markers	must	be	always	(at	
least	parEally)	visible	
• May	require	marker	digital	
removal	

Feature-based	camera	tracking	

• More	general	method	
•  Instead	of	markers	we	can	track	features		

–  Harris,	SIFT,	SURF…	
• Tracking	feature	using	KLT	
• EsEmate	the	pose	

–  Relax	the	coplanar	point	method	
–  More	general	approach	

5	

Kanade-Lucas-Tomasi	(KLT)	Tracker	

• Find	a	good	point	to	track	(harris	corner)	
• Find	displacement	by	solving	the	opEcal	flow	equaEon	in	a	
window	around	the	point	
• Get	the	new	posiEon	of	the	point	

• Window	size		
–  Small	window	more	sensiEve	to	noise	and	may	miss	larger	moEons	
–  Large	window	more	likely	to	cross	an	occlusion	boundary	(and	it’s	
slower)		

–  Typically	15x15	to	31x31		

• OpenCV	has	it	implemented	in	calcOpticalFlowPyrLK()	

6	

Feature	Tracking	

• Given	two	consecuEve	frames	and	a	point	on	the	first	image,	
esEmate	the	point	translaEon	on	the	second	image	

9	

(x,y)	

(x+u,y+v)	
displacement	(u,v)	

I(x,y,t)	 I(x,y,t+1)	

OpEcal	flow	

• Op/cal	flow:		apparent	moEon	of	pixels	due	to	the	relaEve	
moEon	between	the	camera	and	objects	in	the	scene	

Main	assumpEons	
• Small	mo/on:	points	do	not	move	very	far		
• Brightness	constancy:	projecEon	of	the	same	point	looks	the	
same	in	every	frame		

10	

OpEcal	flow	

• Assume	the	image	brightness	is	a	conEnuous	and	differenEable	
funcEon	f
–  The	discrete	formulaEon	is	straighgorward	

• x, y are	the	coordinates	of	the	points	inside	the	image	
•  t	is	Eme	

11	

Brightness	at	posiEon	x,y	at	Eme	t

OpEcal	flow	

• Assume	the	image	brightness	is	a	conEnuous	and	differenEable	
funcEon	f
• x, y are	the	coordinates	of	the	points	inside	the	image	
•  t	is	Eme	

12	

Brightness	at	posiEon	x,y	at	Eme	t

Brightness	Constancy	EquaEon	for	dx, dy	and	dt

OpEcal	flow	

• Assume	the	image	brightness	is	a	conEnuous	and	differenEable	
funcEon	f
• x, y are	the	coordinates	of	the	points	inside	the	image	
•  t	is	Eme	

13	

Brightness	at	posiEon	x,y	at	Eme	t

Brightness	Constancy	EquaEon	for	dx, dy	and	dt

1st	order	Taylor	Series	

OpEcal	flow	

14	

The	brightness	variaEon	along	x	(known)	
=>	image	gradient	on	x	

OpEcal	flow	

15	

The	brightness	variaEon	along	x	(known)	
=>	image	gradient	on	x	

The	brightness	variaEon	along	y	(known)	
=>	image	gradient	on	y	

OpEcal	flow	

16	

The	brightness	variaEon	along	x	(known)		
=>	image	gradient	on	x	

The	brightness	variaEon	along	y	(known)	
=>	image	gradient	on	y	

The	brightness	variaEon	between	the	two	frames	(known)	

OpEcal	flow	

17	

Brightness	Constancy	EquaEon	for	dx, dy	and	dt

1st	order	Taylor	Series	

OpEcal	flow	

18	

Brightness	Constancy	EquaEon	for	dx, dy	and	dt

1st	order	Taylor	Series	

Replace	(2)	in	(1)	

(1)	

(2)	

OpEcal	flow	

19	

Brightness	Constancy	EquaEon	for	dx, dy	and	dt

1st	order	Taylor	Series	

OpEcal	flow	

20	

OpEcal	flow	

21	

rewrite	as…	

OpEcal	flow	

22	

rewrite	as…	

divide	by	dt

where
Velocity	along	x	(unknown)	

Velocity	along	y	(unknown)	

OpEcal	flow	

23	

Brightness	Constancy	Equa/on

Velocity	along	x	(unknown)	=>	moEon	on	x	for	dt=1	

Velocity	along	y	(unknown)	=>	moEon	on	y	for	dt=1	

The	brightness	variaEon	along	y	(known)	=>	image	gradient	on	y	

The	brightness	variaEon	between	two	frames	(known)	

The	brightness	variaEon	along	x	(known)	=>	image	gradient	on	x	

For	each	posiEon	we	have	1	equaEon	with	2	unknowns…	

OpEcal	Flow	–	Lucas-Kanade	

Main	assumpEons	
• Brightness	constancy:	projecEon	of	the	same	point	looks	the	
same	in	every	frame		
• Small	mo/on:	points	do	not	move	very	far		
• Spa/al	coherence:	points	move	like	their	neighbours	

–  assume	that	brightness	constancy	holds	for	a	small	neighbourhood	
(window)	around	the	point	

–  Use	the	neighbor	pixels	to	solve	the	equaEon	at	least	squares	

24	

Eg,	considering	a	3x3	window	we	get	9	equaEons	

OpEcal	Flow	–	Lucas-Kanade	

25	

OpEcal	Flow	–	Lucas-Kanade	

26	

Solving	with	the	pseudo-inverse	

Remember	the	Calibrated	
Photometric	Stereo…	

has	to	be	inverEble,	hence	rank(A)=2

Feature-based	camera	tracking	

• More	general	method	
•  Instead	of	markers	we	can	track	features		

–  Harris,	SIFT,	SURF…	
• Tracking	feature	using	KLT	
• EsEmate	the	pose	

–  Relax	the	coplanar	point	method	
–  More	general	approach	

40	

Camera	tracking	with	features	

Repeat:	
• Track	the	features	in	the	image	
• EsEmate	the	camera	pose	from	2D-3D	correspondences	

41	

X ?	

?	

Camera	tracking	with	features	

Repeat:	
• Track	the	features	in	the	image	
• EsEmate	the	camera	pose	from	2D-3D	correspondences	

• What	about	the	3D	points?	
• They	are	known	if		

–  we	have	some	kind	of	3D	model	(fiducials,	makers…)	
–  we	can	have	the	3D	informaEon	with	the	image	(stereocamera,	
kinect…)	

• General	case	of	monocular	camera?	
–  Use	3D	reconstrucEon		

	
42	

Camera	tracking	with	features	

Stereo	camera	
• 2D-3D	associaEons	are	available	at	each	frame	

	

43	

6.5cm	

•  Experimental	mobile	phone	
•  CPU	dual	core	ARM®	CORTEXTM-A9	
•  Cameras	

–  2x	5.3Mpixel	(VGA	mode)	
–  Baseline	6.5cm	

•  Android	2.3.4	

Using	a	stereo	camera	

• Use	stereo	image	to	iniEalize	(3D	reconstrucEon)	

44	

Using	a	stereo	camera	

• Use	stereo	image	to	iniEalize	(3D	reconstrucEon)	
• Track	the	features	only	in	one	image	

45	

Using	a	stereo	camera	

• Use	stereo	image	to	iniEalize	(3D	reconstrucEon)	
• Track	the	features	only	in	one	image	
• Use	stereo	image	to	add	new	features	when	needed	

46	

Using	a	stereo	camera	

47	

Using	a	stereo	camera	

48	

Using	a	stereo	camera	

49	

Back	to	monocular	camera	

• Stereo	camera	is	a	heavy	constraint	
• How	can	we	track	the	movement	of	a	single	camera?	

50	

X ?	

?	

Q

q1 q2

The	epipolar	geometry	

52	

Q

q1 q2

q1 ~K1 I | 0[]
!Q
1

!

"
#
#

$

%
&
&
 q2 ~K2 R | t[]

!Q
1

!

"
#
#

$

%
&
&

The	cross	matrix	

a×b =
a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= a[]× b =
0 −a3 a2
a3 0 −a1
−a2 a1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

b

Property	of	skew	symmetric	matrices	
Let	A	be	a	n×n	skew-symmetric	matrix		
The	determinant	of	A	saEsfies		
If	n	is	odd	the	determinant	vanishes.		
Hence,	all	odd	dimension	skew	symmetric	matrices	are	singular		

det A() = det AT() = det −A() = −1()n det A()
⇒ AT = −A

The	Fundamental	and	EssenEal	matrices	

q1 ~K1 I | 0[]
!Q
1

!

"
#
#

$

%
&
&
 q2 ~K2 R | t[]

!Q
1

!

"
#
#

$

%
&
&

!Q ~K1
−1q1 ⇒ K2

−1q2 ~ R | t[] K1
−1q1

1

!

"
#
#

$

%
&
&
=RK1

−1q1 + t

Let's multiply both ends by t[]x

t[]x
K2

−1q2 ~ t[]x
RK1

−1q1 + t[]x
t but t[]x

t = 0 = t× t ⇒ t[]x
K2

−1q2 ~ t[]x
RK1

−1q1

Let's multiply both ends by K2
−1q2()

T

q2
TK2

−T t[]x
K2

−1q2 ~ q2
TK2

−T t[]x
RK1

−1q1

but q2
TK2

−T t[]x
K2

−1q2 = 0 as it is like doing aT b[]x
a = aT b×a() = 0

q2
TK2

−T t[]x
RK1

−1

F
! "## $##

q1 = 0 = q2
TK2

−TEK1
−1q1 = q2

TFq1

Fundamental	matrix	
EssenEal	matrix	

F =K2
−TEK1

−1

The	EssenEal	matrix	E	

55	

• 3x3	matrix	relaEng	corresponding	points	in	2	views	

	
• Calibrated	case:	E	depends	only	on	R	and	t	
• Uncalibrated	case:	fundamental	matrix	F	

!q2
T E !q2 = 0
E = [t]xR

!
"
#

$#
 where !q1 ~K1

−1q1 and !q2 ~K2
−1q2

q2
T Fq1 = 0 = q2

TK−T t[]xRK
−1q1

Q

q1 q2

CompuEng	F	

56	

q2
TFq1 = 0

q2
x q2

y 1⎡
⎣⎢

⎤
⎦⎥

f1
Tq1

f2
Tq1

f3
Tq1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 with fi
T = i-th row of F

q2
xf1

Tq1 + q2
yf2

Tq1 + f3
Tq1 = 0

q2
xqT1 q2

yq1
T q1

T⎡
⎣⎢

⎤
⎦⎥1×9

f1
f2
f3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

9×1

= 0
How	many	points	
do	we	need	to	
compute	F?	

CompuEng	F	

57	

q2
xqT1 q2

yq1
T q1

T⎡
⎣⎢

⎤
⎦⎥1×9

f1
f2
f3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
9×1

= 0

For	each	pair	of	points	we	have	1	equaEon	for	
9	unknowns	

We	need	at	least	8	pairs	to	solve	up	to	a	scale	
factor	

CompuEng	F	

58	

change of notation: for each pair i→ q2i
T Fq1i = 0

A8×9

f1
f2
f3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

q21
x q11

T q21
y q11

T q11
T

q22
x q12

T q22
y q12

T q12
T

! ! !
q28
x q18

T q28
y q18

T q18
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

f1
f2
f3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

9×1

= 0

Once	again,	solve	a	system	Af=0,	i.e.	
Solve	for	|Af|2=0 subject	to	|f|=1

And	set	x	as	the	last	column	of	V
As	usual,	use	SVD	s.t.		A =

SVD
UDVT

A =
SVD
UDVT → F = reshape(V(:, 9),3,3)

CompuEng	F	

59	

F =
SVD
UDVT →D3×3 = diag(σ1

2,σ 2
2,σ 3

2)
σ 3

2 should be 0 but in general it is not, then take:

D̂3×3 = diag(σ1
2,σ 2

2, 0) → F =
def
UD̂VT

• Remember	that	F	must	have	rank	2	
• We	need	to	enforce	the	constraint	
• SoluEon:	set	last	singular	value	of	F	to	zero.	

	

• The	same	can	hold	for	essenEal	matrix	E	but...	It	has	some	
different	properEes.	

The	EssenEal	matrix	

60	

•  Rank(E)	=	2	because	of	[t]x	
•  Also:	

(Property	of	skew	symmetric	matrices)	

-	

ComputaEon	of	the	EssenEal	matrix	E	

61	

• Can	be	esEmated	with	8	pairs	of	corresponding	pairs	
–  Hence	the	“famous”	8	points	algorithm			
–  Similar	esEmaEon	procedure	to	fundamental	matrix	

• With	respect	to	fundamental	matrix,	E	has	2	constraints	

•  Imposing	these	constraints	allows	to	reduce	the	number	of	
corresponding	pairs	
• 5	corresponding	pairs	are	enough	!		

–  (up	to	10	soluEons,	see	later)	
• hence	the	“famous”	5	point	algorithm	

0)(2
0det

TT =−

=

EEEEE
E

tr 2	equal	eigenvalues	and		
1	null	eigenvalue	

DecomposiEon	of	E	–	solving	for	R	and	t	
• Compute	E	with	with	the	5	points	algorithm	
• We	need	to	decompose	E	in	order	to	find	R	and	t	
• From	the	property	of	E	we	know	that	if	we	decompose	E	with	a	
SVD	we	get:	

• Hence	also	U	and	V	are	known	(from	svd(E))	
• We	are	going	to	use	them	for	decomposing	E	into	the	R	and	t	
parts	

62	

E ~
SVD
Udiag(1,1, 0)VT

DecomposiEon	of	E	–	solving	for	R	and	t	

63	

rank(E) = 2 ≤min(rank(S), rank(R))⇒ rank(S) = 2

Z = ±diag(1,1, 0)W

E ~
SVD
Udiag(1,1, 0)VT

DecomposiEon	of	E	

64	

Four	possible	soluEons	

65	

Four	possible	soluEons	

66	

IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	

	

67	

t0	

IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	

	

68	

t1	t0	

IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	

	

69	

t2	
t1	t0	

IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	

	

70	

t3	

t2	
t1	t0	

IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	

–  Then	for	each	new	kframe	detect	and	add	new	features	to	track	

	

71	

t3	

t2	
t1	t0	

Kf0	

Kf1	

hxps://www.youtube.com/watch?v=Y9HMn6bd-v8		

IniEalizaEon	with	3	Kframes	

• Only	once	at	beginning	
• Track	and	detect	markers	

–  Get	3	Kframes	
–  Solve	the	3	kframe	geometry		
–  5	points	algorithm	
–  3D	reconstrucEon	

• Then	start	tracking	
• Drawback	(inevitable):	

–  No	3D	informaEon	during	iniEalizaEon	

72	

IniEalizaEon	with	3	Kframes	

73	

• 5	Points	algorithm	
– Robust	algorithm	to	solve	3	view	problem	
– Based	on	soluEon	of	a	minimal	problem	
– MulEple	soluEons	possible,	other	points	to	choose	the	correct	one	

Nistér,	D.	2004.	An	Efficient	Solu.on	to	the	Five-Point	Rela.ve	Pose	Problem.	IEEE	Trans.	
Paxern	Anal.	Mach.	Intell.	26,	6	(Jun.	2004),	756-777.	doi:hxp://dx.doi.org/10.1109/
TPAMI.2004.17		

5	Points	algorithm	

74	

•  EsEmate	E	from	2	views	(up	to	10	soluEons)	

Ei	

5	Points	algorithm	

75	

•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	

Ei	à	R,	t	

Ri,	ti	

8x	

5	Points	algorithm	

76	

•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	 Ri,	ti	

5	Points	algorithm	

77	

•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	

–  consider	the	feasible	Ri	and	ti	
–  compute	the	pose	of	the	3rd	camera	(resecEon	problem)	

5	Points	algorithm	

78	

•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	

–  consider	the	feasible	Ri	and	ti	
–  compute	the	pose	of	the	3rd	camera	(resecEon	problem)	
–  reconstruct	all	the	other	points		
–  cheirality	test	to	validate	the	soluEon	

5	Points	algorithm	

79	

•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	

–  consider	the	feasible	Ri	and	ti	
–  compute	the	pose	of	the	3rd	camera	(resecEon	problem)	
–  reconstruct	all	the	other	points		
–  cheirality	test	to	validate	the	soluEon	

•  bundle	adjustment	to	refine	the	poses	and	the	3D	structure	
–  if	more	than	one	soluEon		choose	the	one	with	best	(lowest)	reprojecEon	

error.	
	

An	iniEalizaEon	algorithm	

80	

• Main	Idea	
–  Only	once	at	beginning	
–  No	3D	informaEon	during	
iniEalizaEon	

–  Track	and	detect	markers	
–  Get	3	Kframes	
–  Solve	the	3	kframe	geometry		

•  5	points	algorithm	

–  3D	reconstrucEon	
–  Then	start	tracking	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

Need	
kframe?	

Save	kframe	

3	Kframes?	

Solve	5	
points	Init	=	true	

Ini/aliza/on	

y

y

y

n

n n

And	a|er	the	iniEalizaEon?	

81	

• A|er	iniEalizaEon	step	we	have:	
–  3	kframes	
–  Set	of	3D	points	from	reconstrucEon		
–  Set	of	new	features	detected	in	Kf3	without	3D	

Kf3	
Kf2	Kf1	

3D	points	visible	by	all	the	
3	kframes	

Features	detected	in	the	3rd	
Kframe	not	yet	reconstructed	

Tracking	with	kframes	

82	

• For	each	new	frame	
–  The	3D	points	are	tracked	and	used	to	esEmate	the	pose	(PnP)	
–  The	new	features	are	tracked	
–  Kframe	selecEon	as	in	the	iniEalizaEon	step	

Kf3	
Kf2	Kf1	

New	tracked	points,	
no	3D	info	Tracked	from	iniEalizaEon	

with	3D	info	

Tracking	with	kframes	

83	

Kf3	
Kf2	Kf1	

Kf4	

• When	a	new	key	frame	is	needed	
–  New	tracked	features	reconstructed	by	triangulaEon	with	the	last	
kframe	

–  OpEmizaEon	of	all	the	3D	points	and	camera	poses	(bundle	
adjustment)	

TriangulaEon	with	
the	last	kframe	

A	tracking	algorithm	

84	

• At	every	frame	
• Track	features	and	markers	
• EsEmate	pose	
•  If	kframe	needed	

–  3D	reconstrucEon	of	newly	
tracked	points	

–  Bundle	adjustment	
–  Detect	new	points	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

EsEmate	
pose	

Need	
kframe

?	

Save	kframe	 Bundle	
Adjustment	

Tracking	

y

n

y

Pose	esEmaEon	

85	

• 3D	–	2D	correspondences		
• ResecEon	(PnP)	problem:		

–  EsEmate	the	rotaEon	R	and	the	
translaEon	t	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

Es/mate	pose	

Need	
kframe?	

Save	kframe	 Bundle	
Adjustment	

Tracking	

[] ii QtRKq |~

R,	t	

Challenges	(2)	

• Errors	accumula/on	
• Errors	are	inevitable	due	to	noise	etc…: 		

–  3D	reconstrucEon	
–  Pose	esEmaEon	

• Errors	cumulates	
• Global	registraEon	needed	
• Bundle	adjustment	

86	

Bundle	Adjustment	

87	

• Local	bundle	adjustment	
–  OpEmizaEon	over	a	subset	of	kframes	

•  3D	structure	and	camera	pose	

• OpEmizaEon	over: 		
–  The	(kframe)	camera	poses	
–  The	3D	points	

• MiEgate	error	cumulaEng		
–  Pose	esEmaEon	
–  3D	reconstrucEon	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

EsEmate	pose	

Need	kframe?	

Save	kframe	
Bundle	

Adjustment	

Tracking	

Bundle	Adjustment	

• Global	opEmizaEon	over: 		
–  The	(kframe)	camera	poses	
–  The	3D	points	

• MiEgate	the	effects	of	error	cumulaEng		
–  Pose	esEmaEon	
–  3D	reconstrucEon	

88	

Bundle	Adjustment	

• Refines	a	visual	reconstrucEon	to	produce	jointly	opEmal		3D	
structure	and	viewing	parameters	
•  ‘bundle’	à	bundle	of	light	rays	leaving	each	3D	feature	and	
converging	on	each	camera	center.		
• Non	linear	Least-squares	fi}ng	

–  maximum	likelihood	esEmaEon	of	the	fixed	parameters	if	the	
measurement	errors	are	independent	and	normally	distributed	with	
constant	standard	deviaEon	

–  The	probability	distribuEon	of	the	sum	of	a	very	large	number	of	very	
small	random	deviaEons	almost	always	converges	to	a	normal	
distribuEon	

89	

Bundle	Adjustment	

• ReprojecEon	error	for	a	3D	point	wrt	its	image	point	(measure)	

90	

e R, t,Qi() = qi − KRQi + t()
For	a	single	point	in	one	camera	

3	parameters	for	the	3D	point	
6	parameters	for	the	camera	(R	and	t)	

Warning:	abuse	of	notaEon	
Scale	factor	λ	missing		

e	

qi	

Qi	

KRQi	+	t	

Bundle	Adjustment	

• ReprojecEon	error	for	a	3D	point	wrt	its	image	point	(measure)	

91	

e R, t,Qi() = qi − KRQi + t()

e R, t,Qi() = wi qi − KRQi + t()
i

M

∑

For	a	single	point	in	one	camera	
3	parameters	for	the	3D	point	
6	parameters	for	the	camera	(R	and	t)	

For	M	points	in	one	camera	

3*M	parameters	the	3D	points	
6	parameters	for	the	camera	(R	and	t)	

Indicator	variable:	
1	if	point	i	is	visible	from	the	camera	
0	otherwise	

Bundle	Adjustment	

• ReprojecEon	error	for	a	3D	point	wrt	its	image	point	(measure)	

92	

e R, t,Qi() = qi − KRQi + t()

e R, t,Qi() = wi qi − KRQi + t()
i

M

∑

e R, t,Qi() = wij qij − K jR jQi + t j()
i

M

∑
j

N

∑

For	a	single	point	in	one	camera	
3	parameters	for	the	3D	point	Qi	
6	parameters	for	the	camera	(R	and	t)	

For	M	points	in	one	camera	

3*M	parameters	the	3D	points	Qi	
6*N	parameters	for	each	camera	

(Rj	and	tj)	

For	M	points	in	N	cameras	

3*M	parameters	the	3D	points	Qi	
6	parameters	for	the	camera	(R	and	t)	

Bundle	Adjustment	

93	

• Local	bundle	adjustment	
–  OpEmizaEon	over	a	subset	of	kframes	rather	than	all	

•  3D	structure	and	camera	pose	

–  Reduce	computaEon	and	memory	
–  only	the	last	C<N	cameras	are	opEmized		
–  reprojecEon	error	accounted	for	last	N	key	frames.	

Kft	Kft-1	Kft-C	Kft-C-1	Kft-n+1	Kft-n	

C	
N	

3	parameters	for	each	3D	point	
6	parameters	for	each	camera	(R	and	t)	 Only		6*C	+	3*P	variables	

The	overall	algorithm	

94	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

Need	
kframe?	

Save	kframe	

3	
Kframes

?	

Solve	5	points	Init	=	true	

EsEmate	pose	

Need	
kframe?	

Save	kframe	 Bundle	
Adjustment	

The	overall	algorithm	

95	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

Need	
kframe?	

Save	kframe	

3	
Kframes

?	

Solve	5	points	Init	=	true	

EsEmate	pose	

Need	
kframe?	

Save	kframe	 Bundle	
Adjustment	

Ini/aliza/on	 Tracking	

