Augmented Reality

3A SN M

Simone Gasparini
simone.gasparini@enseeiht.fr

Previously...

- Tracking using markers
- Detect the marker in the image
- Use the 4 points to estimate the camera pose
- Tracking by detection method
- No history from frame to frame
- Each frame processed independently
- Some information can be passed to the next frame
- The pose of the camera as initial guess (small movement)
- The point position as initial guess
- Can stabilize the tracking
- Eg deal with (partial) occlusions

Previously...

Another approach

- Detect and track
- Detect once
- Use the information of the previous frame to find the new position of the points
- Estimate the pose
- If no luck, try detection again
- Generalization of the previous problem
- Track the features (not just markers) over images
- Estimate the pose using tracked features
- SLAM approach

Previously... (Marker/fiducial approach)

Pros

- Easy setup and low cost
- Even for mobile devices
- Works well with
- Large movement of the camera
- Dynamic environments (as long as the marker is visible)
- Texture-less scenes
- Encodes additional info
- Always correct scale for 3D object

Cons

- Requires setup
- Markers must be always (at least partially) visible
- May require marker digital removal

Feature-based camera tracking

- More general method
- Instead of markers we can track features
- Harris, SIFT, SURF...
- Tracking feature using KLT
- Estimate the pose
- Relax the coplanar point method
- More general approach

Kanade-Lucas-Tomasi (KLT) Tracker

- Find a good point to track (harris corner)
- Find displacement by solving the optical flow equation in a window around the point
- Get the new position of the point
- Window size
- Small window more sensitive to noise and may miss larger motions
- Large window more likely to cross an occlusion boundary (and it's slower)
- Typically 15×15 to 31×31
- OpenCV has it implemented in calcOpticalFlowPyrLK()

Feature Tracking

- Given two consecutive frames and a point on the first image, estimate the point translation on the second image

Optical flow

- Optical flow: apparent motion of pixels due to the relative motion between the camera and objects in the scene

Main assumptions

- Small motion: points do not move very far
- Brightness constancy: projection of the same point looks the same in every frame

Optical flow

- Assume the image brightness is a continuous and differentiable function f
- The discrete formulation is straightforward
- x, y are the coordinates of the points inside the image
- t is time

$$
f(x, y, t) \text { Brightness at position } x, y \text { at time } t
$$

Optical flow

- Assume the image brightness is a continuous and differentiable function f
- x, y are the coordinates of the points inside the image
- t is time

$$
f(x, y, t) \text { Brightness at position } x, y \text { at time } t
$$

Brightness Constancy Equation for $d x, d y$ and $d t$

$$
f(x, y, t)=f(x+d x, y+d y, t+d t)
$$

Optical flow

- Assume the image brightness is a continuous and differentiable function f
- x, y are the coordinates of the points inside the image
$\cdot t$ is time

$$
f(x, y, t) \text { Brightness at position } x, y \text { at time } t
$$

Brightness Constancy Equation for $d x, d y$ and $d t$

$$
\begin{gathered}
f(x, y, t)=f(x+d x, y+d y, t+d t) \\
f(x+d x, y+d y, t+d t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}
\end{gathered}
$$

Optical flow

$$
f(x+d x, y+d y, t+d t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}
$$

$\frac{\partial f}{\partial x} \quad$ The brightness variation along x (known)
$\overline{\partial x} \quad=>$ image gradient on x

Optical flow

$$
f(x+d x, y+d y, t+d t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}
$$

$\frac{\partial f}{\partial x} \quad$ The brightness variation along x (known)
$\overline{\partial x} \quad=>$ image gradient on x
$\frac{\partial f}{\partial y} \quad$ The brightness variation along y (known)
$\overline{\partial y} \quad$ => image gradient on y

Optical flow

$$
f(x+d x, y+d y, t+d t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}
$$

$\frac{\partial f}{\partial x} \quad$ The brightness variation along x (known)
$\overline{\partial x} \quad$ => image gradient on x
$\underline{\partial f} \quad$ The brightness variation along y (known)
$\overline{\partial y} \quad=>$ image gradient on y
$\frac{\partial f}{\partial t} \quad$ The brightness variation between the two frames (known)

Optical flow

Brightness Constancy Equation for $d x, d y$ and $d t$

$$
f(x, y, t)=\underbrace{f(x+d x, y+d y, t+d t)}_{1^{\text {st }} \text { order Taylor Series }}
$$

$$
f(x+d x, y+d y, t+d t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}
$$

Optical flow

Brightness Constancy Equation for $d x, d y$ and $d t$

$$
\begin{equation*}
f(x, y, t)=\underbrace{f(x+d x, y+d y, t+d t)} \tag{1}
\end{equation*}
$$

(2) $f(x+d x, y+d y, t+d t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}$

Replace (2) in (1)

$$
f(x, y, t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}
$$

Optical flow

Brightness Constancy Equation for $d x, d y$ and $d t$

$$
f(x, y, t)=f_{1}^{f(x+d x, y+d y, t+d t)}
$$

$$
\begin{gathered}
f(x+d x, y+d y, t+d t)=f(x, y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t} \\
f(x, y, t)=f(x / y, t)+d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t} \\
d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}=0
\end{gathered}
$$

Optical flow

$$
d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}=0
$$

Optical flow

$$
\begin{aligned}
& d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}=0 \\
& f_{x} d x+f_{y} d y+f_{t} d t=0 \quad\left\{\begin{array}{l}
f_{x}=\frac{\partial f}{\partial x} \\
f_{y}=\frac{\partial f}{\partial y} \\
f_{t}=\frac{\partial f}{\partial t}
\end{array}\right.
\end{aligned}
$$

Optical flow

$$
\begin{aligned}
& d x \frac{\partial f}{\partial x}+d y \frac{\partial f}{\partial y}+d t \frac{\partial f}{\partial t}=0 \\
& f_{x} d x+f_{y} d y+f_{t} d t=0 \quad\left\{\begin{array} { l }
{ \text { rewite as... } }
\end{array} \quad \left\{\begin{array}{l}
f_{x}=\frac{\partial f}{\partial x} \\
f_{y}=\frac{\partial f}{\partial y} \\
f_{t}=\frac{\partial f}{\partial t}
\end{array}\right.\right. \\
& f_{x} u+f_{y} v+f_{t}=0 \\
& \text { divideby }=0 \\
& \text { where } \quad \begin{cases}u=\frac{d x}{d t} & \text { Velocity along } \mathrm{x} \text { (unknown) } \\
v=\frac{d y}{d t} & \text { Velocity along } \mathrm{y} \text { (unknown) }\end{cases}
\end{aligned}
$$

Optical flow

Brightness Constancy Equation

$$
f_{x} u+f_{y} v+f_{t}=0
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
u=\frac{d x}{d t} \quad \text { Velocity along } \mathrm{x} \text { (unknown) => motion on } \mathrm{x} \text { for } d t=1 \\
v=\frac{d y}{d t} \quad \text { Velocity along } \mathrm{y} \text { (unknown) => motion on } \mathrm{y} \text { for } d t=1
\end{array}\right. \\
& \begin{cases}f_{x}=\frac{\partial f}{\partial x} & \text { The brightness variation along } \mathrm{x} \text { (known) => image gradient on } \mathrm{x} \\
f_{y}=\frac{\partial f}{\partial y} & \text { The brightness variation along } \mathrm{y} \text { (known) => image gradient on } \mathrm{y} \\
f_{t}=\frac{\partial f}{\partial t} & \text { The brightness variation between two frames (known) }\end{cases}
\end{aligned}
$$

For each position we have 1 equation with 2 unknowns...

Optical Flow - Lucas-Kanade

Main assumptions

- Brightness constancy: projection of the same point looks the same in every frame
- Small motion: points do not move very far
- Spatial coherence: points move like their neighbours
- assume that brightness constancy holds for a small neighbourhood (window) around the point
- Use the neighbor pixels to solve the equation at least squares

Eg, considering a 3×3 window we get 9 equations

$$
\begin{aligned}
& f_{x 1} u+f_{y 1} v=-f_{t 1} \\
& f_{x 2} u+f_{y 2} v=-f_{t 2}
\end{aligned}
$$

$$
f_{x 9} u+f_{y 9} v=-f_{t 9}
$$

Optical Flow - Lucas-Kanade

$$
\begin{gathered}
f_{x 1} u+f_{y 1} v=-f_{t 1} \\
f_{x 2} u+f_{y 2} v=-f_{t 2} \\
\vdots \\
f_{x 9} u+f_{y 9} v=-f_{t 9} \\
\mathbf{A}=\left[\begin{array}{cc}
f_{x 1} & f_{y 1} \\
f_{x 2} & f_{y 2} \\
\vdots & \vdots \\
f_{x 9} & f_{y 9}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}
-f_{t 1} \\
-f_{t 2} \\
\vdots \\
f_{t 9}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{c}
u \\
v
\end{array}\right] \\
\mathbf{A} \mathbf{U}=
\end{gathered}
$$

Optical Flow - Lucas-Kanade

$$
\mathbf{A u}=\mathbf{B} \quad \mathbf{A}=\left[\begin{array}{cc}
f_{x 1} & f_{y_{11}} \\
f_{2 x} & f_{y 2} \\
\vdots & \vdots \\
f_{x 9} & f_{y 9}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}
-f_{t 1} \\
-f_{t 2} \\
\vdots \\
f_{t 9}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Solving with the pseudo-inverse $\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathbf{T}}$

$$
\begin{array}{r}
\mathbf{A}^{\mathbf{T}} \mathbf{A u}=\mathbf{A}^{\mathbf{T}} \mathbf{B} \\
\mathbf{u}=\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathbf{T}} \mathbf{B}
\end{array}
$$

$\mathbf{A}^{\mathbf{T}} \mathbf{A}$ has to be invertible, hence $\operatorname{rank}(\mathrm{A})=2$

$$
\begin{aligned}
& \text { Remember the Calibrated } \\
& \text { Photometric Stereo... } \\
& \widehat{\mathrm{M}}(P)^{\top}=\mathbf{I}(Q) \mathrm{S}^{\top}\left(\mathrm{S} \mathrm{~S}^{\top}\right)^{-1}
\end{aligned}
$$

Feature-based camera tracking

- More general method
- Instead of markers we can track features
- Harris, SIFT, SURF...
- Tracking feature using KLT
- Estimate the pose
- Relax the coplanar point method
- More general approach

Camera tracking with features

Repeat:

- Track the features in the image
- Estimate the camera pose from 2D-3D correspondences

Camera tracking with features

Repeat:

- Track the features in the image
- Estimate the camera pose from 2D-3D correspondences
- What about the 3D points?
- They are known if
- we have some kind of 3D model (fiducials, makers...)
- we can have the 3D information with the image (stereocamera, kinect...)
- General case of monocular camera?
- Use 3D reconstruction

Camera tracking with features

Stereo camera

- 2D-3D associations are available at each frame

- Experimental mobile phone
- CPU dual core ARM ${ }^{\circledR}$ CORTEXTM-A9
- Cameras
- 2x 5.3Mpixel (VGA mode)
- Baseline 6.5 cm
- Android 2.3.4

Using a stereo camera

- Use stereo image to initialize (3D reconstruction)

Using a stereo camera

- Use stereo image to initialize (3D reconstruction)
- Track the features only in one image

Using a stereo camera

- Use stereo image to initialize (3D reconstruction)
- Track the features only in one image
- Use stereo image to add new features when needed

Using a stereo camera

Using a stereo camera

Using a stereo camera

Back to monocular camera

- Stereo camera is a heavy constraint
- How can we track the movement of a single camera?

The epipolar geometry

The cross matrix

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]=[\mathbf{a}]_{\times} \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \mathbf{b}
$$

Property of skew symmetric matrices

Let \mathbf{A} be a $n \times n$ skew-symmetric matrix $\Rightarrow \mathbf{A}^{T}=-\mathbf{A}$
The determinant of A satisfies $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(-\mathbf{A})=(-1)^{n} \operatorname{det}(\mathbf{A})$ If n is odd the determinant vanishes.
Hence, all odd dimension skew symmetric matrices are singular

The Fundamental and Essential matrices

$$
\begin{aligned}
& \mathbf{q}_{1} \sim \mathbf{K}_{1}[\mathbf{I} \mid \mathbf{0}]\left[\begin{array}{c}
\tilde{\mathbf{Q}} \\
1
\end{array}\right] \quad \mathbf{q}_{2} \sim \mathbf{K}_{2}[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{c}
\tilde{\mathbf{Q}} \\
1
\end{array}\right] \\
& \tilde{\mathbf{Q}} \sim \mathbf{K}_{1}^{-1} \mathbf{q}_{1} \Rightarrow \mathbf{K}_{2}^{-1} \mathbf{q}_{2} \sim[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{c}
\mathbf{K}_{1}^{-1} \mathbf{q}_{1} \\
1
\end{array}\right]=\mathbf{R K}_{1}^{-1} \mathbf{q}_{1}+\mathbf{t}
\end{aligned}
$$

Let's multiply both ends by $[\mathbf{t}]_{\mathrm{x}}$
$[\mathbf{t}]_{\mathrm{x}} \mathbf{K}_{2}^{-1} \mathbf{q}_{2} \sim[\mathbf{t}]_{\mathrm{x}} \mathbf{R} K_{1}^{-1} \mathbf{q}_{1}+[\mathbf{t}]_{\mathrm{x}} \mathbf{t} \quad$ but $[\mathbf{t}]_{\mathrm{x}} \mathbf{t}=0=\mathbf{t} \times \mathbf{t} \Rightarrow[\mathbf{t}]_{\mathrm{x}} \mathbf{K}_{2}^{-1} \mathbf{q}_{2} \sim[\mathbf{t}]_{\mathrm{x}} \mathbf{R} \mathbf{K}_{1}^{-1} \mathbf{q}_{1}$
Let's multiply both ends by $\left(\mathbf{K}_{2}^{-1} \mathbf{q}_{2}\right)^{\mathrm{T}}$
$\mathbf{q}_{2}^{\mathrm{T}} \mathbf{K}_{2}^{-\mathrm{T}}[\mathbf{t}]_{\mathrm{x}} \mathbf{K}_{2}^{-1} \mathbf{q}_{2} \sim \mathbf{q}_{2}^{\mathrm{T}} \mathbf{K}_{2}^{-\mathrm{T}}[\mathbf{t}]_{\mathrm{x}} \mathbf{R} \mathbf{K}_{1}^{-1} \mathbf{q}_{1}$
but $\mathbf{q}_{2}^{\mathrm{T}} \mathbf{K}_{2}^{-\mathrm{T}}[\mathbf{t}]_{\mathrm{x}} \mathbf{K}_{2}^{-1} \mathbf{q}_{2}=0$ as it is like doing $\mathbf{a}^{\mathrm{T}}[\mathbf{b}]_{\mathrm{x}} \mathbf{a}=\mathbf{a}^{\mathrm{T}}(\mathbf{b} \times \mathbf{a})=0$

Fundamental matrix

The Essential matrix E

- 3×3 matrix relating corresponding points in 2 views

$$
\left.\begin{array}{c}
\tilde{\mathbf{q}}_{2}^{\mathrm{T}} \mathbf{E} \tilde{\mathbf{q}}_{2}=0 \\
\mathbf{E}=[\mathbf{t}]_{x} \mathbf{R}
\end{array}\right\} \text { where } \quad \tilde{\mathbf{q}}_{1} \sim \mathbf{K}_{1}^{-1} \mathbf{q}_{1} \quad \text { and } \quad \tilde{\mathbf{q}}_{2} \sim \mathbf{K}_{2}^{-1} \mathbf{q}_{2}
$$

- Calibrated case: \mathbf{E} depends only on \mathbf{R} and \mathbf{t}
- Uncalibrated case: fundamental matrix \mathbf{F}

$$
\mathbf{q}_{2}^{\mathrm{T}} \mathbf{F} \mathbf{q}_{1}=0=\mathbf{q}_{2}^{\mathrm{T}} \mathbf{K}^{-\mathrm{T}}[\mathbf{t}]_{\mathrm{x}} \mathbf{R} \mathbf{K}^{-1} \mathbf{q}_{1}
$$

Computing F

$$
\mathbf{q}_{2}^{T} \mathbf{F} \mathbf{q}_{1}=0
$$

$$
\begin{gathered}
{\left[\begin{array}{lll}
q_{2}^{x} & q_{2}^{y} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1}^{T} \mathbf{q}_{1} \\
\mathbf{f}_{2}^{T} \mathbf{q}_{1} \\
\mathbf{f}_{3}^{T} \mathbf{q}_{1}
\end{array}\right]=0 \quad \text { with } \quad \mathbf{f}_{i}^{T}=i \text {-th row of } \mathbf{F}} \\
\\
q_{2}^{x} \mathbf{f}_{1}^{T} \mathbf{q}_{1}+q_{2}^{y} \mathbf{f}_{2}^{T} \mathbf{q}_{1}+\mathbf{f}_{3}^{T} \mathbf{q}_{1}=0
\end{gathered}
$$

$$
\left[\begin{array}{lll}
q_{2}^{x} \mathbf{q}_{1}^{T} & q_{2}^{y} \mathbf{q}_{1}^{T} & \mathbf{q}_{1}^{T}
\end{array}\right]_{1 \times 9}\left[\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\mathbf{f}_{3}
\end{array}\right]_{9 \times 1}=0
$$

How many points do we need to compute F?

Computing F

$$
\left[\begin{array}{lll}
q_{2}^{x} \mathbf{q}_{1}^{T} & q_{2}^{y} \mathbf{q}_{1}^{T} & \mathbf{q}_{1}^{T}
\end{array}\right]_{1 \times 9}\left[\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\mathbf{f}_{3}
\end{array}\right]_{9 \times 1}=0
$$

For each pair of points we have 1 equation for 9 unknowns

We need at least 8 pairs to solve up to a scale factor

Computing F

change of notation: for each pair $i \rightarrow \mathbf{q}_{2 i}^{T} \mathbf{F} \mathbf{q}_{1 i}=0$

$$
\mathbf{A}_{8 \times 9}\left[\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\mathbf{f}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
q_{21}^{x} \mathbf{q}_{11}^{T} & q_{21}^{y} \mathbf{q}_{11}^{T} & \mathbf{q}_{11}^{T} \\
q_{22}^{x} \mathbf{q}_{12}^{T} & q_{22}^{y} \mathbf{q}_{12}^{T} & \mathbf{q}_{12}^{T} \\
\vdots & \vdots & \vdots \\
q_{28}^{x} \mathbf{q}_{18}^{T} & q_{28}^{y} \mathbf{q}_{18}^{T} & \mathbf{q}_{18}^{T}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\mathbf{f}_{3}
\end{array}\right]_{9 \times 1}=\mathbf{0}
$$

Once again, solve a system $\mathbf{A f}=\mathbf{0}$, i.e. Solve for $|\mathbf{A f}|^{2}=\mathbf{0}$ subject to $|\mathbf{f}|=\mathbf{1}$
As usual, use SVD s.t. $\mathbf{A} \stackrel{S V D}{=} \mathbf{U D V}^{T}$
And set \mathbf{x} as the last column of \mathbf{V}

$$
\mathbf{A}^{S V D}=\mathbf{U D V}^{T} \rightarrow \mathbf{F}=\operatorname{reshape}(\mathbf{V}(:, 9), 3,3)
$$

Computing F

- Remember that F must have rank 2
- We need to enforce the constraint
- Solution: set last singular value of F to zero.

$$
\mathbf{F} \stackrel{S V D}{=} \mathbf{U D V}^{T} \rightarrow \mathbf{D}_{3 \times 3}=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\right)
$$

σ_{3}^{2} should be 0 but in general it is not, then take:

$$
\hat{\mathbf{D}}_{3 \times 3}=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, 0\right) \quad \rightarrow \quad \mathbf{F} \stackrel{\operatorname{def}}{=} \mathbf{U} \hat{\mathbf{D}} \mathbf{V}^{T}
$$

- The same can hold for essential matrix E but... It has some different properties.

The Essential matrix

- $\operatorname{Rank}(\mathrm{E})=2$ because of $[\mathrm{t}]_{\mathrm{x}}$
- Also:

A (3×3) matrix is an essential matrix if and only if two of its singular values are equal and the third one is zero

Proof: based on the fact that $\mathrm{E}=\mathrm{SR}$ with $\mathrm{S}=[\mathbf{t}]_{\times}$and $\mathrm{R} \in S O(3)$

- Define:

$$
W=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad Z=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
-1 & 0 \\
0 & 0
\end{array}\right)
$$

- S can be decomposed as $\mathrm{S}=k \mathrm{UZU}^{\top}$ with $\mathrm{U} \in O(3)$ (Property of skew symmetric matrices)
- We have $\mathbf{Z}=-\operatorname{diag}(1,1,0) \mathrm{W}$ and thus:

$$
\mathbf{S} \sim \mathbf{U} \operatorname{diag}(1,1,0) \mathbf{W} \mathbf{U}^{\top}
$$

- A Singular Value Decomposition of E is thus:

$$
\mathrm{E} \sim \mathrm{U} \operatorname{diag}(1,1,0)\left(\mathrm{WU}^{\top} \mathrm{R}\right)
$$

Computation of the Essential matrix E

- Can be estimated with 8 pairs of corresponding pairs
- Hence the "famous" 8 points algorithm
- Similar estimation procedure to fundamental matrix
- With respect to fundamental matrix, \mathbf{E} has 2 constraints

$$
\begin{aligned}
& \operatorname{det} \mathbf{E}=0 \\
& 2 \mathbf{E} \mathbf{E}^{\mathrm{T}}-\operatorname{tr}\left(\mathbf{E E}^{\mathrm{T}}\right) \mathbf{E}=0 \quad \begin{array}{c}
\text { 2 equal eligenalue and } \\
\text { 1 null eigenvalue }
\end{array}
\end{aligned}
$$

- Imposing these constraints allows to reduce the number of corresponding pairs
- 5 corresponding pairs are enough!
- (up to 10 solutions, see later)
- hence the "famous" 5 point algorithm

Decomposition of E - solving for R and t

- Compute E with with the 5 points algorithm
- We need to decompose \mathbf{E} in order to find \mathbf{R} and \mathbf{t}
- From the property of \mathbf{E} we know that if we decompose \mathbf{E} with a SVD we get:

$$
\mathbf{E} \stackrel{\text { SVD }}{\sim} \mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{T}
$$

- Hence also \mathbf{U} and \mathbf{V} are known (from svd(E))
- We are going to use them for decomposing \mathbf{E} into the \mathbf{R} and t parts

Decomposition of E - solving for R and t

\star The translation:

$$
\operatorname{rank}(\mathbf{E})=2 \leq \min (\operatorname{rank}(\mathbf{S}), \operatorname{rank}(\mathbf{R})) \Rightarrow \operatorname{rank}(\mathbf{S})=2
$$

- Matrix E has rank 2 and its left nullspace is \mathbf{u}_{3}
- Matrix S is skew symmetric and must have the same nullspace as E, thus:

$$
\mathbf{S} \sim\left[\mathbf{u}_{3}\right]_{\times} \quad \text { and } \quad \mathbf{t} \sim \mathbf{u}_{3}
$$

\star The rotation:

- We write $\mathrm{R}=\mathrm{UXV}^{\top}$ with $\mathrm{X} \in O(3)$
- Using $\mathrm{S} \sim \mathrm{UZU}^{\top}$, we get:

$$
\begin{aligned}
E & \sim S R \\
& \sim U Z U^{\top} U X V^{\top} \\
& \sim U Z X V^{\top}
\end{aligned}
$$

and thus $\mathbf{Z X}=\operatorname{diag}(1,1,0)$ giving:

$$
X=W \quad \text { or } \quad X=W^{\top}
$$

Decomposition of E

The Singular Value Decomposition of E is:

$$
\mathrm{E}=\mathrm{U} \operatorname{diag}(1,1,0) \mathrm{V}^{\top}
$$

then the following two solutions are possible for R :

$$
\begin{aligned}
& \mathrm{R}=U W V^{\top} \\
& \mathrm{R}=U W^{\top} V^{\top}
\end{aligned}
$$

and for \mathbf{t} :

$$
\mathbf{t}= \pm \mathbf{u}_{3}
$$

Among the 4 solutions, 1 is feasible

Four possible solutions

\star The sign of \mathbf{t} is undetermined
\star Combining with the two possible rotations, this gives:

$$
\begin{array}{rll}
P^{\prime} \sim\left(U W V^{\top} \mathbf{u}_{3}\right) & \text { or } & P^{\prime} \sim\left(U W V^{\top}-\mathbf{u}_{3}\right) \\
P^{\prime} \sim\left(U W^{\top} V^{\top} \mathbf{u}_{3}\right) & \text { or } & P^{\prime} \sim\left(U W^{\top} V^{\top}-\mathbf{u}_{3}\right)
\end{array}
$$

\star The $\mathbf{u}_{3} \rightarrow-\mathbf{u}_{3}$ swaps the position of the cameras
\star The $U W V^{\top} \rightarrow U W^{\top} V^{\top}$ makes a rotation of π around the baseline
\star Only one solution is feasible

Four possible solutions

Initialization with monocular camera

- K-frame based tracking
- Main idea:
- 3D reconstruction only when we have sufficient camera displacement
- Kframe selection based on
- Number of lost features
- Actual movement if available

Initialization with monocular camera

- K-frame based tracking
- Main idea:
- 3D reconstruction only when we have sufficient camera displacement
- Kframe selection based on
- Number of lost features
- Actual movement if available

Initialization with monocular camera

- K-frame based tracking
- Main idea:
- 3D reconstruction only when we have sufficient camera displacement
- Kframe selection based on
- Number of lost features
- Actual movement if available

Initialization with monocular camera

- K-frame based tracking
- Main idea:
- 3D reconstruction only when we have sufficient camera displacement
- Kframe selection based on
- Number of lost features
- Actual movement if available

Initialization with monocular camera

- K-frame based tracking
- Main idea:
- 3D reconstruction only when we have sufficient camera displacement
- Kframe selection based on
- Number of lost features
- Actual movement if available
- Then for each new kframe detect and add new features to track

Initialization with 3 Kframes

- Only once at beginning
- Track and detect markers
- Get 3 Kframes
- Solve the 3 kframe geometry
- 5 points algorithm
- 3D reconstruction
- Then start tracking
- Drawback (inevitable):
- No 3D information during initialization

Initialization with 3 Kframes

- 5 Points algorithm

- Robust algorithm to solve 3 view problem
- Based on solution of a minimal problem
- Multiple solutions possible, other points to choose the correct one

5 Points algorithm

- Estimate \mathbf{E} from 2 views (up to 10 solutions)

Ei

5 Points algorithm

- estimate the E (up to 10 solutions)
- for each solution Ei
- decompose E_{i} in \mathbf{R} and \mathbf{t}
- up to 8 possible solutions for R and t

$$
E_{i} \rightarrow R, t
$$

5 Points algorithm

- estimate the E (up to 10 solutions)
- for each solution Ei
- decompose E_{i} in \mathbf{R} and \mathbf{t}
- up to 8 possible solutions for R and t
- for each possible Ri and ti
- reconstruct the 5 3D points

5 Points algorithm

- estimate the E (up to 10 solutions)
- for each solution Ei
- decompose E_{i} in \mathbf{R} and \mathbf{t}
- up to 8 possible solutions for R and t
- for each possible Ri and ti
- reconstruct the 5 3D points
- cheirality test (points must be in front of the cameras)
- consider the feasible Riand $\mathbf{t i}$

- compute the pose of the $3^{\text {rd }}$ camera (resection problem)

5 Points algorithm

- estimate the E (up to 10 solutions)
- for each solution Ei
- decompose E_{i} in \mathbf{R} and \mathbf{t}
- up to 8 possible solutions for R and t
- for each possible Ri and ti
- reconstruct the 5 3D points
- cheirality test (points must be in front of the cameras)
- consider the feasible Riand ti

- compute the pose of the $3^{\text {rd }}$ camera (resection problem)
- reconstruct all the other points
- cheirality test to validate the solution

5 Points algorithm

- estimate the E (up to 10 solutions)
- for each solution Ei
- decompose E_{i} in \mathbf{R} and \mathbf{t}
- up to 8 possible solutions for R and t
- for each possible Ri and ti
- reconstruct the 5 3D points
- cheirality test (points must be in front of the cameras)
- consider the feasible Riand ti

- compute the pose of the $3^{\text {rd }}$ camera (resection problem)
- reconstruct all the other points
- cheirality test to validate the solution
- bundle adjustment to refine the poses and the 3D structure
- if more than one solution choose the one with best (lowest) reprojection error.

An initialization algorithm

- Main Idea
- Only once at beginning
- No 3D information during initialization
- Track and detect markers
- Get 3 Kframes
- Solve the 3 kframe geometry
- 5 points algorithm
- 3D reconstruction
- Then start tracking

And after the initialization?

- After initialization step we have:
- 3 kframes
- Set of 3D points from reconstruction
- Set of new features detected in Kf_{3} without 3D

Tracking with kframes

- For each new frame
- The 3D points are tracked and used to estimate the pose (PnP)
- The new features are tracked
- Kframe selection as in the initialization step

Tracking with kframes

- When a new key frame is needed
- New tracked features reconstructed by triangulation with the last kframe
- Optimization of all the 3D points and camera poses (bundle adjustment)

A tracking algorithm

- At every frame
- Track features and markers
- Estimate pose
- If kframe needed
- 3D reconstruction of newly tracked points
- Bundle adjustment
- Detect new points

Pose estimation

-3D - 2D correspondences

- Resection (PnP) problem:
- Estimate the rotation \mathbf{R} and the translation \mathbf{t}

$$
\mathbf{q}_{i} \sim \mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{Q}_{i}
$$

Challenges (2)

- Errors accumulation
- Errors are inevitable due to noise etc...:
- 3D reconstruction
- Pose estimation
- Errors cumulates
- Global registration needed
- Bundle adjustment

Bundle Adjustment

- Local bundle adjustment
- Optimization over a subset of kframes
- 3D structure and camera pose
- Optimization over:
- The (kframe) camera poses
- The 3D points
- Mitigate error cumulating
- Pose estimation
- 3D reconstruction

Bundle Adjustment

- Global optimization over:
- The (kframe) camera poses
- The 3D points
- Mitigate the effects of error cumulating
- Pose estimation
- 3D reconstruction

Bundle Adjustment

- Refines a visual reconstruction to produce jointly optimal 3D structure and viewing parameters
- 'bundle' \rightarrow bundle of light rays leaving each 3D feature and converging on each camera center.
- Non linear Least-squares fitting
- maximum likelihood estimation of the fitted parameters if the measurement errors are independent and normally distributed with constant standard deviation
- The probability distribution of the sum of a very large number of very small random deviations almost always converges to a normal distribution

Bundle Adjustment

- Reprojection error for a 3D point wrt its image point (measure)

For a single point in one camera
$e\left(\mathbf{R}, \mathbf{t}, \mathbf{Q}_{i}\right)=\left\|\mathbf{q}_{i}-\left(\mathbf{K R} \mathbf{Q}_{i}+\mathbf{t}\right)\right\| \begin{aligned} & 3 \text { parameters for the 3D point } \\ & 6 \text { parameters for the camera (R and } t)\end{aligned}$
Warning: abuse of notation
Scale factor $\boldsymbol{\lambda}$ missing

Bundle Adjustment

- Reprojection error for a 3D point wrt its image point (measure)

For a single point in one camera
$e\left(\mathbf{R}, \mathbf{t}, \mathbf{Q}_{i}\right)=\left\|\mathbf{q}_{i}-\left(\mathbf{K R} \mathbf{Q}_{i}+\mathbf{t}\right)\right\| \quad \begin{aligned} & 3 \text { parameters for the 3D point } \\ & 6 \text { parameters for the camera (R and } t)\end{aligned}$

For M points in one camera
$\begin{aligned} e\left(\mathbf{R}, \mathbf{t}, \mathbf{Q}_{i}\right)= & \sum_{i}^{M} w_{i}\left\|\mathbf{q}_{i}-\left(\mathbf{K R} \mathbf{Q}_{i}+\mathbf{t}\right)\right\| \begin{array}{l}3^{*} \mathrm{M} \text { parameters the 3D points } \\ 6 \text { parameters for the camera (R and } \mathrm{t})\end{array} \\ & \begin{array}{l}\text { Indicator variable: } \\ 1 \text { if point } \mathrm{i} \text { is visible from the camera } \\ 0 \text { otherwise }\end{array}\end{aligned}$

Bundle Adjustment

- Reprojection error for a 3D point wrt its image point (measure)

For a single point in one camera
$e\left(\mathbf{R}, \mathbf{t}, \mathbf{Q}_{i}\right)=\left\|\mathbf{q}_{i}-\left(\mathbf{K R} \mathbf{Q}_{i}+\mathbf{t}\right)\right\| \quad \begin{aligned} & 3 \text { parameters for the 3D point } \mathrm{Q}_{\mathrm{i}} \\ & 6 \text { parameters for the camera (R and } t)\end{aligned}$

For M points in one camera
$e\left(\mathbf{R}, \mathbf{t}, \mathbf{Q}_{i}\right)=\sum_{i}^{M} w_{i}\left\|\mathbf{q}_{i}-\left(\mathbf{K R} \mathbf{Q}_{i}+\mathbf{t}\right)\right\| \begin{aligned} & \begin{array}{l}3 * \mathrm{M} \text { parameters the 3D points } \mathrm{Q}_{\mathrm{i}} \\ 6 \text { parameters for the camera (R and } \mathrm{t})\end{array}\end{aligned}$

For M points in N cameras
$e\left(\mathbf{R}, \mathbf{t}, \mathbf{Q}_{i}\right)=\sum_{j}^{N} \sum_{i}^{M} w_{i j}\left\|\mathbf{q}_{i j}-\left(\mathbf{K}_{j} \mathbf{R}_{j} \mathbf{Q}_{i}+\mathbf{t}_{j}\right)\right\| \begin{aligned} & 3^{*} \mathrm{M} \text { parameters the 3D points } \mathrm{Q}_{\mathrm{i}} \\ & \text { 6*N parameters for each camera } \\ & \left(\mathrm{R}_{\mathrm{j}} \text { and } \mathrm{t}_{\mathrm{j}}\right)\end{aligned}$

Bundle Adjustment

- Local bundle adjustment
- Optimization over a subset of kframes rather than all
- 3D structure and camera pose
- Reduce computation and memory
- only the last $\mathrm{C}<\mathrm{N}$ cameras are optimized
- reprojection error accounted for last \mathbf{N} key frames.

$\left.\begin{array}{l}3 \text { parameters for each 3D point } \\ 6 \text { parameters for each camera }(R \text { and } t)\end{array}\right]$ Only $6^{*} C+3^{*} \mathrm{P}$ variables

The overall algorithm

The overall algorithm

