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Previously…	

• Tracking	using	markers	
–  Detect	the	marker	in	the	image	
–  Use	the	4	points	to	esEmate	the	camera	pose	

• Tracking	by	detec/on	method	
–  No	history	from	frame	to	frame	
–  Each	frame	processed	independently	

• Some	informaEon	can	be	passed	to	the	next	frame	
–  The	pose	of	the	camera	as	iniEal	guess	(small	movement)	
–  The	point	posiEon	as	iniEal	guess	

• Can	stabilize	the	tracking	
–  Eg	deal	with	(parEal)	occlusions	
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Previously…	

Another	approach	
• Detect	and	track	

–  Detect	once	
–  Use	the	informaEon	of	the	previous	frame	to	find	the	new	posiEon	of	
the	points	

–  EsEmate	the	pose	
–  If	no	luck,	try	detecEon	again	

• GeneralizaEon	of	the	previous	problem	
–  Track	the	features	(not	just	markers)	over	images	
–  EsEmate	the	pose	using	tracked	features	

• SLAM	approach	
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Previously…	(Marker/fiducial	approach)	
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Pros	

• Easy	setup	and	low	cost	
–  Even	for	mobile	devices	

• Works	well	with	
–  Large	movement	of	the	

camera	
–  Dynamic	environments	(as	

long	as	the	marker	is	visible)	
–  Texture-less	scenes		

• Encodes	addiEonal	info	
• Always	correct	scale	for	3D	
object	

Cons	

• Requires	setup	
• Markers	must	be	always	(at	
least	parEally)	visible	
• May	require	marker	digital	
removal	



Feature-based	camera	tracking	

• More	general	method	
•  Instead	of	markers	we	can	track	features		

–  Harris,	SIFT,	SURF…	
• Tracking	feature	using	KLT	
• EsEmate	the	pose	

–  Relax	the	coplanar	point	method	
–  More	general	approach	
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Kanade-Lucas-Tomasi	(KLT)	Tracker	

• Find	a	good	point	to	track	(harris	corner)	
• Find	displacement	by	solving	the	opEcal	flow	equaEon	in	a	
window	around	the	point	
• Get	the	new	posiEon	of	the	point	

• Window	size		
–  Small	window	more	sensiEve	to	noise	and	may	miss	larger	moEons	
–  Large	window	more	likely	to	cross	an	occlusion	boundary	(and	it’s	
slower)		

–  Typically	15x15	to	31x31		

• OpenCV	has	it	implemented	in	calcOpticalFlowPyrLK()	
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Feature	Tracking	

• Given	two	consecuEve	frames	and	a	point	on	the	first	image,	
esEmate	the	point	translaEon	on	the	second	image	
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OpEcal	flow	

• Op/cal	flow:		apparent	moEon	of	pixels	due	to	the	relaEve	
moEon	between	the	camera	and	objects	in	the	scene	

Main	assumpEons	
• Small	mo/on:	points	do	not	move	very	far		
• Brightness	constancy:	projecEon	of	the	same	point	looks	the	
same	in	every	frame		
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OpEcal	flow	

• Assume	the	image	brightness	is	a	conEnuous	and	differenEable	
funcEon	f 
–  The	discrete	formulaEon	is	straighgorward	

• x, y are	the	coordinates	of	the	points	inside	the	image	
•  t	is	Eme	
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Brightness	at	posiEon	x,y	at	Eme	t 



OpEcal	flow	

• Assume	the	image	brightness	is	a	conEnuous	and	differenEable	
funcEon	f 
• x, y are	the	coordinates	of	the	points	inside	the	image	
•  t	is	Eme	
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Brightness	at	posiEon	x,y	at	Eme	t 

Brightness	Constancy	EquaEon	for	dx, dy	and	dt 



OpEcal	flow	

• Assume	the	image	brightness	is	a	conEnuous	and	differenEable	
funcEon	f 
• x, y are	the	coordinates	of	the	points	inside	the	image	
•  t	is	Eme	
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Brightness	at	posiEon	x,y	at	Eme	t 

Brightness	Constancy	EquaEon	for	dx, dy	and	dt 

1st	order	Taylor	Series	



OpEcal	flow	
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The	brightness	variaEon	along	x	(known)	
=>	image	gradient	on	x	



OpEcal	flow	
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The	brightness	variaEon	along	x	(known)	
=>	image	gradient	on	x	

The	brightness	variaEon	along	y	(known)	
=>	image	gradient	on	y	



OpEcal	flow	
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The	brightness	variaEon	along	x	(known)		
=>	image	gradient	on	x	

The	brightness	variaEon	along	y	(known)	
=>	image	gradient	on	y	

The	brightness	variaEon	between	the	two	frames	(known)	



OpEcal	flow	
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Brightness	Constancy	EquaEon	for	dx, dy	and	dt 

1st	order	Taylor	Series	



OpEcal	flow	
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Brightness	Constancy	EquaEon	for	dx, dy	and	dt 

1st	order	Taylor	Series	

Replace	(2)	in	(1)	

(1)	

(2)	



OpEcal	flow	
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Brightness	Constancy	EquaEon	for	dx, dy	and	dt 

1st	order	Taylor	Series	



OpEcal	flow	
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OpEcal	flow	
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rewrite	as…	



OpEcal	flow	
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rewrite	as…	

divide	by	dt 

where 
Velocity	along	x	(unknown)	

Velocity	along	y	(unknown)	



OpEcal	flow	
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Brightness	Constancy	Equa/on 

Velocity	along	x	(unknown)	=>	moEon	on	x	for	dt=1	

Velocity	along	y	(unknown)	=>	moEon	on	y	for	dt=1	

The	brightness	variaEon	along	y	(known)	=>	image	gradient	on	y	

The	brightness	variaEon	between	two	frames	(known)	

The	brightness	variaEon	along	x	(known)	=>	image	gradient	on	x	

For	each	posiEon	we	have	1	equaEon	with	2	unknowns…	



OpEcal	Flow	–	Lucas-Kanade	

Main	assumpEons	
• Brightness	constancy:	projecEon	of	the	same	point	looks	the	
same	in	every	frame		
• Small	mo/on:	points	do	not	move	very	far		
• Spa/al	coherence:	points	move	like	their	neighbours	

–  assume	that	brightness	constancy	holds	for	a	small	neighbourhood	
(window)	around	the	point	

–  Use	the	neighbor	pixels	to	solve	the	equaEon	at	least	squares	
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Eg,	considering	a	3x3	window	we	get	9	equaEons	



OpEcal	Flow	–	Lucas-Kanade	
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OpEcal	Flow	–	Lucas-Kanade	
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Solving	with	the	pseudo-inverse	

Remember	the	Calibrated	
Photometric	Stereo…	

has	to	be	inverEble,	hence	rank(A)=2  



Feature-based	camera	tracking	

• More	general	method	
•  Instead	of	markers	we	can	track	features		

–  Harris,	SIFT,	SURF…	
• Tracking	feature	using	KLT	
• EsEmate	the	pose	

–  Relax	the	coplanar	point	method	
–  More	general	approach	
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Camera	tracking	with	features	

Repeat:	
• Track	the	features	in	the	image	
• EsEmate	the	camera	pose	from	2D-3D	correspondences	
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X ?	

?	



Camera	tracking	with	features	

Repeat:	
• Track	the	features	in	the	image	
• EsEmate	the	camera	pose	from	2D-3D	correspondences	

• What	about	the	3D	points?	
• They	are	known	if		

–  we	have	some	kind	of	3D	model	(fiducials,	makers…)	
–  we	can	have	the	3D	informaEon	with	the	image	(stereocamera,	
kinect…)	

• General	case	of	monocular	camera?	
–  Use	3D	reconstrucEon		
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Camera	tracking	with	features	

Stereo	camera	
• 2D-3D	associaEons	are	available	at	each	frame	
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6.5cm	

•  Experimental	mobile	phone	
•  CPU	dual	core	ARM®	CORTEXTM-A9	
•  Cameras	

–  2x	5.3Mpixel	(VGA	mode)	
–  Baseline	6.5cm	

•  Android	2.3.4	



Using	a	stereo	camera	

• Use	stereo	image	to	iniEalize	(3D	reconstrucEon)	
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Using	a	stereo	camera	

• Use	stereo	image	to	iniEalize	(3D	reconstrucEon)	
• Track	the	features	only	in	one	image	
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Using	a	stereo	camera	

• Use	stereo	image	to	iniEalize	(3D	reconstrucEon)	
• Track	the	features	only	in	one	image	
• Use	stereo	image	to	add	new	features	when	needed	
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Using	a	stereo	camera	

47	



Using	a	stereo	camera	
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Using	a	stereo	camera	
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Back	to	monocular	camera	

• Stereo	camera	is	a	heavy	constraint	
• How	can	we	track	the	movement	of	a	single	camera?	
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X ?	

?	
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q1 q2 



The	epipolar	geometry	
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The	cross	matrix	

a×b =
a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1
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Property	of	skew	symmetric	matrices	
Let	A	be	a	n×n	skew-symmetric	matrix		
The	determinant	of	A	saEsfies		
If	n	is	odd	the	determinant	vanishes.		
Hence,	all	odd	dimension	skew	symmetric	matrices	are	singular		

det A( ) = det AT( ) = det −A( ) = −1( )n det A( )
⇒ AT = −A



The	Fundamental	and	EssenEal	matrices	
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=RK1

−1q1 + t

Let's multiply both ends by t[ ]x

t[ ]x
K2

−1q2 ~ t[ ]x
RK1

−1q1 + t[ ]x
t but  t[ ]x

t = 0 = t× t  ⇒ t[ ]x
K2

−1q2 ~ t[ ]x
RK1

−1q1

Let's multiply both ends by K2
−1q2( )

T

q2
TK2

−T t[ ]x
K2

−1q2 ~ q2
TK2

−T t[ ]x
RK1

−1q1

but  q2
TK2

−T t[ ]x
K2

−1q2 = 0 as it is like doing aT b[ ]x
a = aT b×a( ) = 0 

q2
TK2

−T t[ ]x
RK1

−1

F
! "## $##

q1 = 0 = q2
TK2

−TEK1
−1q1 = q2

TFq1

Fundamental	matrix	
EssenEal	matrix	

F =K2
−TEK1

−1



The	EssenEal	matrix	E	
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• 3x3	matrix	relaEng	corresponding	points	in	2	views	

	
• Calibrated	case:	E	depends	only	on	R	and	t	
• Uncalibrated	case:	fundamental	matrix	F	

!q2
T E !q2 = 0
E = [t]xR

!
"
#

$#
  where   !q1 ~K1

−1q1    and  !q2 ~K2
−1q2

q2
T Fq1 = 0 = q2

TK−T t[ ]xRK
−1q1

Q 

q1 q2 



CompuEng	F	
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q2
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9×1

= 0
How	many	points	
do	we	need	to	
compute	F?	



CompuEng	F	

57	

q2
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For	each	pair	of	points	we	have	1	equaEon	for	
9	unknowns	

We	need	at	least	8	pairs	to	solve	up	to	a	scale	
factor	



CompuEng	F	

58	

change of notation: for each pair i→ q2i
T Fq1i = 0

A8×9
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⎢
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⎥
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Once	again,	solve	a	system	Af=0,	i.e.	
Solve	for	|Af|2=0 subject	to	|f|=1 

And	set	x	as	the	last	column	of	V 
As	usual,	use	SVD	s.t.		A =

SVD
UDVT

A =
SVD
UDVT → F = reshape(V(:, 9),3,3)



CompuEng	F	
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F =
SVD
UDVT →D3×3 = diag(σ1

2,σ 2
2,σ 3

2 )
σ 3

2  should be 0 but in general it is not, then take:

D̂3×3 = diag(σ1
2,σ 2

2, 0) → F =
def
UD̂VT

• Remember	that	F	must	have	rank	2	
• We	need	to	enforce	the	constraint	
• SoluEon:	set	last	singular	value	of	F	to	zero.	

	

• The	same	can	hold	for	essenEal	matrix	E	but...	It	has	some	
different	properEes.	



The	EssenEal	matrix	
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•  Rank(E)	=	2	because	of	[t]x	
•  Also:	

(Property	of	skew	symmetric	matrices)	

-	



ComputaEon	of	the	EssenEal	matrix	E	
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• Can	be	esEmated	with	8	pairs	of	corresponding	pairs	
–  Hence	the	“famous”	8	points	algorithm			
–  Similar	esEmaEon	procedure	to	fundamental	matrix	

• With	respect	to	fundamental	matrix,	E	has	2	constraints	

•  Imposing	these	constraints	allows	to	reduce	the	number	of	
corresponding	pairs	
• 5	corresponding	pairs	are	enough	!		

–  (up	to	10	soluEons,	see	later)	
• hence	the	“famous”	5	point	algorithm	

0)(2
0det

TT =−

=

EEEEE
E

tr 2	equal	eigenvalues	and		
1	null	eigenvalue	



DecomposiEon	of	E	–	solving	for	R	and	t	
• Compute	E	with	with	the	5	points	algorithm	
• We	need	to	decompose	E	in	order	to	find	R	and	t	
• From	the	property	of	E	we	know	that	if	we	decompose	E	with	a	
SVD	we	get:	

• Hence	also	U	and	V	are	known	(from	svd(E))	
• We	are	going	to	use	them	for	decomposing	E	into	the	R	and	t	
parts	
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E ~
SVD
Udiag(1,1, 0)VT



DecomposiEon	of	E	–	solving	for	R	and	t	
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rank(E) = 2 ≤min(rank(S), rank(R))⇒ rank(S) = 2

Z = ±diag(1,1, 0)W

E ~
SVD
Udiag(1,1, 0)VT



DecomposiEon	of	E	

64	



Four	possible	soluEons	
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Four	possible	soluEons	
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IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	
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t0	



IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	
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t1	t0	



IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	

	

69	

t2	
t1	t0	



IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	
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t3	

t2	
t1	t0	



IniEalizaEon	with	monocular	camera	

• K-frame	based	tracking		
• Main	idea:	

–  3D	reconstrucEon	only	when	we	have	sufficient	camera	displacement	
–  Kframe	selecEon	based	on	

•  Number	of	lost	features	
•  Actual	movement	if	available	

–  Then	for	each	new	kframe	detect	and	add	new	features	to	track	
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t3	

t2	
t1	t0	

Kf0	

Kf1	

hxps://www.youtube.com/watch?v=Y9HMn6bd-v8		



IniEalizaEon	with	3	Kframes	

• Only	once	at	beginning	
• Track	and	detect	markers	

–  Get	3	Kframes	
–  Solve	the	3	kframe	geometry		
–  5	points	algorithm	
–  3D	reconstrucEon	

• Then	start	tracking	
• Drawback	(inevitable):	

–  No	3D	informaEon	during	iniEalizaEon	
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IniEalizaEon	with	3	Kframes	
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• 5	Points	algorithm	
– Robust	algorithm	to	solve	3	view	problem	
– Based	on	soluEon	of	a	minimal	problem	
– MulEple	soluEons	possible,	other	points	to	choose	the	correct	one	

Nistér,	D.	2004.	An	Efficient	Solu.on	to	the	Five-Point	Rela.ve	Pose	Problem.	IEEE	Trans.	
Paxern	Anal.	Mach.	Intell.	26,	6	(Jun.	2004),	756-777.	doi:hxp://dx.doi.org/10.1109/
TPAMI.2004.17		



5	Points	algorithm	
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•  EsEmate	E	from	2	views	(up	to	10	soluEons)	

Ei	



5	Points	algorithm	

75	

•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	

Ei	à	R,	t	

Ri,	ti	

8x	



5	Points	algorithm	
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•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	 Ri,	ti	



5	Points	algorithm	
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•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	

–  consider	the	feasible	Ri	and	ti	
–  compute	the	pose	of	the	3rd	camera	(resecEon	problem)	



5	Points	algorithm	
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•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	

–  consider	the	feasible	Ri	and	ti	
–  compute	the	pose	of	the	3rd	camera	(resecEon	problem)	
–  reconstruct	all	the	other	points		
–  cheirality	test	to	validate	the	soluEon	



5	Points	algorithm	
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•  esEmate	the	E	(up	to	10	soluEons)	
•  for	each	soluEon	Ei	

–  decompose	Ei	in	R	and	t	
–  up	to	8	possible	soluEons	for	R	and	t	
–  for	each	possible	Ri	and	ti		

•  reconstruct	the	5	3D	points		
•  cheirality	test	(points	must	be	in	front	of	the	cameras)	

–  consider	the	feasible	Ri	and	ti	
–  compute	the	pose	of	the	3rd	camera	(resecEon	problem)	
–  reconstruct	all	the	other	points		
–  cheirality	test	to	validate	the	soluEon	

•  bundle	adjustment	to	refine	the	poses	and	the	3D	structure	
–  if	more	than	one	soluEon		choose	the	one	with	best	(lowest)	reprojecEon	

error.	
	



An	iniEalizaEon	algorithm	
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• Main	Idea	
–  Only	once	at	beginning	
–  No	3D	informaEon	during	
iniEalizaEon	

–  Track	and	detect	markers	
–  Get	3	Kframes	
–  Solve	the	3	kframe	geometry		

•  5	points	algorithm	

–  3D	reconstrucEon	
–  Then	start	tracking	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

Need	
kframe?	

Save	kframe	

3	Kframes?	

Solve	5	
points	Init	=	true	

Ini/aliza/on	

y

y

y

n

n n



And	a|er	the	iniEalizaEon?	
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• A|er	iniEalizaEon	step	we	have:	
–  3	kframes	
–  Set	of	3D	points	from	reconstrucEon		
–  Set	of	new	features	detected	in	Kf3	without	3D	

Kf3	
Kf2	Kf1	

3D	points	visible	by	all	the	
3	kframes	

Features	detected	in	the	3rd	
Kframe	not	yet	reconstructed	



Tracking	with	kframes	
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• For	each	new	frame	
–  The	3D	points	are	tracked	and	used	to	esEmate	the	pose	(PnP)	
–  The	new	features	are	tracked	
–  Kframe	selecEon	as	in	the	iniEalizaEon	step	

Kf3	
Kf2	Kf1	

New	tracked	points,	
no	3D	info	Tracked	from	iniEalizaEon	

with	3D	info	



Tracking	with	kframes	
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Kf3	
Kf2	Kf1	

Kf4	

• When	a	new	key	frame	is	needed	
–  New	tracked	features	reconstructed	by	triangulaEon	with	the	last	
kframe	

–  OpEmizaEon	of	all	the	3D	points	and	camera	poses	(bundle	
adjustment)	

TriangulaEon	with	
the	last	kframe	



A	tracking	algorithm	
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• At	every	frame	
• Track	features	and	markers	
• EsEmate	pose	
•  If	kframe	needed	

–  3D	reconstrucEon	of	newly	
tracked	points	

–  Bundle	adjustment	
–  Detect	new	points	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

EsEmate	
pose	

Need	
kframe

?	

Save	kframe	 Bundle	
Adjustment	

Tracking	

y

n

y



Pose	esEmaEon	
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• 3D	–	2D	correspondences		
• ResecEon	(PnP)	problem:		

–  EsEmate	the	rotaEon	R	and	the	
translaEon	t	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

Es/mate	pose	

Need	
kframe?	

Save	kframe	 Bundle	
Adjustment	

Tracking	

[ ] ii QtRKq |~

R,	t	



Challenges	(2)	

• Errors	accumula/on	
• Errors	are	inevitable	due	to	noise	etc…: 		

–  3D	reconstrucEon	
–  Pose	esEmaEon	

• Errors	cumulates	
• Global	registraEon	needed	
• Bundle	adjustment	
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Bundle	Adjustment	
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• Local	bundle	adjustment	
–  OpEmizaEon	over	a	subset	of	kframes	

•  3D	structure	and	camera	pose	

• OpEmizaEon	over: 		
–  The	(kframe)	camera	poses	
–  The	3D	points	

• MiEgate	error	cumulaEng		
–  Pose	esEmaEon	
–  3D	reconstrucEon	

New	frame	

Is	Init?	

Track	feature	
detect	marker	

EsEmate	pose	

Need	kframe?	

Save	kframe	
Bundle	

Adjustment	

Tracking	



Bundle	Adjustment	

• Global	opEmizaEon	over: 		
–  The	(kframe)	camera	poses	
–  The	3D	points	

• MiEgate	the	effects	of	error	cumulaEng		
–  Pose	esEmaEon	
–  3D	reconstrucEon	

88	



Bundle	Adjustment	

• Refines	a	visual	reconstrucEon	to	produce	jointly	opEmal		3D	
structure	and	viewing	parameters	
•  ‘bundle’	à	bundle	of	light	rays	leaving	each	3D	feature	and	
converging	on	each	camera	center.		
• Non	linear	Least-squares	fi}ng	

–  maximum	likelihood	esEmaEon	of	the	fixed	parameters	if	the	
measurement	errors	are	independent	and	normally	distributed	with	
constant	standard	deviaEon	

–  The	probability	distribuEon	of	the	sum	of	a	very	large	number	of	very	
small	random	deviaEons	almost	always	converges	to	a	normal	
distribuEon	

89	



Bundle	Adjustment	

• ReprojecEon	error	for	a	3D	point	wrt	its	image	point	(measure)	

90	

e R, t,Qi( ) = qi − KRQi + t( )
For	a	single	point	in	one	camera	

3	parameters	for	the	3D	point	
6	parameters	for	the	camera	(R	and	t)	

Warning:	abuse	of	notaEon	
Scale	factor	λ	missing		

e	

qi	

Qi	

KRQi	+	t	



Bundle	Adjustment	

• ReprojecEon	error	for	a	3D	point	wrt	its	image	point	(measure)	

91	

e R, t,Qi( ) = qi − KRQi + t( )

e R, t,Qi( ) = wi qi − KRQi + t( )
i

M

∑

For	a	single	point	in	one	camera	
3	parameters	for	the	3D	point	
6	parameters	for	the	camera	(R	and	t)	

For	M	points	in	one	camera	

3*M	parameters	the	3D	points	
6	parameters	for	the	camera	(R	and	t)	

Indicator	variable:	
1	if	point	i	is	visible	from	the	camera	
0	otherwise	



Bundle	Adjustment	

• ReprojecEon	error	for	a	3D	point	wrt	its	image	point	(measure)	
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e R, t,Qi( ) = qi − KRQi + t( )

e R, t,Qi( ) = wi qi − KRQi + t( )
i

M

∑

e R, t,Qi( ) = wij qij − K jR jQi + t j( )
i

M

∑
j

N

∑

For	a	single	point	in	one	camera	
3	parameters	for	the	3D	point	Qi	
6	parameters	for	the	camera	(R	and	t)	

For	M	points	in	one	camera	

3*M	parameters	the	3D	points	Qi	
6*N	parameters	for	each	camera	

(Rj	and	tj)	

For	M	points	in	N	cameras	

3*M	parameters	the	3D	points	Qi	
6	parameters	for	the	camera	(R	and	t)	



Bundle	Adjustment	
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• Local	bundle	adjustment	
–  OpEmizaEon	over	a	subset	of	kframes	rather	than	all	

•  3D	structure	and	camera	pose	

–  Reduce	computaEon	and	memory	
–  only	the	last	C<N	cameras	are	opEmized		
–  reprojecEon	error	accounted	for	last	N	key	frames.	

Kft	Kft-1	Kft-C	Kft-C-1	Kft-n+1	Kft-n	

C	
N	

3	parameters	for	each	3D	point	
6	parameters	for	each	camera	(R	and	t)	 Only		6*C	+	3*P	variables	



The	overall	algorithm	
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New	frame	

Is	Init?	

Track	feature	
detect	marker	

Need	
kframe?	

Save	kframe	

3	
Kframes

?	

Solve	5	points	Init	=	true	

EsEmate	pose	

Need	
kframe?	

Save	kframe	 Bundle	
Adjustment	



The	overall	algorithm	
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New	frame	

Is	Init?	

Track	feature	
detect	marker	

Need	
kframe?	

Save	kframe	

3	
Kframes

?	

Solve	5	points	Init	=	true	

EsEmate	pose	

Need	
kframe?	

Save	kframe	 Bundle	
Adjustment	

Ini/aliza/on	 Tracking	


