
INP-ENSEEIHT Vision par Ordinateur, 2015-2016

Quick start with

Vision par Ordinateur, 2015-2016
3e année IMA, Parcours Multimédia

Contents

1 About this document 2

2 The tutorial code 2
2.1 Building the code with CMake . 2
2.2 On your personal machine . 3

3 OpenCV 4

4 Mat - The Basic Image Container 5
4.1 Creating explicitly a Mat object . 6

4.1.1 Access to Mat elements . 8
4.2 Print out formatting . 9
4.3 Print for other common items . 10

5 Load and Display an Image 12
5.1 Goal . 12
5.2 Source Code . 12
5.3 Explanation . 13
5.4 Result . 14

6 Load, Modify, and Save an Image 15
6.1 Goals . 15
6.2 Code . 16
6.3 Explanation . 16
6.4 Result . 17

7 Load and display a video 19
7.1 Goals . 19
7.2 Code . 19
7.3 Explanation . 20
7.4 Result . 21

8 File Input and Output using XML and YAML files 23
8.1 Goal . 23
8.2 Source code . 23
8.3 Explanation . 24
8.4 Result . 24

1

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

9 Camera calibration With OpenCV 27
9.1 Theory . 27

1 About this document
This documents collects some of the tutorials that are part of the OpenCV library. These
are the most basic yet relevant ones that will help you to get started with the library and
complete the TP more easily. Some of them has been adapted, reduced or rewritten with the
code you will have to write during the TP in mind. You can always access to the original
tutorials and all the other ones from the online documentation that you can find at this address
http://docs.opencv.org/2.4.6/doc/tutorials/tutorials.html.

2 The tutorial code
The archive containing the tutorials is organized as follows:

• data contains some images that can be used with the programs of this tutorial.

• doc contains a copy of this document, the official API reference guide of OpenCV and
the original version of all OpenCV tutorials.

• src contains the source files that you have to modify and complete; they are organize in
directories:
– tutorials contains the code used in the tutorials

2.1 Building the code with CMake
CMake is a cross-platform free software program that helps managing the build process of soft-
ware using a compiler-independent method. In simpler words, this means that CMake is an
utility that helps to set up the compilation environment for a given source code, independently
from the compiler and the building system that is actually used to generate the code, be it
Linux’s make, Apple’s Xcode, or Microsoft Visual Studio.
In the case of this TP, CMake will check for all the libraries that are needed to compile our

programs and it will automatically generate the corresponding Makefile. Let’s see how this
work.
From the starting path of the code, create a new directory, let’s call it build :

mkdir build
cd build

This directory will contain the results of the compilation, i.e. all the executables that you will
generate. Now we can tell CMake to configure and create the relevant makefile for us:

cmake ..

CMake will look for all the necessary libraries and generate the makefile for all the programs.
On your screen you should see something like this:

2

http://docs.opencv.org/2.4.6/doc/tutorials/tutorials.html

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

This has to be done only once at the beginning, from now on you have just to compile the
code you modify in src using the usual make command. Indeed, in the build directory you can
see the Makefile we will use to compile the code. The code can be compiled form the build
directory with the usual

make <filename_without_extension>
and

make clean
to delete all the executable and the compilation objects. Try for example to build the code for
the first tutorial with

make mat_the_basic_image_container

The executable will be placed in build/bin/ and you can run the code with

./bin/mat_the_basic_image_container

2.2 On your personal machine
The code can be compiled in any machine of the computer rooms at ENSEEIHT. If you want to
try it on your personal machine you have to first install the opencv library. The library can be
downloaded from this address http://opencv.org/downloads.html. At this webpage you can
find all the information to compile and install them on any supported platform.
Once you have installed them, you have just to follow the steps in Section 2.1, but you may

need to do a

cmake .. -DOpenCV_DIR=path/to/OpenCVConfig.cmake/

in order to specify where the OpenCVConfig.cmake file is. In general it is located in the
directory you used to build the library or in a system path, typically /usr/local/share/OpenCV,
if you install them.
Finally, remember to set the LD_LIBRARY_PATH to allow your application to access the project

libraries (for example if the OpenCV are not installed in the usual system path).

3

http://opencv.org/downloads.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

3 OpenCV
OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine
learning software library. OpenCV was built to provide a common infrastructure for computer
vision applications and to accelerate the use of machine perception in the commercial products.
The library has more than 2500 optimized algorithms, which includes a comprehensive set

of both classic and state-of-the-art computer vision and machine learning algorithms. These
algorithms can be used to detect and recognize faces, identify objects, classify human actions in
videos, track camera movements, track moving objects, extract 3D models of objects, produce
3D point clouds from stereo cameras, stitch images together to produce a high resolution image
of an entire scene, find similar images from an image database, remove red eyes from images
taken using flash, follow eye movements, recognize scenery and establish markers to overlay it
with augmented reality, etc.
It has C++, C, Python, Java and MATLAB interfaces and supports Windows, Linux, Android

and Mac OS. OpenCV leans mostly towards real-time vision applications and takes advantage
of MMX and SSE instructions when available. A full-featured CUDA and OpenCL interfaces are
being actively developed right now. There are over 500 algorithms and about 10 times as many
functions that compose or support those algorithms. OpenCV is written natively in C++ and
has a templated interface that works seamlessly with STL containers.

4

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

4 Mat - The Basic Image Container
Mat is basically a class having two data parts: the matrix header (containing information such
as the size of the matrix, the method used for storing, at which address is the matrix stored
and so on) and a pointer to the matrix containing the pixel values (may take any dimensionality
depending on the method chosen for storing) . The matrix header size is constant. However,
the size of the matrix itself may vary from image to image and usually is larger by order of
magnitudes. Therefore, when you’re passing on images in your program and at some point you
need to create a copy of the image the big price you will need to build is for the matrix itself
rather than its header. OpenCV is an image processing library. It contains a large collection of
image processing functions. To solve a computational challenge most of the time you will end up
using multiple functions of the library. Due to this passing on images to functions is a common
practice. We should not forget that we are talking about image processing algorithms, which
tend to be quite computational heavy. The last thing we want to do is to further decrease the
speed of your program by making unnecessary copies of potentially large images.
To tackle this issue OpenCV uses a reference counting system. The idea is that each Mat object

has its own header, however the matrix may be shared between two instance of them by having
their matrix pointer point to the same address. Moreover, the copy operators will only copy
the headers, and as also copy the pointer to the large matrix too, however not the matrix
itself.

1 // creates just the header parts
2 Mat A, C;
3

4 // allocate the matrix from the image file
5 A = imread(argv[1], CV_LOAD_IMAGE_COLOR);
6

7 // Use the copy constructor
8 Mat B(A);
9

10 // Assignment operator
11 C = A;

All the above objects, in the end point to the same single data matrix. Their headers are
different, however making any modification using either one of them will affect all the other
ones too. In practice the different objects just provide different access method to the same
underlying data. Nevertheless, their header parts are different. The real interesting part comes
that you can create headers that refer only to a subsection of the full data. For example, to create
a region of interest (ROI) in an image you just create a new header with the new boundaries:

1 // using a rectangle
2 Mat D (A, Rect(10, 10, 100, 100));
3

4 // extracts A columns, from 1 (inclusive) to 3 (exclusive).
5 // like matlab E = A(:,2:3)
6 // columns and rows start from 0 in C/C++
7 Mat E = A(Range:all(), Range(1,3));

Here is another way to select and use columns and rows of the matrix

5

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

1 // add the 6th row, multiplied by 3 to the 4th row
2 M.row(3) = M.row(3) + M.row(5)*3;
3

4 // now copy the 8th column to the 2nd column
5 // M.col(1) = M.col(7); // this will not work!
6 Mat M1 = M.col(1);
7 M.col(7).copyTo(M1);

In order to select more than one column (row) you can use the Matmethod colRange(int start, int end)

(rowRange(int start, int end)). start is the index of first column/row to consider, end is
the exclusive index of the last column/row, i.e. colRange(1, 5) will return the columns from
the second (index 1) to the fifth (index 4).
Now you may ask if the matrix itself may belong to multiple Mat objects who will take

responsibility for its cleaning when it’s no longer needed. The short answer is: the last object
that used it. For this a reference counting mechanism is used. Whenever somebody copies a
header of a Mat object a counter is increased for the matrix. Whenever a header is cleaned this
counter is decreased. When the counter reaches zero the matrix too is freed. Because, sometimes
you will still want to copy the matrix itself too, there exists the clone() or the copyTo() function.

1 Mat F = A.clone();
2 Mat G;
3 A.copyTo(G);

Now modifying F or G will not affect the matrix pointed by the Mat header. What you need
to remember from all this is that:

• Output image allocation for OpenCV functions is automatic (unless specified otherwise).

• No need to think about memory freeing with OpenCV C++ interface.

• The assignment operator and the copy constructor copies only the header.

• Use the clone() or the copyTo() function to copy the underlying matrix of an image.

4.1 Creating explicitly a Mat object
In the Load, Modify, and Save an Image tutorial you will see how to write a matrix to an image
file by using the imwrite function. However, for debugging purposes it’s much more convenient
to see the actual values. You can achieve this via the << operator of Mat. However, be aware
that this only works for two dimensional matrices.
Although Mat is a great class as image container it is also a general matrix class. Therefore,

it is possible to create and manipulate multidimensional matrices. You can create a Mat object
in multiple ways:

• Mat() Constructor
1 Mat M(2,2, CV_8UC3, Scalar(0,0,255));
2 cout << "M = " << endl << " " << M << endl << endl;

6

http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-colrange
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-rowrange
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-clone
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-copyto
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-clone
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-copyto
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

For two dimensional and multichannel images we first define their size: row and
column count wise.
Then we need to specify the data type to use for storing the elements and the number
of channels per matrix point. To do this we have multiple definitions made according
to the following convention:

1 CV_[number of bits per item][Type Prefix]C[Channels]

For instance, CV_8UC3 means we use unsigned char types that are 8 bit long and
each pixel has three items of this to form the three channels. This are predefined for
up to four channel numbers. The Scalar is four element short vector. Specify this
and you can initialize all matrix points with a custom value. However if you need
more you can create the type with the upper macro and putting the channel number
in parenthesis as you can see below.

• Use C\C++ arrays and initialize via constructor
1 int sz[3] = {2,2,2};
2 Mat L(3,sz, CV_8UC(1), Scalar::all(0));

The upper example shows how to create a matrix with more than two dimensions. Specify
its dimension, then pass a pointer containing the size for each dimension and the rest
remains the same.

• Create() function:

1 M.create(4,4, CV_8UC(2));
2 cout << "M = "<< endl << " " << M << endl << endl;

You cannot initialize the matrix values with this construction. It will only reallocate
its matrix data memory if the new size will not fit into the old one.

• MATLAB style initializer: zeros(), ones(), eyes(). Specify size and data type to use:

1 Mat E = Mat::eye(4, 4, CV_64F);
2 cout << "E = " << endl << " " << E << endl << endl;
3

4 Mat O = Mat::ones(2, 2, CV_32F);
5 cout << "O = " << endl << " " << O << endl << endl;
6

7 Mat Z = Mat::zeros(3,3, CV_8UC1);
8 cout << "Z = " << endl << " " << Z << endl << endl;

7

http://docs.opencv.org/modules/core/doc/basic_structures.html#datatype
http://docs.opencv.org/modules/core/doc/basic_structures.html#scalar
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-create
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-zeros
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-ones
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-eye

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

• For small matrices you may use comma separated initializers:

1 Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
2 cout << "C = " << endl << " " << C << endl << endl;

• Create a new header for an existing Mat object and clone() or copyTo() it.
1 Mat RowClone = C.row(1).clone();
2 cout << "RowClone = " << endl << " " << RowClone << endl << endl;

Note: You can fill out a matrix with random values using the randu() function. You need
to give the lower and upper value between what you want the random values:

1 Mat R = Mat(3, 2, CV_8UC3);
2 randu(R, Scalar::all(0), Scalar::all(255));

4.1.1 Access to Mat elements

In order to access to a single element of a matrix you can use its template method Mat::at():
1 template<typename T> T& Mat::at(int i, int j)

where the type T is the type of the matrix we are accessing, so it can be float, double, int
etc. The indices i and j are the indices of the element (always 0-based). For example:

8

http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-clone
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-copyto
http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#randu
http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-at

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

1 // a 3x4 matrix of floats
2 Mat A = Mat(3, 4, CV_32FC1);
3

4 for(int i = 0; i < A.rows; ++i)
5 {
6 for(int j = 0; j < A.cols; ++j)
7 {
8 // set the value of the element
9 A.at<float>(i,j) = i*A.cols + j;

10 // get the value of the element value
11 cout << A.at<float>(i,j) << endl;
12 }
13 }

4.2 Print out formatting
In the above examples you could see the default formatting option. Nevertheless, OpenCV allows
you to format your matrix output format to fit the rules of:

• Default
1 cout << "R (default) = " << endl << R << endl << endl;

• Python
1 cout << "R (python) = " << endl << R << endl << endl;

• Comma separated values (CSV)
1 cout << "R (cvs) = " << endl << R << endl << endl;

9

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

• Numpy
1 cout << "R (numpy) = " << endl << R << endl << endl;

• C
1 cout << "R (c) = " << endl << R << endl << endl;

4.3 Print for other common items
OpenCV offers support for print of other common OpenCV data structures too via the <<
operator like:

• 2D Point
1 Point2f P(5, 1);
2 cout << "Point (2D) = " << P << endl << endl;

• 3D Point
1 Point3f P3f(2, 6, 7);
2 cout << "Point (3D) = " << P3f << endl << endl;

• std::vector via cv::Mat

1 vector<float> v;
2 v.push_back((float)CV_PI);
3 v.push_back(2);
4 v.push_back(3.01f);
5

6 cout << "Vector of floats via Mat = " << Mat(v) << endl << endl;

• std::vector of points

10

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

1 vector<Point2f> vPoints(20);
2 for (size_t i = 0; i < vPoints.size(); ++i)
3 vPoints[i] = Point2f((float)(i * 5), (float)(i % 7));
4

5 cout << "A vector of 2D Points = " << vPoints << endl << endl;

Most of the samples here have been included into a small console application. You can
download it from here or in the core section of the cpp samples.

11

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

5 Load and Display an Image
5.1 Goal
In this tutorial you will learn how to:

• Load an image (using imread)

• Create a named OpenCV window (using namedWindow)

• Display an image in an OpenCV window (using imshow)

5.2 Source Code
The source code is in src/tutorials/display_image.cpp . The program takes as input an
image file and it diplays it in a window

1 # include <opencv2 / core / core.hpp>
2 # include <opencv2 / highgui / highgui.hpp>
3 # include <iostream>
4 using namespace cv;
5 using namespace std;
6 int main(int argc, char** argv)
7 {
8 if(argc != 2)
9 {

10 cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
11 return -1;
12 }
13 Mat image;
14 // Read the file
15 image = imread(argv[1], CV_LOAD_IMAGE_COLOR);
16 if(! image.data)
17 // Check for invalid input
18 {
19 cout << "Could not open or find the image" << std::endl ;
20 return -1;
21 }
22 // Create a window for display.
23 namedWindow("Display window", CV_WINDOW_AUTOSIZE);
24 // Show our image inside it.
25 imshow("Display window", image);
26 // Wait for a keystroke in the wind
27 waitKey(0);
28 return 0;
29 }

12

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=namedwindow#namedwindow
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=imshow#imshow

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

5.3 Explanation
In OpenCV 2 we have multiple modules. Each one takes care of a different area or approach
towards image processing. You could already observe this in the structure of the user guide of
these tutorials itself. Before you use any of them you first need to include the header files where
the content of each individual module is declared.
You’ll almost always end up using the:

• core section, as here are defined the basic building blocks of the library

• highgui module, as this contains the functions for input and output operations

1 # include <iostream> // for standard I/O
2 # include <string> // for strings

We also include the iostream to facilitate console line output and input. To avoid data struc-
ture and function name conflicts with other libraries, OpenCV has its own namespace: cv. To
avoid the need appending prior each of these the cv:: keyword you can import the namespace
in the whole file by using the lines:

1 using namespace cv;
2 using namespace std;

This is true for the STL library too (used for console I/O). Now, let’s analyze the main func-
tion. We start up assuring that we acquire a valid image name argument from the command line.

1 if(argc != 2)
2 {
3 cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
4 return -1;
5 }

Then create a Mat object that will store the data of the loaded image.

1 Mat image;

Now we call the imread function which loads the image name specified by the first argument
(argv[1]). The second argument specifies the format in what we want the image. This may be:

• CV_LOAD_IMAGE_UNCHANGED (<0) loads the image as is (including the alpha channel if
present)

• CV_LOAD_IMAGE_GRAYSCALE (0) loads the image as an intensity one

• CV_LOAD_IMAGE_COLOR (>0) loads the image in the RGB format

1 // Read the file
2 image = imread(argv[1], CV_LOAD_IMAGE_COLOR);

After checking that the image data was loaded correctly, we want to display our image, so we
create an OpenCV window using the namedWindow function. These are automatically managed
by OpenCV once you create them. For this you need to specify its name and how it should
handle the change of the image it contains from a size point of view. It may be:

13

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=namedwindow#namedwindow

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

• CV_WINDOW_AUTOSIZE is the only supported one if you do not use the Qt backend. In this
case the window size will take up the size of the image it shows. No resize permitted!

• CV_WINDOW_NORMAL on Qt you may use this to allow window resize. The image will resize
itself according to the current window size. By using the | operator you also need to
specify if you would like the image to keep its aspect ratio (CV_WINDOW_KEEPRATIO) or not
(CV_WINDOW_FREERATIO).

1 // Create a window for display.
2 namedWindow("Display window", CV_WINDOW_AUTOSIZE);

Finally, to update the content of the OpenCV window with a new image use the imshow func-
tion. Specify the OpenCV window name to update and the image to use during this operation:

1 // Show our image inside it.
2 imshow("Display window", image);

Because we want our window to be displayed until the user presses a key (otherwise the pro-
gram would end far too quickly), we use the waitKey function whose only parameter is just how
long should it wait for a user input (measured in milliseconds). Zero means to wait forever.

1 //Wait for a keystroke in the window
2 waitKey(0);

5.4 Result
• Compile your code and then run the executable giving an image path as argument. For

exemple from the build directory:

./bin/display_image ../data/images/HappyFish.png

• You should get a nice window as the one shown below:

14

http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=imshow#imshow
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=waitkey#waitkey

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

6 Load, Modify, and Save an Image

Note: We assume that by now you know how to load an image using imread and to display
it in a window (using imshow). Read the Load and Display an Image tutorial otherwise.

6.1 Goals
In this tutorial you will learn how to:

• Load an image using imread

• Transform an image from BGR to Grayscale format by using cvtColor

• Save your transformed image in a file on disk (using imwrite)

15

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=imshow#imshow
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cvtcolor#cvtcolor
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imwrite#imwrite

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

6.2 Code
The source code is in src/tutorials/load_modify_image.cpp . The program takes as input
an image file, it converts it into a greylevel image, it displays the two images inside two separate
windows and save the greylevel version into a file.
Here it is:

1 # include <cv.h>
2 # include <highgui.h>
3 using namespace cv;
4 int main(int argc, char** argv)
5 {
6 char* imageName = argv[1];
7 Mat image;
8 image = imread(imageName, 1);
9 if(argc != 2 || !image.data)

10 {
11 printf(" No image data \n ");
12 return -1;
13 }
14 Mat gray_image;
15 cvtColor(image, gray_image, CV_BGR2GRAY);
16 imwrite("../../data/images/Gray_Image.jpg", gray_image);
17 namedWindow(imageName, CV_WINDOW_AUTOSIZE);
18 namedWindow("Gray image", CV_WINDOW_AUTOSIZE);
19 imshow(imageName, image);
20 imshow("Gray image", gray_image);
21 waitKey(0);
22 return 0
23 }

6.3 Explanation
1. We begin by:

• Creating a Mat object to store the image information
• Load an image using imread, located in the path given by imageName. For this
example, assume you are loading a RGB image.

2. Now we are going to convert our image from BGR to Grayscale format. OpenCV has a
really nice function to do this kind of transformations:

1 cvtColor(image, gray_image, CV_BGR2GRAY);

As you can see, cvtColor takes as arguments:
• a source image (image)
• a destination image (gray_image), in which we will save the converted image.

16

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cvtcolor#cvtcolor

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

• an additional parameter that indicates what kind of transformation will be performed.
In this case we use CV_BGR2GRAY (because of imread has BGR default channel order
in case of color images).

3. So now we have our new gray_image and want to save it on disk (otherwise it will get lost
after the program ends). To save it, we will use a function analagous to imread: imwrite

1 imwrite("../../images/Gray_Image.jpg", gray_image);

Which will save our gray_image as Gray_Image.jpg in the folder images located two
levels up of my current location.

4. Finally, let’s check out the images. We create two windows and use them to show the
original image as well as the new one:

1 namedWindow(imageName, CV_WINDOW_AUTOSIZE);
2 namedWindow("Gray image", CV_WINDOW_AUTOSIZE);
3 imshow(imageName, image);
4 imshow("Gray image", gray_image);

5. Add add the waitKey(0) function call for the program to wait forever for an user key
press.

6.4 Result
When you run your program you should get something like this:

And if you check in your folder (in my case images), you should have a newly .jpg file named
Gray_Image.jpg:

17

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imwrite#imwrite

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

Congratulations, you are done with this tutorial!

18

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

7 Load and display a video
7.1 Goals
In this tutorial you will learn how to load a video from a file and visualize the stream in a
OpenCV window.

7.2 Code
The code is in src/tutorials/load_and_display_video.cpp. The program takes as input the
name of video and displays it inside a OpenCV window.

19

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

1 #include <opencv2/core/core.hpp>
2 #include <opencv2/highgui/highgui.hpp>
3 #include <iostream>
4 using namespace cv;
5 using namespace std;
6 int main(int argc, char** argv)
7 {
8 if(argc != 2)
9 {

10 cout <<" Usage: display_video VideoToLoadAndDisplay" << endl;
11 return -1;
12 }
13 Mat image;
14 // Read the file
15 VideoCapture capture;
16 capture.open(argv[1]);
17 // Check if the video is loaded
18 if(! capture.isOpened())
19 {
20 cout << "Could not open or find the video" << std::endl ;
21 return EXIT_FAILURE;
22 }
23 // Create a window for display.
24 namedWindow("Display window", CV_WINDOW_AUTOSIZE);
25 // infinite loop to read all the frames iteratively
26 while(1)
27 {
28 capture >> image;
29 //check if there are still frames
30 if(image.empty())
31 {
32 // exit the infinite loop
33 break;
34 }
35 // Show our image inside it.
36 imshow("Display window", image);
37 if(waitKey(20) == ’q’)
38 break;
39 }
40 return EXIT_SUCCESS;
41 }

7.3 Explanation
Essentially, all the functionalities required for video manipulation is integrated in the VideoCapture
C++ class. A video is composed of a succession of images, we refer to these in the literature as
frames.

20

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

The first task you need to do is to assign to a VideoCapture class its source. You can do this
either via the constructor or its open function. If this argument is an integer then you will bind
the class to a camera, a device. The number passed here is the ID of the device, assigned by the
operating system. If you have a single camera attached to your system its ID will probably be
zero and further ones increasing from there. If the parameter passed to these is a string it will
refer to a video file, and the string points to the location and name of the file. In our case we
pass the string which is contained in the vector of arguments of main:

1 VideoCapture capture;
2 capture.open(argv[1]);

If we wanted to use the constructor of the class to pass the string, the code would be simply

1 VideoCapture capture(argv[1]);

To check if the video (or the camera) has been successfully opened and loaded we can use the
class function isOpened:

1 if(! capture.isOpened())
2 {
3 cout << "Could not open or find the video" << std::endl ;
4 return EXIT_FAILURE;
5 }

The frames of the video are just simple images. Therefore, we just need to extract them from
the VideoCapture object and put them inside a Mat one. The video streams are sequential. You
may get the frames one after another by the read or the overloaded >> operator:

1 capture >> image;

Theis operation will store the new frame in image. If no frame could be acquired (either cause
the video stream was closed or you got to the end of the video file), the object image will be
empty. We can check this with a simple if:

1 if(image.empty())
2 {
3 // exit the infinite loop
4 break;
5 }

Once we got the new frame in image we can display it inside the window as usual:

1 // Show our image inside it.
2 imshow("Display window", image);

7.4 Result
• Compile your code and then run the executable giving an image path as argument. For

example from the directory build you can run:

21

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://docs.opencv.org/modules/highgui/highgui/doc/reading_and_writing_images_and_video.html#videocapture-videocapture
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-open
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#video-isopened
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://odocs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-read

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

./bin/load_and_display_video ../data/video/calib.avi

• You should get a window displaying the video as the one shown below:

22

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

8 File Input and Output using XML and YAML files
8.1 Goal
You’ll find answers for the following questions:

• How to print and read OpenCV data structures using YAML or XML files?

• Usage of OpenCV data structures such as FileStorage.

8.2 Source code
You can find the code in the src/tutorial/file_input_output.cpp .
Here’s a sample code of how to achieve all the stuff enumerated at the goal list. The program

takes as input the name of XML file (e.g. foo.xml), it generates some random matrices and
then save them to the given file. The code shows how to write OpenCV matrices to xml file and
how then load the data from the generated xml file.

1 int main(int ac, char** av)
2 {
3 string filename = av[1];
4 { //write
5 Mat R = Mat(3, 3, CV_8UC3);
6 // fill the matrix with uniformly-distributed random values
7 randu(R, Scalar::all(0), Scalar::all(255));
8

9 Mat T = Mat(3, 1, CV_32FC3);
10 // fill the matrix with normally distributed random values
11 randn(T, Scalar::all(0), Scalar::all(1));
12

13 FileStorage fs(filename, FileStorage::WRITE);
14 fs << "R" << R; // cv::Mat
15 fs << "T" << T;
16 fs.release(); // explicit close
17 cout << "Write Done." << endl;
18 }
19

20 {//read
21 cout << endl << "Reading: " << endl;
22 FileStorage fs;
23 fs.open(filename, FileStorage::READ);
24 if (!fs.isOpened())
25 {
26 cerr << "Failed to open " << filename << endl;
27 help(av);
28 return 1;
29 }
30 Mat R, T;
31 fs["R"] >> R; // Read cv::Mat
32 fs["T"] >> T;
33 cout << endl << "R = " << R << endl;
34 cout << "T = " << T << endl << endl;
35 }
36 return 0;
37 }

23

http://docs.opencv.org/modules/core/doc/xml_yaml_persistence.html#filestorage

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

8.3 Explanation
Here we talk only about XML and YAML file inputs. Your output (and its respective input) file
may have only one of these extensions and the structure coming from this. They are two kinds
of data structures you may serialize: mappings (like the STL map) and element sequence (like
the STL vector>. The difference between these is that in a map every element has a unique
name through what you may access it. For sequences you need to go through them to query a
specific item.

1. XML File Open and Close. Before you write any content to such file you need to
open it and at the end to close it. The XML data structure in OpenCV is FileStorage.
To load or create a xml file you can use either its constructor or the open() function of this:

1 string filename = av[1];
2 FileStorage fs(filename, FileStorage::WRITE);
3 ...
4 fs.open(filename, FileStorage::READ);

Either one of this you use the second argument is a constant specifying the type of oper-
ations you’ll be able to on them: WRITE, READ or APPEND. The extension specified in the
file name also determinates the output format that will be used. The output may be even
compressed if you specify an extension such as .xml.gz.
The file automatically closes when the FileStorage objects is destroyed. However, you
may explicitly call for this by using the release function:

1 fs.release(); // explicit close

2. Input\Output of OpenCV Data structures. In order to write a matrix, we use the
operator << in a very similar way as we use it for the output operator of the standard
C++ library (e.g.cout « "Hello world!"). For writing the data structure we need first
to specify its name (it is not mandatory that it has the same name as the object).

1 // write Mat
2 fs << "R" << R;
3 fs << "T" << T;

Reading the data from the file is a simple addressing (via the [] operator) and read via
the >> operator:

1 // Read Mat
2 fs["R"] >> R;
3 fs["T"] >> T;

8.4 Result
Well mostly we just print out the defined numbers. On the screen of your console you could see:

Write Done.

24

http://docs.opencv.org/modules/core/doc/xml_yaml_persistence.html#filestorage
http://docs.opencv.org/modules/core/doc/xml_yaml_persistence.html#filestorage

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

Reading:

R = [91, 2, 79, 179, 52, 205, 236, 8, 181;
239, 26, 248, 207, 218, 45, 183, 158, 101;
102, 18, 118, 68, 210, 139, 198, 207, 211]

T = [-1.3660194, -0.063247398, 1.35166; 0.79910886, -0.26290667, -0.52100545; 1.8329793, 0.3665396, 1.2920241]

Tip: Open up out.xml with a text editor to see the serialized data.

Nevertheless, it’s much more interesting what you may see in the output xml file:

<?xml version="1.0"?>
<opencv_storage>

<R type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>"3u"</dt>
<data>

91 2 79 179 52 205 236 8 181 239 26 248 207 218 45 183 158 101 102
18 118 68 210 139 198 207 211

</data>
</R>
<T type_id="opencv-matrix">

<rows>3</rows>
<cols>1</cols>
<dt>"3f"</dt>
<data>

-1.36601937e+00 -6.32473975e-02 1.35166001e+00 7.99108863e-01
-2.62906671e-01 -5.21005452e-01 1.83297932e+00 3.66539598e-01
1.29202414e+00

</data>
</T>

</opencv_storage>

Or the YAML file:

%YAML:1.0
R: !!opencv-matrix

rows: 3
cols: 3
dt: "3u"
data: [91, 2, 79, 179, 52, 205, 236, 8, 181, 239, 26, 248, 207, 218,

45, 183, 158, 101, 102, 18, 118, 68, 210, 139, 198, 207, 211]
T: !!opencv-matrix

rows: 3
cols: 1

25

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

dt: "3f"
data: [-1.36601937e+00, -6.32473975e-02, 1.35166001e+00,

7.99108863e-01, -2.62906671e-01, -5.21005452e-01, 1.83297932e+00,
3.66539598e-01, 1.29202414e+00]

26

INP-ENSEEIHT Vision par Ordinateur, 2015-2016

9 Camera calibration With OpenCV
Cameras have been around for a long-long time. However, with the introduction of the cheap
pinhole cameras in the late 20th century, they became a common occurrence in our everyday
life. Unfortunately, this cheapness comes with its price: significant distortion. Luckily, these are
constants and with a calibration and some remapping we can correct this. Furthermore, with
calibration you may also determinate the relation between the camera’s natural units (pixels)
and the real world units (for example millimeters).

9.1 Theory
For the distortion OpenCV takes into account the radial and tangential factors. For the radial
one uses the following formula:

xcorrected = x(1 + k1r2 + k2r4 + k3r6)
ycorrected = y(1 + k1r2 + k2r4 + k3r6)

So for an old pixel point at (x, y) coordinate in the input image, for a corrected output image
its position will be (xcorrectedycorrected) . The presence of the radial distortion manifests in form
of the “barrel” or “fish-eye” effect.
Tangential distortion occurs because the image taking lenses are not perfectly parallel to the

imaging plane. Correcting this is made via the formulas:
xcorrected = x + [2p1xy + p2(r2 + 2x2)]
ycorrected = y + [p1(r2 + 2y2) + 2p2xy]

So we have five distortion parameters, which in OpenCV are organized in a 5 column one row
matrix:

Distortioncoefficients = [k1 k2 p1 p2 k3)

Now for the unit conversion, we use the following formula:x
y
w

 =

fx 0 cx

0 fy cy

0 0 1

X

Y
Z

Here the presence of the w is cause we use a homography coordinate system (and w = Z).
The unknown parameters are fx and fy (camera focal lengths) and (cx, cy) what are the optical
centers expressed in pixels coordinates. If for both axes a common focal length is used with a
given a aspect ratio (usually 1), then fy = fx ∗ a and in the upper formula we will have a single
f focal length. The matrix containing these four parameters is referred to as the camera matrix.
While the distortion coefficients are the same regardless of the camera resolutions used, these
should be scaled along with the current resolution from the calibrated resolution.
The process of determining these two matrices is the calibration. Calculating these parameters

is done by some basic geometrical equations. The equations used depend on the calibrating
objects used. Currently OpenCV supports three types of object for calibration:

• Classical black-white chessboard

• Symmetrical circle pattern

• Asymmetrical circle pattern

27

	About this document
	The tutorial code
	Building the code with CMake
	On your personal machine

	OpenCV
	Mat - The Basic Image Container
	Creating explicitly a Mat object
	Access to Mat elements

	Print out formatting
	Print for other common items

	Load and Display an Image
	Goal
	Source Code
	Explanation
	Result

	Load, Modify, and Save an Image
	Goals
	Code
	Explanation
	Result

	Load and display a video
	Goals
	Code
	Explanation
	Result

	File Input and Output using XML and YAML files
	Goal
	Source code
	Explanation
	Result

	Camera calibration With OpenCV
	Theory

