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2 - TéléRelief, 8 rue Gabriel Voisin, 51100 Reims, France

ABSTRACT

We present an offline method for stereo matching using a large num-
ber of views. Our method is based on occlusions detection. It is
composed of two steps, one global and one local. In the first step
we formulate an energy function that handles data, occlusions, and
smooth terms through a global graph-cuts optimization. In our sec-
ond step we introduce a local cost that handles occlusions from the
first step in order to refine the result. This cost takes advantage of
both the multi-view aspect and the occlusions. The experimental re-
sults show how our algorithm joins the advantages of both global and
local methods, and how much it is accurate on boundaries detection
and on details.

Index Terms— Stereo vision, Image sequence analysis, Three-
dimensional displays, Minimization methods, Graph theory

1. INTRODUCTION

Stereoscopic is in vogue in many domains, as int the video games
or the cinema with several movies diffused in three Dimension (3D).
Autostereoscopic display is a new emergent technology that allows
users to see in 3D without the use of glasses. This technology, more
comfortable, could be used in many other domains like publicity for
example. It also could be a way to bring 3D at home. This technol-
ogy uses a number N of views, in opposition to the classical stereo-
scopic technology that only has two views. Nowadays and for most
3D autostereoscopic displays, N is equal to 8 or 9. One of the most
impressive application with this kind of display is the augmented
reality with depth reconstruction, which allow real objects to hide
virtual ones. Another useful application is view synthesis, in order
to generate all views for a display even from a small number of real
views. Both of these applications are based on stereo-matching. This
is the reason why multiview stereovision is a crucial field of research
for the compagny TéléRelief, expert on technology of 3D displays.
The most important aspect in this context is the multiview aspect,
with a large number of views. We think that this aspect is a powerful
tool for occlusions detection which is not well exploited in recent
publications. This paper presents an offline method that computes
the N depth maps in one single pass and works with any number
of cameras (N ≥ 2). It introduces a new method to fully integrate
occlusions detection into the process of stereovision. It is composed
of two steps: the first one is a global optimization step that performs
occlusions detection in order to result in precise boundaries detec-
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tion on the scene, and the second step is a local one that refines the
depth maps.

2. RELATED WORK

Stereovision is divided into two distinct kinds of methods: local ones
and global ones. The local methods do not give the best results but
are non-expensive and can be implemented on GPU to run in real-
time, whereas the global methods, based on energy minimization,
give better results in an offline context. Our method, which combines
the advantages of both kinds of methods, belongs to the global ones.

Several methods presented in recent papers use a segmentation
on colors. This is the case of Wang and Zheng [1] which use the
Mean-shift algorithm to segment their reference image into regions.
However all photographies may not be adapted to segmentation, par-
ticularly the ones with many textures or not enough color variations.
Since we want our method to be generic and to give good results
in all contexts, we chose not to use segmentation in our algorithm.
Figures 4(a) and 5(a) are examples of photographies we use.

The aim of global methods is to find the function f which min-
imizes an energy function E(f), where f is a correspondence func-
tion which associates any pixel p from an image to a pixel fp on
another image. E(f) is an energy function that associates a cost
to any function f . There are several methods to approximate the f
function minimizingE(f). We use the graph-cuts method which is a
well-known method to solve in a relatively fast way functions of the
form of the function f that we introduce in the next section. Boykov
and al. [2] present Graph-cuts and introduce two algorithms called
“expansion move” and “swap move”. The aim of these algorithms is
to divide the energy minimization problem into several binary prob-
lems in order to permit the construction of a graph to solve it. Each
node of the graph is a pixel and links between nodes have costs that
describe the energy function. The energy can be minimized on a
graph using the min-cut/max-flow algorithms. Most of these algo-
rithms in the context of image analysis are presented and compared
by Boykov and Kolmogorov [3]. Functions f that can be minimized
are presented by Kolmogorov and Zabih [4].

Most of global methods use an energy function composed of two
terms: the data term Edata (also called error term) and the smooth
term Esmooth. The energy associated to a function f is then de-
scribed as

E(f) = Edata(f) + Esmooth(f). (1)

This kind of energy function is also used in scanline optimization
[5]. The smooth term makes sure that the function f is smooth ev-
erywhere in global methods, and only horizontally in scanline opti-
mization. The aim of the data term is to measure how appropriate
the correspondence function f is for the images. In the case of two
images, it is typically defined as
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Edata(f) =
∑
p∈P

D(p, fp), (2)

where P is the set of all the pixels of the images and fp is the pixel
associated to p according to the function f . D(p, fp) generally is the
squared difference or the absolute difference between the intensity of
p and fp. In the case of a number of photographies larger than 2, this
energy is typically

Edata(f) =
∑
p∈P

N−1∑
i=1

D(f i
p, f

i+1
p ), (3)

where N is the number of images and f i
p is the pixel of image i

associated to p according to f . The problem of this energy is that
it does not take occlusions into account. The effect of occlusions is
that a pixel associated to f i

p into image i is not necessarily associated
to f i+1

p into image i+ 1.
In order to reduce the effect of occlusions, Woetzel and Koch [6]

introduce two local energies based on selection of a number M of
image couples (i, i + 1) into the N − 1 possible couples. The first
possible selection is composed of the M minimum costs D. The
second is made of the images either on the most left (1 ≤ i ≤ M ),
or on the right (N − 1 − M ≤ i ≤ N − 1). The means to se-
lect the M costs and the value of M are not well justified. Zhang
and al. [7] directly integrate occlusions handling into their data term
using a geometry constraint. However their context is completely
different from ours since they use free moving cameras. It result to
a completly different occlusions detection method than the one we
define. Kolmogorov and Zabih [8] integrate the occlusions detection
by means of the addition of a penality term to E(f). They improve
the resulting depth map, being more precise on boundaries. The data
term is still defined as in (3) and thus, detected occlusions are not en-
tirely taken into account. We present in section 3.1 a term Eline that
merges occlusions detection, and a data term which fully integrates
occlusions into data penality. Then in section 3.2 we introduce a
selection of costs taking occlusions into account in a second step.

3. OUR METHOD

Our method is composed of two steps. The first is based on global
optimization. We introduce a new energy function designed to detect
occlusions in the scene, and its corresponding graph. The originality
of the graph that we construct is that it connects pixels from differ-
ent images, in order to optimize occlusions detection. To solve the
energy minimization, we use graph-cuts with the “expansion move”
algorithm as described by Boykov and al. [2]. The min-cut/max-
flow algorithm that we use is the one given by Boykov and Kol-
mogorov [3], which seems to be faster in visualization problems.
Then we present our second step, the refinement, which is a local
method that takes advantage of results from the first step. To do that,
we introduce a new cost taking occlusions into account. We assume
that epipolar lines are paralleles and horizontal (either by capture
system or by preprocessing) in order to express our algorithm as an
horizontal disparity search. Disparity is the difference between the
coordinates of two correspondant pixels along the scanline. Depth
values are obtained by a triangulation step on disparities, using cam-
era features.

3.1. Global Optimization

In this section, we present a new energy function to be minimized
based on graph cuts. It is of the form

E(f) = Eline(f) + Ev−smooth(f), (4)

p
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Fig. 1. Two possible correspondents for pixel p from image i.

whereEline(f), combination of the local costs and occlusions, aims
at making sure of the scanline optimization. The termEv−smooth(f)
is used to add a constraint on vertical smoothing of f .

More precisely, Eline(f) is composed of two costs, summed on
all the pixels

Eline(f) =
∑
p∈P

(
C(p, f

Ip−1
p ) + C(p, f

Ip+1
p )

)
, (5)

where Ip is the image which contains pixel p and C is a cost which
compare a pixel p with its corresponding pixels on the previous im-
age or on the next one, according to f . Its value is either the dissimi-
larity penality is both pixels have the same disparity, or the occlusion
penality if they do not. It is defined as

C(p, q) = δ
f

Ip
q ,p
×D(p, q) + (1− δ

f
Ip
q ,p

)× Cocc, (6)

where δx,y is a Kronecker’s delta equal to 1 if x is equal to y, and
0 otherwise. Cocc is a constant real corresponding to the occlusion
penality. We know that q is equal to either fIp−1

p or fIp+1
p . So if

the corresponding pixel of q is p, that means they both have opposite
disparities. According to the Left/Right Checking (LRC) condition
presented by Egnal and Wildes [9], we can deduce that there is no
detected occlusion andC(p, q) is then equal toD(p, q), which could
be the square difference or the absolute difference of their intensities.
If p and q do not have exactly opposite disparities, the LRC condition
failed, there is an occlusion and C(p, q) is then equal to the constant
Cocc. The valueCocc has to respect the following constraint to make
sure that a graph describing this cost is constructible

Cocc ≥ D(p, q). (7)

Let’s see how to construct the new graph corresponding to the
cost C(p, q), linking pixels from an image i to pixels from another
one, either i + 1 or i − 1. The “expansion move” algorithm we use
is composed of as many steps as the number of disparities that we
want to assign to pixels. At each step all pixels p in P already have
a disparity L(p). The goal of a step is to check, for a disparity l,
if the pixels have to keep their disparities or to change to disparity
l in order to reduce the energy. Let’s consider a graph composed
of two terminals, called Source s and Sink t, and one node n(p)
for each pixel p of P . A cut in the graph separating a node from
the source means that the pixel corresponding to this node will keep
the same disparity. However a cut between the node and the sink
means that the pixel will change its label to the current disparity l.
In this context, illustrated by figure 1, a pixel p from image i could
have two distinct correspondents on the image i− 1. Either p keeps
the same disparity and its correspondent is a pixel u, or it changes
to disparity l and then p becomes connected to v. When L(p) is
not equal to l , which means u and v are different, we have thus to
add two connections between (n(p), n(u)) and (n(p), n(v)) to the
graph.

First, let’s consider the connection (n(p), n(u)). Since we have
two terminals and two nodes to connect, there are four possible cuts
to integrate into the graph, as figure 2 shows: n(p) and n(u) are
both cut from s (Cpu

ss ), n(p) is cut from s and n(u) from t (Cpu
st ),
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Fig. 2. Four possible cuts in a connection (n(p), n(u)) with example
of s and t zones for the Cpu

ss cut.

then Cpu
ts and Cpu

tt which are defined in the same way. The cost of a
cut is equal to the sum of all costs of the links (black arrow) which
are crossed and go in the direction from the s zone to the t zone
(see figure 2). We already know that the connection between p and
u only exists if p keeps the same label, which means that any cuts
going through the link between n(p) and t have a null cost. Thus we
have Cpu

ts and Cpu
tt equal to 0. For the cost Cpu

ss , both nodes keep the
same disparity, this cost is equal toD(p, u) if L(p) is equal to L(u),
and Cocc otherwise. In the same manner, Cpu

st is equal to Cocc. We
can then write Cpu

ss is equal to A and Cpu
st is the sum of A and B

with
A = δL(p),L(u) ×D(p, u) + (1− δL(p),L(u))× Cocc,

B = δL(p),L(u) × (Cocc −D(p, u)) .

A has to be applied to both Cpu
ss and Cpu

st . The only link that these
costs have in common is the link between s and n(p) (see figure 2).
Thus the cost of this link is equal to A. B has to be applied only to
the cut Cpu

st , and the link going from n(u) to n(p) is the only one
that is not crossed by any other cut. B is then the cost of this link, as
shown in figure 3(a).

Now let’s consider the connection (n(p), n(v)). Cpv
ss and Cpv

st

are null since p has to be associated to disparity l. The cost Cpv
tt is

always equal to D(p, v). Cpv
ts is equal to D(n(p), n(v)) if L(v) is

equal to l or Cocc otherwise. We have Cpv
ts equal to the sum of C

and D, and Cpv
tt equal to C with
C = D(p, v),

D = δL(v),l × (Cocc −D(p, v)) .

C has to be applied for all cuts separating n(p) from the sink, and
D has to be only applied to the cut Cpv

ts . Figure 3(a) shows the final
weighted graph with nodes n(p), n(u), n(v) and costs of the links,
when l is not equal to L(p).

When l is equal to L(p), u and v are the same pixel. Then the
cost only depends on the disparity associated to that pixel, which we
will call u in the following. The cost Cu

t is equal to E and Cu
s is

equal to F with
E = D(p, u),

F = δL(u),l ×D(p, u) + (1− δL(u),l)× Cocc.

Figure 3(b) shows the graph in this case.
We have seen the first term of equation (4), Eline(f), which

integrates the penality to occlusions that occurs when one changes
disparities. That means this term also makes sure that the func-
tion f is smooth on epipolar lines. We introduce a second term
Ev−smooth(f) to add a constraint on vertical smoothing of f . It
is of the form

Ev−smooth(f) =
∑

{p,q}∈Nei

V {p, q} (fp, fq), (8)
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Fig. 3. Graph corresponding to equation (6).

(a) Champagne Ruinart. (b) Graph-cuts. (c) Refinement.

Fig. 4. Results obtained with cellar photographies.

where V is the absolute difference of the disparities associated to p
and q, according to f . Nei is the set of pairs of vertically adjacent
pixels. Kolmogorov and Zabih [4] explain the way to construct the
corresponding graph of Ev−smooth(f).

At the end of the first step we finally have a correspondence
function f , illustrated in figure 4(b), which shows precise boundaries
of the scene but has undesirable stair step artifacts.

3.2. Local Refinement

In order to refine the results of our first step, we add a second step
which is a local one, taking advantage of the precision of local meth-
ods. The main problem of these methods is to find the local cost
which best describes the stereovision problem. Woetzel and Koch
[6] introduce a cost based on the selection of a given number of im-
age couples. We use a similar cost, but the originality of our method
is that we use the results of the previous step to optimize the selec-
tion of the image couples. Let’s define a correspondence function
g as the result of the refinement step. The local cost Clocal(g) of
function g on a pixel p is of the form

Clocal(g) =
1

M
×

N−1∑
i=1

(
D(gi

p, g
i+1
p )× δfi

f
i+1
p

,p

)
, (9)

where M is the number of image couples (i, i + 1) that verify the
LRC condition (f i

fi+1
p

= p).
For each pixel, we compute the local cost of a finite number of

disparities. We choose the disparities that verify |fp − gp| ≤ K,
where K is the maximum distance in pixels between two correspon-
dents from f and g. The value ofK is chosen by the user (see section
4 for a discussion about examples and consequences of different val-
ues of K). We use the Winner-take-all algorithm to select the best
disparities: for each pixel p in P we select the disparity which min-
imizes Clocal(g). This step permits to refine the results from the
previous one and to remove the stair step artifacts, as illustrated in
figure 4(c).

4. RESULTS

In this section, we will discuss of the results we have and the effect
of the different constant values of our algorithm. Figure 4(a) illus-



(a) Palais du Tau. (b) K=1.5, 30 disparities.

Fig. 5. Examples of results with Palais du Tau photographies.

trates a series of 8 photographies taken at the cellar of champagne
Ruinart. Images resolutions are 512×340. Figures 4(b) and 4(c)
are extracts from the results we got after the two steps. For both
steps, 30 disparities have been tested, with a value ofK equal to 1.5.
Figure 5(a) shows another series of 8 photographies, of resolutions
640×480 pixels, taken at Palais du Tau in Reims. Figure 5(b) is the
result we obtain after the second step, with 30 disparities tested for
both steps and a value of K equal to 1.5. Our method takes about
6 minutes to compute the 8 disparity maps of this last series, using
a computer with 2.6 GHz and 2 Go of RAM. The second step is
implemented using CUDA on an NVIDIA Quadro FX 3700.

The value of Cocc is a crucial choice, since its goal is to allow
the detection of occlusions. If its value is too small, the resulting
function f will not be continue enough on the horizontal direction,
and occlusion will not be well detected. If the value is too high,
changing depth will cost too much and the stair step artifacts will
appear more and more. Empirically, we found that the value of 150
is a good compromise that gives good results on many of our tests
(D(p, q) is clamped to the value of Cocc in order to ensure equa-
tion 7). Whatever the choice of the value of Cocc, resulting depth
maps will always look like a succession of vertical planes, because
of graph-cuts. The value of K, in the second step, allows to correct
these artefacts. The larger the value of K is, the more the stair step
artifacts disappear, but the more noise appears in the depth maps.

Results on Teddy’s images taken from Middlebury website 1 are
shown in figures 6(a) and 6(b), with K equal to 0.8. We can see in
figure 6(b) a default of our method, on the right side of the Teddy
bear. This part of the image does not have any texture, thus, as a
consequence of this lake of information, our first step assigns the
same disparity than the one assigned to the bear, in order to avoid
the addition of an occlusion (which is non-free). This kind of prob-
lem could be solved using a color segmentation on the images which
allows to consider the bear and the wall behind it as two distinct
regions. These methods give better results than our method in this
context. However they are strongly dependent of the presence of a
lot of distinct colors in the images. Indeed our own photographies,
Champagne Ruinart and Palais du Tau, do not have many color vari-
ations, and do not give good color segmentation results. It is usually
the same case, when shooting outside for example. This is the rea-
son why we do not perform any color segmentation in our algorithm
in order that our method may not be dependent of color variations,
and still remain effective on our photographies, as shown in figures
4 and 5.

5. CONCLUSION AND FUTURE WORK

We have presented a new offline algorithm to computeN depth maps
in one single pass, taking advantage of both global and local meth-
ods. It gives better contribution on multiview context, with a large
number of views, even if it is still working in classical stereovision,

1http://vision.middlebury.edu/stereo

(a) Teddy. (b) K=0.8, 16 disparities.

Fig. 6. Examples of results on images of Middlebury website.

with two views. Our algorithm is centered on occlusions detection,
which is the primary problem of stereovision, using the Left-Right
Checking condition. To do that we have introduced a new energy
fonction and its corresponding graph, that has the particularity to link
pixels from different images, to be minimized using graph-cuts. We
also have introduced in our second step a local cost that handles re-
sults of our global method. Thanks to our refinement step, the result
we got is accurate in objects boundaries as well as in details. Yet, our
results are a bit noisy, and currently we search for a way to integrate
aggregation to our results without affecting precision on occlusions.
Another idea is to add weigths to image couples. Then our results
will be exploitable in various domains like augmented reality or view
synthesis. This last example is an important field of research where
we think occlusions detection is also crucial. Knowing precisely the
positions of occlusions is important in order to decide if we have to
peek information from the left image or the right one. This is the
reason why we will also work on the exploitation of the results from
both steps of our algorithm in a view synthesis application.
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