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Abstract 
We present a general algorithm for plane-based calibra- 

tion that can deal with arbitrary numbers of views and cali- 
bration planes. The algorithm can simultaneously calibrate 
different views from a camera with variable intrinsic pa- 
rameters and it is easy to incorporate known values of in- 
trinsic parameters. For some minimal cases, we describe 
all singularities, naming the parameters that can not be es- 
timated. Experimental results of our method are shown that 
exhibit the singularities while revealing good perjormance 
in non-singular conditions. Several applications of plane- 
based 3 0  geometry inference are discussed as well. 

1 Introduction 
The motivations for considering planes for calibrating 

cameras are mainly twofold. First, concerning calibration in 
its own right, planar calibration patterns are cheap and easy 
to produce, a laser printer output for example is absolutely 
sufficient for applications where highest accuracy is not de- 
manded. Second, planar surface patches are probably the 
most important twodimensional “features”: they abound, at 
least in man-made environments, and if their metric struc- 
ture is known, they cany already enough information to de- 
termine a camera’s pose up to only two solutions in general 
[4]. Planes are increasingly used for interactive modeling 
or measuring purposes [ 1, 10, 111. 

The possibility of calibrating cameras from views of pla- 
nar objects is well known [7, 12, 141. Existing work how- 
ever, restricts in most cases to the consideration of a single 
or only two planes (an exception is [8], but no details on 
the algorithm are provided) and cameras with constant cal- 
ibration. In addition, the study of singular cases is usually 
neglected (besides in [12] for the simplest case, calibration 
of the aspect ratio from one view of a plane), despite their 
presence in common configurations. 

It is even possible for cameras to self-calibrate from 
views of planar scenes with unknown metric structure [13], 
however several views are needed (Triggs recommends up 
to 9 or 10 views of the same plane for reliable results) and 
the “risk” of singularities should be greater compared to cal- 
ibration from planes with known metric structure. 

In this paper, we propose a general algorithm for cali- 
brating a camera with possibly variable intrinsic parameters 
and position, that copes well with an arbitrary number of 
calibration planes and camera views. Calibration is essen- 
tially done in two steps. First, the 2D-to-2D projections of 
planar calibration objects onto the image plane(s) are com- 
puted. Each of these projections contributes to a system of 
homogeneous linear equations in the intrinsic parameters, 
which are hence easily determined. Calibration can thus be 
achieved by solving linear equations, but can of course be 
enhanced by subsequent non linear optimization. 

In $2, we describe our camera model and projections of 
planar objects. In $3, we introduce the principle of plane- 
based calibration. A general algorithm is proposed in $4. 
Singularities are revealed in $5. Experimental results are 
presented in $6, and some applications described in $7. 

2 Background 
Camera Model. We use perspective projection to model 
cameras. A projection may be represented by a 3 x 4 pro- 
jection matrix P that incorporates the so-called extrinsic and 
intrinsic camera parameters: 

P - KR( I3 1 - t) . (1) 
Here, - means equality up to a non zero scale factor, 13 

is the 3 x 3 identity matrix, R a 3 x 3 orthogonal matrix rep- 
resenting the camera’s orientation, t a 3-vector representing 
its position, and K the 3 x 3 calibration matrix: 

K =  rf 0 f 2)  
0 0 1  

In general, we distinguish 5 intrinsic parameters for per- 
spective projection: the (effective) focal length f ,  the aspect 
ratio T, the principal point (210, VO) and the skew factor s 
accounting for non rectangular pixels. The skew factor is 
usually very close to 0 and we ignore it in the following. 

Calibration and Absolute Conic. Our aim is to calibrate 
a camera, i.e. to determine its intrinsic parameters or its 
calibration matrix K (subsequent pose estimation is rela- 
tively straightforward). Instead of directly determining K, 
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we will try to compute the symmetric matrix K K T  or its in- 
verse, from which the calibration matrix can be computed 
uniquely using Cholesky decomposition [5]. This leads 
to simple and, in particular, linear calibration equations. 
Furthermore, the analysis of singularities of the calibration 
problem is greatly simplified: the matrix w - (KKT)- l  
represents the image of the Absolute Conic whose link to 
calibration and metric scene reconstruction is exposed for 
example in [2]. This geometrical view helps us with the 
derivation of singular configurations (cf. 55). 

Planes, Homographies and Calibration. We consider 
the use of one or several planar objects for calibration. 
When we talk about calibration planes, we mean the sup- 
ports of planar calibration objects. The restriction of per- 
spective projection to points (or lines) on a specific plane 
takes on the simple form of a 3 x 3 homography that depends 
on the relative position of camera and plane and the cam- 
era's intrinsic parameters. Without loss of generality, we 
may suppose that the calibration plane is the plane 2 = 0. 
This way, the homography can be derived from the projec- 
tion matrix P by dropping the third column in equation (1): 

H - K R t  -t) . (2) 

The homography can be estimated from four or more 
point or line correspondences. It can only be sensibly de- 
composed as shown in equation (2), if the metric structure 
of the plane is known (up to scale is sufficient), i.e. if the 
coordinates of points and lines used for computing H are 
given in a metric frame. 

Equation (2) suggests that the 8 coefficients of H (9 mi- 
nus l for the arbitrary scale) might be used to estimate the 6 
pose parameters R and t, while still delivering 2 constraints 
on the calibration K. These constraints allow us to calibrate 
the camera, either partially or fully, depending on the num- 
ber of calibration planes, the number of images, the number 
of intrinsic parameters to be computed and on singularities. 

3 Principle of Plane-Based Calibration 
Calibration will be performed via the determination of 

the image of the Absolute Conic (IAC), w - K-TK-l, 
using plane homographies. As mentioned previously, we 
consider pixels to be rectangular, and thus the IAC has the 
following form (after appropriate scaling): 

) . (3) w - (  0 r2 -r%o 
0 - U0 

-210 -r22ro 72 f 2  + 21: + r2w; 

The calibration constraints arising from homographies 
can be expressed and implemented in several ways. For 
example, it follows from equation (2) that: 

0 -t1 

HTw H N HTK-TK-lH - 

The camera position t being unknown and the equation 
holding up to scale only, we can extract exactly two differ- 
ent equations in w that prove to be homogeneous linear: 

hT w hi - h l  w h2 = 0 hT w h2 = 0 , (4) 
where hi is the ith column of H. These are our basic 

calibration equations. If several calibration planes are avail- 
able, we just include the new equations into a linear equa- 
tion system. It does not matter if the planes are seen in the 
same view or in several views or if the same plane is seen 
in several views, provided the calibration is constant (this 
restriction is relaxed in the next section). The equation sys- 
tem is of the form Ax = 0, with the vector of unknowns 
x = ( ~ 1 1 ,  w22, ~ 1 3 ,  w23, w33) . After having determined 
x, the intrinsic parameters are extracted via: 

T 

4 A General Calibration Algorithm 
We describe now how the basic principle can be extended 

in two important ways. First, we show that prior knowledge 
of intrinsic parameters can be easily included. Second, and 
more importantly, we show how the scheme can be applied 
for calibrating cameras with variable intrinsic parameters. 
4.1 Prior Knowledge of Intrinsic Parameters 

Let ai be the ith column of the design matrix A of the lin- 
ear equation system described in the previous section. We 
may rewrite the equation system as: 

w l l a l  + w22a2 + w13a3 + w23a4 + w33a5 = 0 . 

Prior knowledge of, e.g. the aspect ratio r ,  allows us 
via equation (5) to eliminate one of the unknowns, say w22, 

leading to the reduced linear equation system: 

wl l ( a1  + r 2 a 2 )  + w13a3 + w23a4 + ~ 3 ~ a 5  = o . 
Prior knowledge of uo or 2r0 can be dealt with similarly. 

The situation is different for the focal length f ,  due to the 
complexity of equation (5): prior knowledge o f f  allows to 
eliminate unknowns only if the other parameters are known, 
too. However, this is not much of an issue - it is rarely the 
case that the focal length is known beforehand while the 
other intrinsic parameters are unknown. 
4.2 Variable Intrinsic Parameters 

We make two assumptions that are not very restrictive 
but eliminate useless special cases to deal with. First, we 
consider the aspect ratio to be constant for a given camera. 
Second, the principal point may vary, but only in conjunc- 
tion with the focal length. Hence, we consider two modes 
of variation: only f varies or f, u g  and 2r0 vary together. 
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If we take into account the calibration equations arising 
from a view for which it is assumed that the intrinsic pa- 
rameters have changed with respect to the preceding view 
(e.g. due to zooming), we just have to introduce additional 
unknowns in x and columns in A. If only the focal length is 
assumed to have changed, a new unknown w33 is needed. If 
in addition the principal point is supposed to have changed, 
we add also unknowns for ~ 1 3  and ~ 2 3  (cf. equation (3)) .  
The corresponding coefficients of the calibration equations 
have to be placed in additional columns of A. 

Note that the consideration of variable intrinsic parame- 
ters does not mean that we have to assume different values 
for all views, i.e. there may be views sharing the same in- 
trinsics, sharing only the aspect ratio and principal point, or 
sharing the aspect ratio alone. 

4.3 Complete Algorithm 
The complete algorithm consists of the following steps: 

Compute plane homographies from feature correspon- 
dences. 
Construct the equation matrix A according to the di- 
rections outlined in §§3,4.1 and 4.2. 
Ensure good numerical conditioning of A (see below). 
Solve the equation system to least squares by any stan- 
dard method and extract the intrinsic parameters from 
the solution as shown in equation (5 ) .  

Conditioning. We may improve the conditioning of A by 
the standard technique of rescaling rows and columns [ 5 ] .  
In practice, we omit row-wise rescaling for reasons ex- 
plained below. Columns are rescaled such as to have equal 
norms. The coefficients of the solution vector of the modi- 
fied equation system have to be scaled accordingly to obtain 
the solution of the original problem. In our experiments, 
this rescaling proved to be crucial to obtain reliable results. 

As for rescaling rows, this proves to be delicate in our 
case, since occasionally there are rows with all coefficients 
very close to zero. Rescaling these rows will hugely mag- 
nify noise and lead to unreliable results. 
Comments. The described calibration algorithm requires 
mainly the least squares solution of a single linear equa- 
tion system. Naturally, the solution may be optimized sub- 
sequently using non linear least squares techniques. This 
optimization should be done simultaneously for the calibra- 
tion and the pose parameters, that may be initialized in a 
straightforward manner from the linear calibration results. 
For higher accuracy, estimation of optical distortion param- 
eters should be included. 
Minimal Cases. Each view of a calibration object pro- 
vides two calibration equations. Hence, in the absence 
of singularities, the following minimal calibration schemes 
may be realized: with a single view of a single plane, we 
might calibrate the aspect ratio and focal length, provided 

the principal point is given. With two views of a single 
plane, or one view of two planes we can fully calibrate the 
camera. Three views of a single plane, taken by a zooming 
camera, enable calibration of the 3 different focal lengths, 
as well as the constant aspect ratio and principal point. 

5 Singularities 

The successful application of any algorithm requires 
awareness of singularities. This helps avoiding situations 
where the result is expected to be unreliable or restricting 
the problem at hand to a solvable one. We describe here the 
singularities of calibration from one or two planes. 

Due to lack of space, we are only able to give a sketch 
of the derivations. A first remark is that only the relative 
orientation of planes and camera is of importance for singu- 
larities, i.e. the position and the actual intrinsic parameters 
do not influence the existence of singularities. A second 
observation is that planes that are parallel to each other pro- 
vide exactly the same information as a single plane with the 
same orientation (except that more feature correspondences 
may provide a higher robustness in practice). So, as for the 
case of two calibration planes, we omit dealing with parallel 
planes and instead refer to the one-plane scenario. 

Since the calibration equations are linear, singularities 
imply the existence of a linear family of solutions for the 
IAC w .  Hence, there is also a degenerate conic w’, i.e. a 
conic consisting of the points on two lines only. Let us note 
that any conic that satisfies the calibration equations (4), 
contains the projections of the circular points of the cali- 
bration planes. Naturally, this is also valid for U’. If we 
exclude the planes of being parallel to each other (cf. the 
above discussion), the two lines making up w’ are nothing 
else than the vanishing lines of the calibration planes. There 
is one point left to consider: since we are considering rect- 
angular pixels, the IAC is required to be of the form (3), i.e. 
its coefficient w12 is zero. Geometrically, this is equivalent 
to the conic being symmetric with respect to a vertical and a 
horizontal line (this is referred to as “reflection constraint” 
in table 2). Based on these considerations, it is a rather me- 
chanical task to derive all possible singularities. 

All singularities for one- and two-plane calibration and 
for different levels of prior knowledge are described in ta- 
bles l and 2. We reveal which of the intrinsic parame- 
ters cankan’t be estimated uniquely. The tables contain 
columns for ~f and f which stand for the calibrated fo- 
cal length, measured in horizontal and vertical pixel dimen- 
sions respectively. In some cases it is possible to compute, 
e.g. ~ f ,  but not to compute T or f individually. 

A general observation is that a plane parallel to the im- 
age plane, allows to estimate the aspect ratio, but no other 
parameters. Generally speaking, the more regular the geo- 
metric configuration is, the more singularities may occur. 
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Prior 
None 

Position of calibration planes 7- 1.f I f I U0 1 U0 

I - I -  
One plane is parallel to the image plane 
General case of planes satisfying reflection constraint (see caption) 
Both planes are parallel to the U axis 

cf. case of known T in table 1 

I - I - I + I -  
Same absolute incidence angle with respect to image plane 

Table 2. Singularities of calibration from two planes. The cases of parallel planes are not displayed, but may 
be consulted in the appropriate parts of table 1 on one-plane calibration. In all configurations not represented 
here, all intrinsic parameters can be estimated. By "reflection constraint" we mean that the vanishing lines of 
the two planes are reflections of each other by both a vertical and a horizontal line in the image. 

+ + 

Prior I POS. of cal. olane 

Both planes are parallel to the v axis 

parallel to U axis 
parallel to U axis 

I - I - I +  

parallel to U axis 
parallel to U axis 

Parallel to U axis 
Parallel to U axis 

UO, uo 

7- 

7,  U O ,  vo 

s T ,  U O ,  uo Parallel to image pl. 

Same absolute incidence angle with respect to image plane + + 
Vanishing lines intersect "above" the principal pt. i.e. at a point (UO, U ,  1) - + 
Vanishing lines intersect at a point (U, VO, 1) 
Both planes are perpendicular to image (and satisfy reflection constraint) - + + 

Both planes are perpendicular to the image (and satisfy reflection constr.) - I - I - I + + 
One plane is parallel to the image plane 

+ 

At least one plane is parallel to the image plane cf. case of known r, UO, vo in table 1 

cf. case of known r in table 1 
cf. case of known r, UO, vo in table 1 One plane is parallel to the image plane 

+ 

+ - 

Table 1. Singularities of calibration from one plane. 
Here, parallelism to the image plane's U or w axis 
means parallelism in 3-space. 

6 Experimental Results 
We performed a number of experiments with simulated 

and real data, in order to quantify the performance of our 
method, to motivate its use in applications described in the 
following section and to exhibit singularities. 

6.1 Simulated Experiments 
For our simulated experiments, we used a diagonal cal- 

ibration matrix with f = 1000 and T = l. Calibration 
is performed using the projections of the 4 corner points 
of squares of size 40cm. The distance of the calibration 
squares to the camera is chosen such that the projections 
roughly fill the 512 x 512 image plane. The projections of 
the corner points are perturbed by centered Gaussian noise 
of 0 to 2 pixels variance. 

We only display graphs showing the behavior of our al- 
gorithm with respect to other parameters than noise; note 
however that in all cases, the behavior with respect to noise 
is nearly perfectly linear. The data in the graphs shown stem 
from experiments with a noise level of 1 pixel. The errors 
shown are absolute ones (scaled by 1000 for the aspect ra- 
tio). Each point in a graph represents the median error of 
1000 random experiments. The graphs of the mean errors 
are similar but less smooth. 

One plane seen in one view. The scenario and results 
are shown in the upper part of figure 1. Calibration is per- 
formed for different orientations of the square, ranging from 
0" (parallel to the image plane) to 90" (perpendicular to the 
image plane). Given the principal point, we calibrated the 
aspect ratio and the focal length. An obvious observation 
is the presence of singularities: the error of the aspect ratio 
increases considerably as the calibration square tends to be 
perpendicular to the image plane (90"). The determination 
of the focal length is impossible for the extreme cases of 
parallelism and perpendicularity. Note that these observa- 
tions are all predicted by table 1. In the range of [30", 70"], 
the relative error for the focal length is below 1%, while the 
aspect ratio is estimated correctly within 0.01%. 

Two planes seen in one view. Calibration is performed 
with a camera rotating about its optical axis by 0' to 90". 
Two planes with an opening angle of 90" are observed (cf. 
lower part of figure 1). Plane-based calibration is now done 
without any prior knowledge of intrinsic parameters. For 
comparison, we also calibrate with a standard method [3], 
using full 3D coordinates of the corner points as input. 

The standard calibration approach is insensitive to rota- 
tion about the optical axis. As for the plane-based method, 
the singularities for the estimation of the aspect ratio and the 
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Figure 1. Simulation scenarios and results. 

focal length for angles of 0" and 90" are predicted by table 
2. As for the intermediate range of orientations, the estima- 
tion of the aspect ratio by the plane-based method is 3 to 4 
times worse than with the standard approach, although it is 
still quite accurate. As for the focal length, the plane-based 
estimate is even slightly better between 30" and 70". The 
error graphs for uo and WO are not shown; for both methods 
they are nearly horizontal (i.e. there is no singularity), the 
errors of the plane-based estimation being about 30% lower 
than with the standard approach. 

6.2 CaIibration Grid 
We calibrated a camera from images of a 3D calibra- 

tion grid with targets arranged in three planes (cf. figure 
2). For comparison, calibration was also carried out using 
a standard method [3]. We report the results of two experi- 
ments. First, 4 images were taken from different positions, 
but with fixed calibration. The camera was calibrated from 
single views in different modes: standard calibration using 
all points or points from two planes only, plane-based cal- 
ibration from one, two or three planes with different levels 
of prior knowledge (cf. table 3). Prior values were taken 
from the results of standard calibration. 

Table 3 shows the mean and standard deviation of the 
results for the focal length, computed over the 4 views and 
over all combinations of planes. We note that even the one- 
plane method gives results very close to those of the stan- 
dard method that uses all points and their full 3D coordi- 
nates. The precision of the plane-based results is lower than 
for full standard calibration, though comparable to standard 
calibration using two planes. The results are very accurate 
despite the proximity to singular configurations. This may 

Figure 2. Calibration grid and lab scene. 

Method I f 
Standard calibration from three planes I 1041.4 f 0.6 
Standard calibration from two planes 
One plane, UO, vo known 
One plane, r, UO, vo known 
Two planes, nothing known 
Two planes, r known 
Two planes, UO, vo known 
Two planes, 7, UO, vo known 
Three planes, nothing known 

1042.1 f 3.3 
1044.5 f 9.0 
1041.2 f 3.7 
1043.6 f 4.7 
1040.7 f 2.7 
1040.2 f 2.5 
1040.3 f 2.1 
1039.9 f 0.7 

Table 3. Results for calibration grid. 

be attributed to the high accuracy of target extraction. 
For the second experiment, we took images at 5 different 

zoom positions. The camera was calibrated using the 5 x 3 
planes simultaneously, where for each zoom position an in- 
dividual focal length and principal point were estimated. 
Table 4 shows the results for the focal lengths (a value of 
1000 corresponds to about 7.5mm), compared to those of 
standard calibration, averaged over single views. The devi- 
ation increases with the focal length but stays below l%. 

6.3 LabScene 
A pair of images of an ordinary lab scene were taken. 

A rectangular part of a computer tower (cf. figure 2) was 
used for calibration. Subsequently, the pose of the views 
with respect to the calibration plane was determined. The 
three points shown in figure 2 were triangulated and their 
3D distances measured and compared to hand-measured 
ones. The differences for the pairs (1,2), (1,3) and (2,3) 
were 4mm, 3mm and Omm respectively, for absolute dis- 
tances of 275mm, 347mm and 214mm. These results are 
about as good as we might expect: the edges of the rectan- 
gular patch are rounded, thus not reliably extracted in the 
images. The measured point distances are "extrapolated" 
from this rectangle, thus amplifying the errors of edge ex- 
traction. From the views' calibration and pose, we com- 
puted the epipolar geometry and found that the distance of 
points to corresponding epipolar lines was about 1 pixel, 
even at the borders of the images. 

This simple experiment highlights two issues. First, be- 
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Method 
Standard 
Planes 

sides calibrating the views, we readily obtain their pose in 
a metric 3D frame. Second, we obtain reasonable estimates 
of matching constraints, potentially for distant views. 

7 Applications 
Cheap Calibration Tool. Planar patterns are easy to pro- 
duce, while enabling a reasonably reliable calibration. 

Ground Plane Calibration. We have successfully per- 
formed experiments with images of traffic scenes. Ground 
plane calibration from road markers is used to restrict the 
pose of vehicles to be detected and tracked. 

Reconstruction of Piecewise Planar Objects from Sin- 
gle Views. Using geometrical constraints such as copla- 
narity, parallelism, right angles etc., 3D objects may be re- 
constructed from a single view (see e.g. [ lo]). Our calibra- 
tion method requires knowledge of the metric structure of 
planes. This requirement may be relaxed by simultaneously 
determining calibration and plane structure, e.g. one view 
of a rectangle allows to determine the focal length and the 
ratio of the rectangle’s edge lengths. We are using this in 
combination with the mentioned geometrical constraints to 
reconstruct objects from a single image. 
Reconstruction of Indoor Scenes. Our calibration 
method is the central part of ongoing work on a system for 
interactive multi-view 3D reconstruction of indoor scenes, 
similar in spirit to the approaches presented in [ 10, 1 1 3 .  
The main motivation for using plane-based calibration is 
to make a compromise between requirements on flexibil- 
ity, user interaction and implementation cost. We achieve 
flexibility by not requiring off-line calibration: our cali- 
bration patterns, planar objects, are omnipresent in indoor 
scenes. The amount of user interaction is rather little: we 
usually use rectangles as calibration objects; they have to be 
delineated in images and their edge lengths measured. By 
identifying planar patterns across distant views, we not only 
can simultaneously calibrate many views but also compute 
a global initial pose of many views to bootstrap, e.g. wide 
baseline matching. This scheme relies on methods that are 
relatively simple to implement and might provide a useful 
alternative to completely automatic techniques such as [9] 
that are more flexible but more difficult to realise. 

Augmented Reality. A nice and useful application of 
plane-based calibration and pose estimation is presented in 
[6]. Rectangular plates are used to mark the position of non 
planar objects to be added to a video sequence, which is in 
some way a generalisation of “overpainting” planar surfaces 
in videos by homography projection of a desired pattern. 

Focal lengths 
714.7 I 1041.4 I 1386.8 I 1767.4 I 2717.2 
709.9 I 1042.7 I 1380.2 I 1782.8 1 2702.0 

Plane-based methods may also be used for blue screening; 
attaching calibration patterns on the blue screen allows to 
track camera pose and calibration and thus to provide input 
for positioning objects in augmented reality. 

8 Conclusion 
We presented a general and easy to implement plane- 

based calibration method that is suitable for calibrating vari- 
able intrinsic parameters and that copes with any number of 
calibration planes and views. Experimental results are very 
satisfactory. For the basic cases of one or two planes, we 
gave an exhaustive list of singularities. Several applications 
of plane-based calibration were described. An analytical er- 
ror analysis might be fruitful, i.e. examining the influence 
of feature extraction errors on calibration accuracy. 

An extended version of this paper can be retrieved at 
http://www.cvg.cs.reading.ac.uk/-pfs/plane.ps.gz. 
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