
3D features, surface descriptors, and object

descriptors

Alexander M. Bronstein Michael M. Bronstein

Maks Ovsjanikov

September 6, 2010

Abstract

The computer vision and pattern recognition communities have re-
cently witnessed a surge of feature-based methods in numerous appli-
cations including object recognition and image retrieval. Similar con-
cepts and analogous approaches are penetrating the world of 3D shape
analysis, in a variety of areas including non-rigid shape retrieval and
matching. In this chapter, we present the state-of-the-art of feature-
based approaches in 3D shape analysis.

1 Introduction

In computer vision and patter recognition jargon, the term features is of-

ten used to refer to persistent elements of a shape (such as corners or sharp

edges), which capture most of the relevant information, and based on which

one is able to perform object analysis. In the last decade, feature-based

methods have become a standard and broadly used paradigm in various ap-

plications, including retrieval and matching (e.g. for multiview geometry

reconstruction), due to their relative simplicity, flexibility and excellent per-
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formance in practice. An important milestone was the introduction of scale

invariant feature transform (SIFT) [31] and similar algorithms [34, 4].

The success of SIFT and similar approaches in a variety of practical sce-

narios, as well as the public availability of the software have made feature-

based approaches a de facto standard in computer vision.

A similar trend is emerging in 3D shape analysis in a variety of areas

including non-rigid shape retrieval and shape matching, where fundamental

differences between 2D and 3D shapes make it difficult to apply existing

techniques from computer vision.

Like in image analysis, two archetype applications are correspondence,

where the goal is to find matches between points in two 3D shapes, and sim-

ilarity, in which one has to quantify the degree of similarity or dissimilarity

of two 3D shapes. The advantage of using features for correspondence prob-

lems is the ability to reliably identify similar points on two shapes, thereby

reducing the set of potential correspondence candidates. In finding similar-

ity, especially in large-scale shape search and retrieval applications, one of

the strengths of feature-based approaches is that they allow to represent a

shape as a collection of primitive elements (geometric or visual “words”), the

same way as text can be represented as a collection of words, and use the

well-developed methods from text search [47, 17].

One of the distinguishing characteristics that make computer vision tech-

niques inapplicable in 3D shape processing is the difference in shape repre-

sentations. In computer vision, it is common to work with an image of a

physical object, representing both its geometric and photometric properties.

Such a representation simplifies the task of shape analysis by reducing it to

simple image processing operations, at the cost of loosing information about

the object’s 3D structure, which cannot be unambiguously captured in a 2D

image. In computer graphics and geometry processing, it is assumed that the

3D geometry of the object is given. Depending on application, the geometric

representation of the object can differ significantly. For example, in graphics

it is common to work with triangular meshes or point clouds; in medical
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applications with volumes and implicit representations.

Most feature-based approaches can be logically divided into two main

stages: location of stable points that capture most of the relevant shape

information (feature detection) and representation of the shape properties at

these points (feature description). Both processes depend greatly on shape

representation as well as on the application at hand.

In image analysis, the typical use of features is to describe an object

independently of the way it is seen by a camera. Features found in images

are geometric discontinuities in the captured object (edges and corners) or

its photometric properties (texture). Since the difference in viewpoint can

be locally approximated as an affine transformation, feature detectors and

descriptors in images are usually made affine invariant.

In 3D shape analysis, features are typically based on geometry rather

than appearance. The problems of shape correspondence and similarity re-

quire the features to be stable under natural transformations that an object

can undergo, which may include not only changes in pose, but also non-

rigid bending. If the deformation is inelastic, it is often referred to as iso-

metric (distance-preserving), and feature-based methods coping with such

transformations as isometry-invariant; if the bending also involves connec-

tivity changes, the feature detection and description algorithms are called

topology-invariant.

The main challenge of feature-based 3D shape analysis can be thus sum-

marized as finding a set of features that are not susceptible to some class of

shape transformations and carry sufficient information to allow using these

features for finding correspondence and similarity, among other tasks. In

this chapter, we present an overview of feature-based methods in 3D shape

analysis and their applications, classical as well as most recent approaches,

and future challenges.
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2 Mathematical Background

For the remainder of the discussion, an object is some subset of the ambient

Euclidean space, Ω ⊂ R3. In many cases (e.g. data acquired by a range

scanner), we can access only the boundary ∂Ω of the object, which can be

modeled as a two-dimensional smooth manifold or surface, denoted here by

X. Photometric information is given as a scalar or a vector field α : X → Rd

on the manifold and referred to as texture. If the surface is sampled at some

discrete set of points {x1, . . . , xN} ⊂ X then this representation is called a

point cloud; if in addition connectivity information is available in a form of

a simplicial complex (triangulation, consisting of a set of edges (xi, xj) ∈ E

and faces (xi, xj, xk) ∈ F ), such a representation is called a mesh.

In medical applications, such as tomographic data analysis, information

about the internal structure of the object in addition to its boundary is of-

ten available. A common representation in such applications is a volumetric

image, which can be represented as a 3D matrix, where each voxel (3D pixel)

describes the properties of the object (e.g. its penetrability by X-ray radia-

tion). Segmentation algorithms applied to volumetric data used in medical

applications often extract boundaries of 3D objects in implicit form, repre-

sented as level-sets of some function f : R3 → R.

3 Feature detectors

The goal of a feature detector is to find stable points or regions on a shape.

The main requirements of a feature detector are that the points that it selects

are (i) repeatable, i.e., in two instances of a shape, ideally the same set of

corresponding points is detected, and (ii) informative, i.e., descriptors built

upon these points contain sufficient information to e.g. distinguish the shape

from others.

Since there is no single way to define a feature, the construction of the

detector depends very much on the shape representation and the application
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at hand, or more specifically, the desired invariance properties.

3.1 A taxonomy

In the most trivial case, no feature detection is performed and the feature

descriptor is computed at all the points of the shape (e.g. [13]) or at some

densely sampled subset thereof. The descriptor in this case is usually termed

dense. Dense descriptors bypass the problem of repeatability, at the price of

increased computational cost and potentially introducing many unimportant

points that clutter the shape representation.

Many detectors assume to be given some scalar- or vector-valued function

defined on the surface. The function can be either photometric information

(texture) or a geometric quantity such as curvature. With this concept in

mind, feature detection on shapes resembles very much that in images, and

many attempts to import methods from image processing and computer vi-

sion have been described in the literature. Several methods for feature detec-

tion have been inspired by the the difference of Gaussians (DOG), a classical

feature detection approach used in computer vision. Zaharescu et al. [56]

introduce the mesh DOG approach by first applying Gaussian filtering to

scalar functions (e.g. mean or Gauss curvature) defined on the shape. This

allows to represent the function in scale space, and feature points are promi-

nent maxima of the scale space across scales. Castellani et al. [16] apply

Gaussian filtering directly on the mesh geometry, and create a scale space

describing the displacement of the mesh points in the normal direction.

Because many feature detectors operate locally on a function defined on

the shape, they are usually not very susceptible to non-rigid deformations.

Nevertheless, there exist several geometric quantities based on the intrinsic

properties of the manifold and thus theoretically invariant to isometric de-

formations by construction. Feature detectors based on such quantities are

called intrinsic and also isometry- or bending-invariant. Examples of intrin-

sic geometric quantities are the Gaussian curvature (which has been used in

several settings of [56]), and heat kernels [51, 22]. Feature detection meth-
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ods based on the heat kernel define a function on the shape, measuring the

amount of heat remaining at a point x after large time t given a point source

at x at time 0, and detect features as local maxima of this function.

Another type of transformations of interest in practical applications are

changes in topology, manifested as the presence of holes, missing parts, or

changes in connectivity. Feature detectors insensitive to such changes (typ-

ically, a simpler case of point-wise connectivity change) are referred to as

topology-invariant.

Table 3.1 summarizes the properties of known feature detectors, some of

which are detailed in what follows.

Descriptor Representation
Invariance

Scale Rigid Bending Topology

Dense Any Yes Yes Yes Yes

Harris 3D [46] Any No Yes Approx Approx

Mesh DOG [56] Mesh No Yes Approx1 Approx

Salient features [16] Mesh No Yes Approx Approx

Heat kernel [51] Any No Yes Yes Approx

Table 1: Comparison of 3D feature detectors.

3.2 Harris 3D

An efficient feature detection method, called Harris operator, first proposed

in images [25] was extended to 3D shapes by Glomb [24] and Sipiran and

Bustos [46]. This method is based on measuring variability of the shape in a

local neighborhood of the point, by fitting a function to the neighborhood,

and identifying feature points as points where the derivatives of this function

are high [7]. Unlike images, 3D data might have arbitrary topology and

sampling, which complicates the computation of derivatives.

1Unless truly intrinsic quantities are used.
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For each point x on the shape, a neighborhood of radius ρ (typically,

a k-ring in mesh representation) is selected. The neighborhood points are

brought into a canonical system of coordinates by first subtracting the cen-

troid. Next, a plane is fit into the translated points by applying PCA and

choosing the direction corresponding to the smallest eigenvalues as the direc-

tion of the normal. The points are rotated so that the normal is aligned with

the z-axis. A quadratic function of the form f(u, v) = aT(u2, uv, v2, u, v, 1) is

then fit to the set of transformed points, yielding a parametric representation

of the local extrinsic surface properties.

A 2× 2 symmetric matrix

E =
1√
2πσ

∫

R2

e−
u2+v2

2σ2

(
f 2

u(u, v) fu(u, v)fv(u, v)

fu(u, v)fv(u, v) f 2
v (u, v)

)
dudv (1)

is computed. The 3D Harris operator is defined as the map assigning H(x) =

det(E)−0.04tr2(E) to each point x on the shape. A fixed percentage of points

with the highest values of H(x) are selected as the feature points.

In [46], the neighborhood radius ρ (alternatively, the k-ring width k) and

the Gaussian variance σ are performed adaptively for each point in order to

make the method independent on sampling and triangulation.

3.3 Mesh DOG

The Mesh DOG descriptor introduced in Zaharescu et al. [56] assumes the

shape in mesh representation and in addition to be given some function

f defined on the mesh vertices. The function can be either photometric

information (texture) or a geometric quantity such as curvature.

Given a scalar function f on the shape, its convolution with a radially-

symmetric kernel k(r) is defined as

(f ∗ k)(x) =

∫
k(d(x, y))f(y)dy, (2)

where d(x, y) is the geodesic distance between points x and y. Zaharescu et
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al. [56] propose the following r-ring approximation:

(f ∗ k)(x) =

∑
y∈Nr(x) k(‖x− y‖)f(y)∑

y∈Nr(x) k(‖x− y‖) , (3)

which assumes a uniformly sampled mesh.

By subsequently convolving a function f with a Gaussian kernel gσ of

width σ, a scale space f0 = f , fk = fk−1 ∗ gσ is constructed. The difference

of Gaussians (DOG) operator at scale k is defined as DOGk = fk − fk−1.

Feature points are selected as the maxima of the DOG scale space across

scales, followed by non-maximum suppression, using the one ring neighbor-

hood in the current and the adjacent scales. A fixed percentage of points

with the highest values of DOG are selected. To further eliminate unstable

responses, only features exhibiting corner-like characteristics are retained.

For this purpose, the Hessian operator at every point x is computed as

H =

(
fuu(x) fuv(x)

fuv(x) fvv(x),

)
(4)

where fuu, fuv and fvv are the second-order partial derivatives of f at x.

Second order derivatives are estimated w.r.t. some local system of coordi-

nates u, v (obtained, e.g., by fixing u to be the direction of the gradient,

u = ∇Xf(x), and v perpendicular to it) by applying the directional deriva-

tive twice,

fuv(x) = 〈∇X〈∇Xf(x), u〉, v〉. (5)

The condition number λmax/λmin of H (typically, around 10) is independent

of the selection of the local system of coordinates and is used to threshold

the features.

3.4 Salient features

In Mesh DOG, the scale space is built by filtering a scalar function on the

mesh while keeping the mesh geometry intact. Castellani et al. [16] proposed

to create a scale space by filtering the shape itself.
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Let x ∈ R3 denote the extrinsic coordinates of a point x on a surface.

Applying a Gaussian kernel gσ to x several times creates the vector-valued

DOG scale space, DOGk = xk − xk−1, where x0 = x and xk = (xk−1 ∗ gσ).

By projecting DOGk(x) onto the normal n(x) at the point x, a scalar-valued

scale space (referred to as the scale map by the authors) is created. From

this stage on, an approach essentially identical to Mesh DOG is undertaken.

The authors do not use filtering by Hessian operator response, and propose

to use a robust method inspired by [26] to detect the feature points.

3.5 Heat kernel features

Recently, there has been increased interest in the use of diffusion geometry

for shape recognition [44, 38, 35, 32, 12, 41]. This type of geometry arises

from the heat equation, (
∆X +

∂

∂t

)
u = 0, (6)

which governs the conduction of heat u on the surface X (here, ∆X denotes

the positive semi-definite Laplace-Beltrami operator, a generalization of the

Laplacian to non-Euclidean domains). The fundamental solution Kt(x, y) of

the heat equation, also called the heat kernel, is the solution of (6) at time t

with a point heat source at x used as the initial condition. Probabilistically,

the heat kernel can also be interpreted as the transition density function of

a Brownian motion (continuous analog of a random walk). By virtue of the

spectral decomposition theorem, the heat kernel can be expressed as

Kt(x, y) =
∑

i

e−λitφi(x)φi(y), (7)

where λi are the eigenvalues of the Laplace-Beltrami operator and φi are

the corresponding eigenfunctions. This relation makes heat kernels espe-

cially attractive as there exists efficient and stable methods to discretize the

Laplace-Beltrami operator and its eigendecomposition.

The diagonal of the heat kernel at different scales, Kt(x, x), referred to as

the heat kernel signature (HKS), can be interpreted as a multi-scale notion
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of the Gaussian curvature. Local maxima of the HKS for a large time pa-

rameter correspond to tips of protrusions that can be used as stable features

as recently proposed by Sun et al. [51] and Gebal et al. [22].

In the simplest setting, feature points are found as two-ring local max-

ima of Kt(x, x) at a sufficiently large scale t [51]. In a more sophisticated

setting, the persistence diagram of Kt(x, x) is computed, and features with

insufficiently large distance between birth and death times are filtered out

[48, 19, 7].

3.6 Topological Features

A different variety of feature-based techniques have been inspired by topo-

logical, rather than geometrical, shape analysis (see e.g. [37] for a survey of

some methods for the analysis of biomolecular data). The most common tool

used in applying topological methods to feature-based shape analysis is the

notion of topological persistence introduced and formalized by Edelsbrunner

et al. [21]. In its most basic form, topological persistence allows to define a

pairing between critical values of a function defined on a topological domain

(such as a simplicial complex) in a canonical way. This pairing defines a

persistence value associated with each critical point, which provides a princi-

pled way of distinguishing prominent local maxima and minima from noise.

Thus, these techniques fit naturally into the feature-based shape analysis

framework, where both feature detection and description is often obtained

via analysis of critical values of some function. Several techniques have been

recently proposed for finding stable feature points by applying topological

persistence to different functions defined on the shape, including the Heat

Kernel Signature [48, 19] and the eigenfunctions of the Laplace-Beltrami op-

erator [43].

An excellent application of topological persistence to shape analysis and

shape matching was demonstrated by Agarwal et al. [1], who used it to de-

fine a feature detector and descriptor, by defining a function on a surface,

which approximately captures the concavity and convexity at each point in
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a parameter-free way. For every point point x on the surface, the authors

use topological persistence to find a canonical pair y which shares the normal

direction with x. Then the elevation function at x is simply the difference

of the height values of x and y in this normal direction. Elevation function

is invariant to rigid deformations and allows to analyze both concavities and

convexities in a unified fashion. Prominent minima and maxima of the eleva-

tion function can also be used as natural stable features of a shape. Applying

methods from computational topology to feature-based shape analysis is an

active and potentially fruitful area of research, and we refer an interested

reader to a recent book [20].

3.7 Benchmarks

An ideal feature detector should be repeatable under the desired class of

shape transformations and also “rich” or informative. While the latter is

largely application and data-dependent, the repeatablity of the detector can

be evaluated quantitatively on a set of representative shape transformations.

SHREC’10 robust feature detection and description benchmark [7] evalu-

ates the detector repeatability by running the detector on a set of reference

shapes. The detected features are used as reference locations. Then, detec-

tion is performed on the same shapes undergoing simulated transformations

of different types (non-rigid bending, different types of noise, holes, etc.),

for which groundtruth correspondence with the reference shapes is known.

Repeatability is evaluated by counting the fraction of features that are consis-

tently detected in the proximity of the reference locations. Different varieties

of the heat kernel methods achieved the best results on this benchmark.

4 Feature descriptors

Given a set of feature points (or, in the case of a dense descriptor, all the

points on the shape), a local descriptor is then computed. The way in which

the descriptor is constructed depends very much on the representation in
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which the shape is given and the kind of information available, and the

application in mind, or more specifically, the desired invariance properties.

Descriptors can be categorized as geometric or photometric, depending

whether they rely only on the 3D geometry of the shape, or also make use

of the texture. Some photometric descriptors can be adapted to work with

geometric information, where some geometric property (e.g. curvature) is

used in place of the texture [56]. A wide variety of geometric quantities such

as local patches [36], local moments [18] and volume [23], spherical harmonics

[45], and contour and edge structures [39, 30] trying to emulate comparable

features in images, can be used for geometric descriptors.

4.1 A taxonomy

Multiscale descriptors (e.g. [51, 15]) look at the shape at multiple levels

of resolution, thus capturing different properties manifested at these scales.

Descriptors which are not altered by global scaling of the shape are called

scale-invariant.

Because typically a descriptor operates locally around the feature point,

feature descriptors are usually not very susceptible to non-rigid deformations

of the shape. Nevertheless, there exist several geometric descriptors which are

based on intrinsic properties of the manifold and thus theoretically invariant

to isometric deformations by construction. Examples of intrinsic descriptors

include histograms of local geodesic distances [40, 14], conformal factors [6],

some settings of [56], and heat kernels [51, 15]. Such descriptors are called

intrinsic and also isometry- or bending-invariant.

Another type of transformations of interest in practical applications are

changes in topology, manifested as the presence of holes, missing parts, or

changes in connectivity. Descriptors insensitive to such changes (typically, a

simpler case of point-wise connectivity change) are referred to as topology-

invariant.

Finally, some authors [23] make a distinction between high-dimensional

(or rich)and low-dimensional descriptors. The former refers to descriptors
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providing a fairly detailed description of the shape properties around the

point such as [5, 27], while the latter compute only a few values per point and

typically are curvature-like quantities such as shape index [28] and curved-

ness [29]. We find this division somewhat misleading, as there is no direct

relation between the descriptor “richness” and dimensionality (recent works

in computer vision on descriptor hashing and dimensionality reduction [50]

demonstrate that rich descriptors such as SIFT can be compactly represented

in much lower dimensions without loosing much information). The question

whether the “richness” of a descriptor is sufficient depends in general on the

application and the data.

Table 4.1 summarizes the properties of known descriptors, some of which

are detailed in what follows. We devote particular attention to different

varieties of the recently introduced heat kernel signatures, which we consider

one of the most versatile descriptors currently available, as well as a promising

and interesting field for future research.

Descriptor Representation
Invariance

Scale Rigid Bending Topology

Curvature Any No Yes Yes No

Integral volume [23] Volume, Mesh0 No Yes No No

Local histograms [40] Any No1 Yes Yes No1

HKS [51] Any No Yes Yes Approx2

SIHKS [15] Any Yes Yes Yes Approx2

VHKS [42] Volume, Mesh0 No Yes Yes Approx2

Spin image [27] Any a a a a

Shape context [5] Any No Yes No Yes

MeshHOG [56] Mesh (+Texture) Yes3 Yes Approx4 Approx3

Conformal factor [6] Mesh No Yes Yes No5

Table 2: Comparison of 3D feature descriptors.
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4.2 Spin images

Spin image descriptor [27, 2, 3] represents the neighborhood of a point on a

shape by fitting an oriented coordinate system at the point. The local system

of cylindrical coordinates at point x is defined using the normal and tangent

plane: the radial coordinate α defined as the perpendicular distance to the

line through the surface normal n(x), and the elevation coordinate β, defined

as the signed perpendicular distance to the tangent plane. The cylindrical

angular coordinate is omitted because it cannot be defined robustly and

unambiguously on planar surfaces.

A spin image is a histogram of points in the support region represented

in α, β coordinates. The support region is defined by limiting the range of

the values of α and β (thus looking at points y within some distance from

x) and requiring that cos−1〈n(x), n(y)〉 < ε (limiting self occlusion artifacts).

The histogram can be represented as a 2D image, hence the name of the

descriptor. Spin image is applicable to any shape representation in which

the point coordinates are explicitly given and normals and tangent planes

can be computed, e.g., meshes or point clouds. Because of dependence on

the embedding coordinates, such a descriptor is not deformation-invariant.

4.3 Shape context

The concept of shape context descriptor was first introduced in [5] for image

analysis, though it is directly applicable to 3D shapes. The shape context

describes the structure of the shape as relations between a point to the rest

of the point. Given the coordinates of a point x on the shape, the shape con-

0Involving mesh rasterization.
1Assuming geodesic distances. Different invariance properties can be achieved using

diffusion or commute-time distances.
2Point-wise connectivity changes have only a local effect and do not propagate to distant

descriptors.
3If photometric texture is used; in general, depending on the texture choice.
4Triangulation-dependent.
4Defined for shapes with fixed topology (e.g. watertight).
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text descriptor is constructed as a histogram of the direction vectors from

x to the rest of the point, y − x. Typically, a log-polar histogram is used.

The descriptor is applicable to any shape representation in which the point

coordinates are explicitly given, such as mesh, point cloud, or volume. Be-

cause of dependence on the embedding coordinates, such a descriptor is not

deformation-invariant.

4.4 Integral volume descriptor

The integral volume descriptor used in [23] in an extension to 3D shapes in

of the concept of integral invariants introduced for image description in [33].

Given a solid object Ω with a boundary X = ∂Ω, the descriptor measures

volume contained in a ball of fixed radius r,

Vr(x) =

∫

Br(x)∩Ω

dx. (8)

If Br(x) ∩ Ω is simply connected, the volume descriptor can be related to

the mean curvature H(x) as Vr(x) = 2π
3

r3 − π
4
Hr4 + O(r5) [23]. Since the

mean curvature is not intrinsic, the descriptor is sensitive to deformations of

the shape. Varying the value of r, a multi-scale descriptor can be computed.

Numerically, the descriptor is efficiently computed in a voxel representation

of the shape by means of convolution with the ball mask.

4.5 Mesh HOG

MeshHOG [56] is a shape descriptor emulating SIFT-like image descriptors

[31], referred to as histograms of gradients or HOG. The descriptor assumes

the shape in mesh representation and in addition to be given some function f

defined on the mesh vertices. The function can be either photometric infor-

mation (texture) or a geometric quantity such as curvature. The descriptor

at point x is computed by creating a local histogram of gradients of f in

an r-ring neighborhood of x. The gradient ∇f is defined extrinsically as a

15



vector in R3 but projected onto the tangent plane at x which makes it intrin-

sic. The descriptor support is divided into four polar slices (corresponding

to 16 quadrants in SIFT). For each of the slices, a histogram of 8 gradient

orientations is computed. The result is a 32-dimensional descriptor vector

concatenating the histogram bins.

MeshHOG descriptor works with mesh representations and can work with

photometric or geometric data or both. It is intrinsic in theory, though the

specific implementation in [56] depends on triangulation.

4.6 Heat kernel signatures

The heat kernel signature (HKS) was proposed in [51] as an intrinsic descrip-

tor based on the properties of heat diffusion and defined as the diagonal of

the heat kernel. Given some fixed time values t1, · · · , tn, for each point x on

the shape, the HKS is an n-dimensional descriptor vector

p(x) = (Kt1(x, x), . . . , Ktn(x, x)). (9)

Intuitively, the diagonal values of the heat kernel indicate how much heat

remains at a point after certain time (or alternatively, the probability of a

random walk to remain at a point if resorting to the probabilistic interpreta-

tion of diffusion processes), and is thus related to the “stability” of a point

under diffusion process.

The HKS descriptor is intrinsic and thus isometry-invariant, captures lo-

cal geometric information at multiple scales, insensitive to topological noise,

and informative (if the Laplace-Beltrami operator of a shape is non-degenerate,

then any continuous map that preserves the HKS at every point must be an

isometry). Since the HKS can be expressed in the Laplace-Beltrami eigen-

basis as

Kt(x, x) =
∑
i≥0

e−tλiφ2
i (x), (10)

it is easily computed across different shape representations for which there is

a way to compute the Laplace-Beltrami eigenfunctions and eigenvalues.

16



4.7 Scale-invariant heat kernel signatures

A disadvantage of the HKS is its dependence on the global scale of the shape.

If X is globally scaled by β, the corresponding HKS is β−2Kβ−2t(x, x). In

some cases, it is possible to remove this dependence by global normalization

of the shape. A scale-invariant HKS (SI-HKS) based on local normalization

was proposed in [15]. By using a logarithmic scale-space t = ατ , the scaling

of X by β results in HKS amplitude scaling and shift by 2 logα β. This effect

is undone by the following sequence of transformations,

pdif (x) = (log Kατ2 (x, x)− log Kατ1 (x, x), . . . , log Kατm (x, x)− log Kατm−1 (x, x)),

p̂(x) = |(Fpdif (x))(ω1, . . . , ωn)|, (11)

where F is the discrete Fourier transform, and ω1, . . . , ωn denotes a set of

frequencies at which the transformed vector is sampled. Taking differences of

logarithms removes the scaling constant, and the Fourier transform converts

the scale-space shift into a complex phase, which is removed by taking the

absolute value.

4.8 Volumetric heat kernel signatures

The idea of heat kernel descriptor can be applied to volumetric shape repre-

sentations [42]. In this case, given a solid object Ω, the heat diffusion inside

the volume is given by the heat equation with Neumann boundary conditions

on the boundary ∂Ω,

(
∆ +

∂

∂t

)
U(x, t) = 0 x ∈ int(Ω),

〈∇U(x, t), n(x)〉 = 0 x ∈ ∂Ω (12)

where n is the normal to the boundary surface ∂Ω, ∆ is the positive-semidefinite

Laplacian operator in R3, and U : Ω × [0,∞) → R is the volumetric heat

distribution in Ω. The volumetric heat kernel signature (VHKS) is defined as
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the diagonal of the heat kernel of (12) at a set of time values t, expressible

in the eigenbasis of the Laplacian as

Kt(x, x) =
∞∑

l=0

e−λltΦl(x)2, (13)

where λl, Φl are the eigenvalues and eigenfunctions of the Laplacian operator

with the above boundary conditions,

∆Φl(x) = λlΦl(x);

〈∇Φl(x), n(x)〉 = 0 x ∈ ∂Ω. (14)

The descriptor can be computed on any volumetric representation of the

shape allowing for efficient computation of the Laplacian eigenvalues and

eigenfunctions. For meshes and other surface representations, it is necessary

to perform rasterization to convert them into voxel representation [42].

4.9 Benchmarks

An ideal feature descriptor should be invariant under the desired class of

shape transformations and also “rich” or informative. While the latter is

largely application and data-dependent, the invariance of the descriptor can

be evaluated quantitatively on a set of representative shape transformations.

SHREC’10 robust feature detection and description benchmark [7] evaluates

the descriptor invariance as the variability (measured as average normalized

L2 distance) of the descriptor under simulated transformations of different

types (non-rigid bending, different types of noise, holes, etc.). Different vari-

eties of the heat kernel signature (HKS) descriptor achieved the best results

on this benchmark.
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5 Applications

5.1 Shape retrieval

The availability of large public-domain databases of 3D models such as

Google 3D Warehouse has created the demand for shape search and retrieval

algorithms capable of finding similar shapes in the same way a search en-

gine responds to text queries. Content-based shape retrieval using the shape

itself as a query and based on the comparison of the geometric and topo-

logical properties of shapes is complicated by the fact that many 3D objects

manifest rich variability, and shape retrieval must often be invariant under

different classes of transformations. A particularly challenging setting is the

case of non-rigid or deformable shapes, which includes a wide range of shape

transformations such as bending and articulated motion. Shape retrieval is

a particular instance of shape similarity, a fundamental problem of shape

analysis.

One of the notable advantages of feature-based approaches is the possibil-

ity of representing a shape as a collection of primitive elements (“geometric

words”), and using the well-developed methods from text search such as the

bag of features (BOF) (or bag of words) paradigm [47, 17]. Such approaches

are widely used in image retrieval, and have been introduced more recently

to shape analysis [13, 53]. The bag of features representation is usually com-

pact, easy to store and compare, which makes such approaches suitable for

large-scale shape retrieval.

The construction of a bag of features is usually performed in a few steps,

depicted in Figure 1. First, the shape is represented as a collection of lo-

cal feature descriptors (either dense or computed at a set of stable points

following an optional stage of feature detection). Second, the descriptors

are represented by geometric words from a geometric vocabulary using vector

quantization. The geometric vocabulary is a set of representative descriptors,

precomputed in advance. This way, each descriptor is replaced by the index

of the closest geometric word in the vocabulary. Computing the histogram
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Figure 1: Feature-based shape analysis algorithm.

of the frequency of occurrence of geometric words gives the bag of features.

Alternatively, a two-dimensional histogram of co-occurrences of pairs of ge-

ometric words (geometric expressions) can be used [13]. Shape similarity is

computed as a distance between the corresponding bags of features.

5.2 Correspondence

Another fundamental problem in shape analysis is that of correspondence

consisting of finding relations between similar features on two or more shapes.

Defining optimal correspondence based on some structure preservation crite-

rion, one can obtain a criterion of shape similarity as the amount of structure

distortion, making shape correspondence intimately related to shape similar-

ity problems. Finding correspondence between two shapes that would be

invariant to a wide variety of transformations is usually referred to as invari-

ant shape correspondence.

Correspondence problems are often encountered in shape synthesis ap-

plications such as morphing. In order to morph one shape into the other,

one needs to know which point on the first shape will be transformed into

a point on the second shape, in other word, establishing a correspondence

between the shapes. A related problem is registration, where the deformation

bringing one shape into the other is explicitly sought for.

Let us be given two shapes X and Y with the feature points {xi}M
i=1 and

{yj}N
j=1, and corresponding descriptors {pi} and {qj}, respectively. Feature-
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based correspondence problem can be formulated as finding a (partial) map

C : {1, . . . , M} → {1, . . . , N} that maximizes the similarity between corre-

sponding descriptors while keeping as similar as possible some global struc-

ture, usually expressed in terms of the geodesic or diffusion metrics, dX and

dY , on X and Y . Correspondence problems can be therefore written as a

generic minimization problem, e.g.,

min
C

∑
i

‖pi − qC(i)‖2 + η
∑

i,k

(dX(xi, xj)− dY (yC(i), yC(j)))
2

where η is a Lagrange multiplier.

The minimum-distortion correspondence can be found by an extension of

the GMDS algorithm [10, 52] or graph labeling [49, 54, 55].

5.3 Benchmarks

SHREC10 robust large-scale retrieval benchmark [8] simulates a retrieval

scenario, in which the queries include multiple modifications and transfor-

mations of the same shape which is placed into a large corpus of “negatives”.

The quality of the retrieval is quantified in terms of mean average precision.

Different varieties of the heat kernel feature methods achieved the best results

on this benchmark.

SHREC10 robust correspondence benchmark [9] simulates a one-to-one

shape matching scenario, in which one of the shapes undergoes multiple

modifications and transformations. The quality of the correspondence is

evaluated as the distance on the shape between the found matches and the

known groundtruth correspondence.

6 Conclusions

In this chapter, we overviewed feature-based methods in 3D shape analysis

and their applications such as content-based shape retrieval and invariant

shape correspondence.
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7 Further reading

For a broad overview of geometric foundations and algorithms in shape anal-

ysis, we refer the reader to [11].

Details of SHREC’10 benchmarks mentioned in this chapter appear in

[7, 8, 9].

Meta-algorithms for dimensionality reduction and hashing of descriptors

are discussed in [50].
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