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1. INTRODUCTION
3D meshes may be considered to be the most popular discrete virtual surface and
volume representation. Its simplicity makes it so popular today that electronic ships,
called GPUs (Graphical Processing Units), partially specialized in the rendering of
images from 3D meshes, are integrated in nearly all personal computers, tablets and
smart phones.

In all application areas using meshes (computational simulation, entertainment,
medical imaging, digital heritage, computer-aided design, e-commerce, etc.), the need
for precision has never ceased to increase. This leads to the generation of meshes com-
posed of a large number of elements, whose processing, visualization and storage are
complex. 3D mesh compression is a potential tool for solving the issues raised. First, it
reduces data size, which is useful for storing and transmitting meshes. Then, some al-
gorithms also embed several versions of the input model in the compressed data. This
enables progressive transmission and interactive visualization of large meshes on low
capability terminals.

In 2005, two very complete reviews, summarizing the pioneering work on mesh com-
pression, were published [Alliez and Gotsman 2005][Peng et al. 2005]. However, since
then, new methods have emerged, bringing new features to 3D mesh compression al-
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gorithms (large mesh compression, mesh sequence compression, random access, etc.).
The aim of this new review paper is to sum up the first approaches and focus on the
relevant contributions developed since 2005.

Meshes can be either static or dynamic. Following an introduction of preliminary
knowledge, the first part of this paper is dedicated to static mesh compression ap-
proaches classified in three types.

Single-rate algorithms build a compact representation of an input mesh. The decom-
pression algorithm generates a mesh that is either identical to the input model or only
slightly different.

Progressive algorithms, during decompression, reconstruct successive levels of de-
tail as more data are decoded. The user does not have to wait for all the data to be
downloaded and decompressed to visualize the model, which is useful in a remote vi-
sualization context. These algorithms are also used to select the best level of detail
to display according to device rendering capabilities, network constraints or the view-
point.

Random accessible algorithms are used to decompress only requested parts of the
input mesh to save resources. They provide access to models that do not fit into the
device main memory, but the user has no overview of the non-selected parts. Progres-
sive random accessible approaches are used to decompress different parts of the input
model at different levels of detail.

Progressive and random accessible algorithms can also be used for single-rate com-
pression, although they are not as efficient as pure single-rate methods in general.

The last part of the article is dedicated to dynamic mesh compression. Dynamic
meshes constitute an emerging media content, which may carry large amounts of data
(large meshes × large frame numbers). Like 2D videos, dynamic mesh compression
requires specific features such as scalability and streaming capability.

Figure 1 provides a taxonomy of existing techniques; for each part described above,
a synthetic table summarizes and compares the most relevant approaches.

2. PRELIMINARIES ON MESHES AND COMPRESSION
A mesh can be defined as the hierarchical assembly of the different elements repre-
sented on Figure 2. Vertices are the base elements of the mesh. They define a position
in a common 3D Cartesian space. Edges are segments that connect two vertices of the
mesh. Faces are polygons defined by a closed path of edges. In this survey, we will
assume that each face is simply connected: it does not have holes and its boundaries
do not have vertices with more than 2 edges of that face incident on them. 3D cells
named 3-cells are polyhedron defined by their boundaries, which are closed surfaces
formed by selected faces. The information contained in a mesh is often divided into
three categories:r The geometry information is the position of each vertex of the mesh in the 3D

Cartesian space.r The connectivity information (sometimes called topology or structure) describes
the incidence relations between the mesh elements.r The optional attribute information associates scalar or discrete properties to the
mesh elements useful for the applications (colors, normals, texture coordinates...).
This review only deals with the compression of the geometry and connectivity infor-

mation. Most compression rates, for both information types, will be given in bits per
vertex (bpv).

Surface meshes define surfaces that can be closed or not. They do not need to be
boundaries of 3-cells. A surface mesh is said to contain boundaries if some of its edges
are adjacent to only one face. Volume meshes define a volume filled by a set of 3-cells.
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Fig. 1. Taxonomy of 3D mesh compression techniques.

A mesh sequence is a series of meshes ordered in time. Temporal coherency is required
and necessitates temporal sampling at a rate which is sufficiently rapid in relation
to the evolution of the object or the scene. We can distinguish two different types of
sequences:r The case of mesh sequences with a constant number of vertices, connectivity and

topology, which we may call temporally coherent mesh sequences [Arcila et al. 2012],
are usually referred as dynamic meshes or animated meshes.
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a. b. c. d.

Fig. 2. Elements of a mesh. a. Vertices. b. Edges. c. Faces. d. A 3-cell.

r The case of mesh sequences with a variable number of vertices and variable connec-
tivity over time, with a topology that may be variable or constant have been defined
as temporally incoherent mesh sequences [Arcila et al. 2012].

In the first case, the sequence consists of a geometric evolution of the vertices of the
initial mesh over time. In the second case, there is not necessarily natural link between
a vertex at instant t and a vertex at instant t+1. An example of a sequence is shown on
Figure 3.

Fig. 3. Balloon mesh sequence (http://4drepository.inrialpes.fr)

The number of edges incident to a vertex is called the valence (or degree) of this
vertex. The number of edges of a face or the number of faces of a 3-cell are also called
valence (or degree) of this face or this 3-cell. The faces can have a degree superior or
equal to three. The common cases for surface meshes are degree three (triangle face)
and degree four (quadrangle or quad face). If its degree is superior to three, the face is
not necessarily planar. However it may be tricky to render if some of its vertices are
far from a median plan. In the same way, the common cases for volume meshes are
3-cells with a degree equal to four (tetrahedron) or six (hexahedron).

Some mesh connectivities are said to be regular because they are composed of the
repetition of the same pattern. If only few elements of the mesh do not have a regular
connectivity, then the mesh is said to be semi-regular. When the connectivity of the
mesh does not contain regular structures, it is said to be irregular.

A surface mesh is 2-manifold if all its vertices have a neighborhood homomorphic to
a closed or open fan, as shown on Figure 4. The neighborhood of a vertex is homomor-
phic to an open fan if its contains boundaries. This review will discuss the compression
of manifold and non-manifold meshes.

a. b. c. d.

Fig. 4. Manifold and non-manifold vertices. a. The red vertex is manifold because its neighborhood is equiv-
alent to a closed fan. b. The red vertex is manifold because its neighborhood is equivalent to an open fan. c.
& d. The red vertex is non-manifold because its neighborhood is not equivalent to an open or closed fan.
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The orientation of a face is a the cyclic order of its vertices. In a mesh, the orien-
tations of two adjacent faces are compatible if they are opposite. A mesh is said to be
orientable if all the orientations of its faces are compatible.

The Euler characteristic χ of a 2-manifold orientable mesh defines its topological
type. It is equal to: χ = v − e + f, where v, e and f are respectively the number of
vertices, edges and faces of the mesh. A mesh is said to have genus g if it can be cut
along 2g closed loops without disconnecting it. Intuitively, the genus is the number of
handles of the mesh. It can be proven that the Euler characteristic is also equal to:
χ = 2(s−g)−b, where s is the number of connected components of the mesh and b is its
number of boundary loops. This allows to prove that a 2-manifold orientable triangle
mesh with a low genus and a significant number of faces has about twice more faces
than vertices and that the average valence of its vertices is six.

Many mesh file formats (OFF, PLY, OBJ, VRML, X3D...) are based on an indexed
data structure. The first part of this structure is composed of the list of all the vertex
coordinates that also introduces an ordering of the mesh vertices. The second part
describes the connectivity of the mesh. Each entry lists all the vertices of one face in a
cyclic order. For volume meshes, the faces of each 3-cell can also be stored in the same
way. This data structure has the advantage of being simple. Moreover, it can store any
type of meshes. Most mesh compression algorithms take this structure as input.

3. STATE OF THE ART ON SINGLE-RATE MESH COMPRESSION
Compressing meshes is different than compressing other types of multimedia data
such as sound, images or videos. The common point between sound, images and videos
is that their structure is known in advance by the encoder and the decoder. A mesh is,
however, not necessarily regularly structured. Its connectivity is completely unknown
to the encoder before the compression. So, besides having to code the geometry (vertex
positions), as the pixel colors would be coded for an image, a mesh encoder must encode
the structure, which is the connectivity.

3.1. Connectivity compression
The general principle behind all connectivity compression techniques is to perform a
traversal of the mesh elements and emit symbols, among few possibilities, depending
on the encountered configurations. The main point is that this traversal defines a new
numbering of the mesh elements, different from the one used in the input indexed
data structure. The generated symbols are then entropy-coded using, for example, a
Huffman coder [1952] or an arithmetic coder [Rissanen and Langdon 1979]. The com-
pression rates provided in this subsection concerns only the connectivity.

3.1.1. Triangle strip encoding. The rendering of a significant 3D mesh is a task that
requires high computational capabilities. The GPUs are designed to perform the mesh
rendering operations quickly in parallel. Efficient solutions to transfer the mesh data
from the computer central memory to the GPU memory are of prime interest because
memory transfer is a costly operation that consumes a lot of CPU cycles. A good method
to transfer mesh data can significantly decrease the rendering time. Triangle strips
and triangle fans are mesh representations that are used for this purpose. A triangle
fan is a sequence of vertices that defines a set of triangles sharing a common center
vertex. A triangle strip is a sequence of vertices where each added vertex defines a
new triangle with the two previous vertices of the strip. These methods are much
more efficient than the indexed representation that requires three vertex indices to
code each triangle. Indeed, after having encoded the first triangle, a new vertex index
codes the connectivity of a new triangle.
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In a triangle strip, to form a new triangle, the vertices are always taken in the same
order. Generalized triangle strips do not always respect this order so as to generate
longer strips. However, to preserve the triangle strip structure, a dummy triangle is
added when the standard order is not preserved. To encode a dummy triangle, a vertex
reference must be repeated. If the generalized triangle strip is long enough, the ratio
between the number of triangles and the number of vertices is close to 1.

One of the first work in mesh compression is the generalized triangle mesh format
of Deering [1995], which includes generalized triangle strips. Deering noted that, in a
generalized triangle strip, many of the interior vertices are encoded twice. So, instead
of encoding twice their positions traversing the mesh, he proposed to push them in a
16 positions queue and refer to them by their location in the queue when needed. This
queue reduces the cost of reused vertices encoding. Yet, all the mesh vertices are still
encoded twice on average, which is not very efficient. Experimental results report that
Deering’s algorithm achieves connectivity compression rates from 3.3 to 9.8 bpv.

Generalized triangle meshes must maximize the number of vertices reused from
the queue. The strip sizes and the strip orders obtained with most mesh stripification
techniques are not suited to this aim. Therefore, Chow [1997] designed algorithms that
generate efficient generalized triangle meshes. It selects the new generalized triangle
strip to encode in function of the number of reused vertices of the previous strip.

Bajaj et al. [1999] proposed an alternative layered representation. Vertex layers are
non-crossing strings of vertices. In most cases, they are separated by a distance of one
edge and form concentric circles on the mesh. The triangle layers between the vertex
layers contain triangle strips and fans. This method compresses the mesh connectivity
at about 1.5 to 6 bpv and can process non-manifold meshes.

3.1.2. Spanning tree encoding of planar graphs. The connectivity of a mesh can be mod-
eled as a graph. For surface meshes, the vertices are nodes of the graph linked through
edges to form faces. This analogy between meshes and graphs explains why some well-
known results from the graph theory can be applied to the compression of mesh con-
nectivity. Tutte first proposed formula that enumerate planar triangulations [Tutte
1962] and planar maps [Tutte 1963]. The first enumeration allows to compute what
was later called Tutte’s entropy. This entropy, approximately equal to 3.25 bpv, stands
for an upper bound of the entropy of any arbitrary surface triangular mesh connectiv-
ity. This value was used to prove the optimality of several triangular mesh connectivity
encoding schemes [Alliez and Desbrun 2001b]. Turán [1984] was actually the first to
propose a practical method to encode, with about 12 bpv, a planar unlabeled graph
thanks to a vertex spanning tree.

3.1.3. Spanning tree encoding of meshes. The influence of planar graph encoding tech-
niques can be felt on some 3D mesh encoding techniques. For instance, the topological
surgery algorithm of Taubin and Rossignac [1998] encodes a triangular mesh with
about 2.5 to 6 bpv thanks to two spanning trees: a vertex and a triangle spanning tree.
In the case there is twice more triangles than vertices, a variation of this algorithm can
guarantee a 6 bpv compression of the connectivity (2 bits per vertex for vertex span-
ning tree and 2 bits per triangle for the triangle spanning tree telling whether each
node has zero, one or two child). The Hand-and-Glove algorithm of Diaz-Gutierrez et
al. [2005] encodes a genus-0 mesh with two types of vertex spanning trees (the Hand
and Glove trees). These trees are built in order to form a triangle strip loop traversing
the entire mesh. The trees are encoded with 2 bits per vertex and one additional bit
per triangle allows to reconstruct the triangle strip. The total guaranteed cost is there-
fore 4 bpv. This representation also embeds a hierarchyless multiresolution structure
(through the two types of tree collapsible edges) and a stripification. Experimental re-
sults report connectivity compression rates of about 1.5 bpv on average. The algorithm
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of Li and Kuo [1998a] encodes the connectivity of a triangle mesh with its dual graph.
Each node of the dual graph is incident to three edges. So, the encoding traversal has
just to perform a breadth-first traversal of the mesh dual graph and outputs one binary
symbol per edge telling if this edge is connected to an already visited node or not.

3.1.4. Triangle traversal encoding. Some algorithms were proposed to encode a mesh with
a region growing approach by generating a triangle spanning tree composed of strips.
To generate such trees, the algorithm iteratively processes the mesh triangles with a
breadth first traversal. At each step of the compression, some faces have already been
traversed and other not. There can be one or more closed edge borders between these
two types of faces. The advantage of such methods is their simplicity. The spanning
trees are easy to generate and directly contain all the mesh elements.

The Cut-Border machine [Gumhold and Straßer 1998] follows this strategy. It ex-
tends the border formed by an initial triangle by iteratively traversing adjacent tri-
angles. 7 different symbols code whether the border was extended by inserting a new
vertex, if the border was split or two borders were joined. The scheme can compress
manifold triangle mesh connectivities with about 4 bpv. This result is however only
valid for reasonably regular meshes. When two borders are joined, an offset must be
encoded to designate the concerned vertices. Therefore, the algorithm does not guar-
antee a tight upper bound for the compression rate.

The Edgebreaker algorithm of Rossignac [1999] with its fixed format (one symbol per
triangle and no additional offset) however guarantees a cost of 4 bpv. In practice, after
entropy coding, a mesh is encoded with about 1.8 and 2.4 bpv. The algorithm encodes
the connectivity of triangular meshes by iteratively nibbling its faces. Each time a new
face is traversed, the configuration of its patch among the five depicted on Figure 5 is
encoded. The face is then removed and an adjacent face is processed.

X X X

v

X

v

X

C L R E S

v v v

Fig. 5. The five patch configurations of the Edgebreaker algorithm. v is the patch center vertex and X is
the current triangle. The active gate is the blue edge. C: there is a complete triangle fan around v. L: there
are missing triangles at the left of the active gate. R: there are missing triangles at the right of the active
gate. E: v is only adjacent to X. S: there are missing triangles elsewhere than the left or the right of the
active gate.

Some Edgebreaker derived schemes were proposed to guarantee a worst-case cod-
ing cost of 3.67 bpv [King and Rossignac 1999] and then 3.55 bpv [Gumhold 2000].
Decoding algorithms with linear time and space complexities were proposed [Isen-
burg and Snoeyink 2000b][Rossignac and Szymczak 1999]. Szymczak et al. [Szymczak
et al. 2001][Szymczak 2003] optimized the original scheme to encode meshes with a
high regularity. This method has a worst-case coding rate of 1.62 bpv for large reg-
ular meshes. Coors and Rossignac [2004] with the Delphi coder added a connectivity
prediction method based on the mesh geometry. The Edgebreaker configuration of the
current vertex is predicted with the distances between the position of its parallelogram
prediction (see Section 3.2.2) and the positions of the active gate vertices. The authors
claim to obtain, on average, connectivity compression rates that are below 0.75 bpv.
Gumhold [2005] proposed to optimize a Markov model, for which each Edgebreaker
symbol is a state, in order to design an asymptotic optimal arithmetic coder for the
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Edgebreaker encoder. Ying et al. [2010] designed an algorithm to select the next edge
gate to proceed in order to minimize the number of ’S’ symbols. They also built a table
that ranks the Edgebreaker symbols depending on the number of traversed faces con-
nected to the gate vertices. This code-mode, which stands for a connectivity prediction
method, allows after an improved entropy coding.

The angle-analyser scheme [Lee et al. 2002] encodes the connectivity of a manifold
triangular mesh at 1.5 bpv on average with five symbols. The next face to proceed is
chosen in order to maintain the border between conquered and not conquered regions
of the mesh the most convex as possible. Lee and Park [2005] later showed that this
rate can be slightly reduced by using contexts for the arithmetic coder based on the
angle between successive gates.

3.1.5. Valence encoding. A manifold triangle mesh contains approximately twice less
vertices than triangles. So, an algorithm that focuses on the insertion of new vertices
and generates one symbol per vertex to describe its local connectivity produces less
symbols than a triangle traversal approach. Consequently, if the entropy per symbol
is not twice larger this algorithm will lead to a better connectivity compression perfor-
mance. One way to describe vertex connectivities is to encode their valences.

The pioneering valence-driven approach is the algorithm of Touma and Gotsman
[1998]. Its principle is to consider the edge boundary formed by an initial triangle
and expand this boundary by iteratively adding adjacent vertices. The connectivity
is encoded by the valence of the inserted vertices, typically concentrated around six.
Therefore, the generated list of vertex valences can be efficiently compressed by an
entropy coder (2.3 bpv). It is still today seen as one of the most efficient connectivity
compression method. Alliez and Desbrun [2001b] later proposed some modifications
to further reduce the compression rates. They also demonstrated that the compres-
sion rate obtained with their method for a mesh with a maximized entropy matches
Tutte’s entropy [1962] (see Section 3.1.2). Thus, they claimed having demonstrated the
optimality of valence-based approaches.

The Freelence encoder [Kälberer et al. 2005] has a slightly different approach. In-
stead of directly encoding the valence of vertices, it codes the number of not conquered
edges incident to the processed vertex. This method goes along with a geometry-driven
mesh traversal to keep the active list as convex as possible like the angle-analyzer
encoder [Lee et al. 2002]. This algorithm yields an average improvement of 35% com-
pared to the Alliez and Desbrun approach [2001b] for the compression of manifold
triangle mesh connectivities.

3.1.6. Topological extensions. Many of the algorithms presented above do not accept any
topology as input. Thus, the topological algorithm [Taubin and Rossignac 1998] first
assumes a genus-0 manifold oriented triangle mesh with no boundary. The authors
then propose some preprocessing and some additional information encoding so as to
remove the genus-0 and no boundary conditions. The Cut-Border machine [Gumhold
and Straßer 1998] and the Touma and Gotsmam valence approach [Touma and Gots-
man 1998] can process manifold triangle meshes with boundaries and arbitrary genus.
For the Cut-Border machine, an extension that codes an additional bit for some oper-
ations is proposed to process non orientable meshes. Mamou et al. [2009] proposed an
extended valence approach to encode non-manifold and non-oriented triangle meshes.
This algorithm partitions a triangle mesh into a set of triangle fans. For each fan, the
encoded information is mainly its configuration code among 10 and its degree. The first
version of the Edgebreaker algorithm [Rossignac 1999] takes as input genus-0 mani-
fold triangle meshes with boundaries but Lopes et al. [Lopes et al. 2002] removed the
genus limitation. Their scheme encodes additional symbols to describe how to turn the
input mesh into into a single boundary loop mesh.
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3.1.7. Compressing polygon meshes. Triangles are the most common type of faces inside
meshes but not the only one. Meshes with higher face degrees have also their interest
to represent some surfaces. The previously described methods cannot be directly ap-
plied to polygon meshes because they assume the mesh face degree is three to reduce
the quantity of information to encode. A preliminary triangulation allows to compress
polygon meshes with algorithms restricted to triangle meshes. However, this method
do not restore the initial connectivity and may lead to higher compression rates as
edges must be added. Therefore, the compression of polygon meshes has also been
studied in the literature.

The algorithm of King et al. [1999] generalizes the Edgebreaker algorithm
[Rossignac 1999][Rossignac and Szymczak 1999] to allow the compression of quad and
quad-triangle mesh connectivities. Its principle is to split each quadrangle into two
triangles that are on the same Edgebreaker traversal sequence. This leads to efficient
connectivity compression (from 0.25 to 0.85 bpv for quad meshes and from 0.78 and
1.14 for quad-triangle meshes) because some combinations of the Edgebreaker algo-
rithm become impossible. The paper also explains how to compress a polygon mesh
with a guaranteed cost of 5 bpv.

The Face Fixer algorithm [Isenburg and Snoeyink 2000a] compresses the connec-
tivity of manifold polygon meshes with arbitrary face degrees using a face traversal
of the mesh. The encoder generates one symbol per edge. Experimental results yield
connectivity compression rates ranging from 1.7 to 2.9 bpv. The connectivity encoder
of Kronrod and Gotsmam [2000] codes the degree of each face of the mesh and its
relation to the active border. The authors report their method as being slightly less
efficient than [Isenburg and Snoeyink 2000a] but easier to describe and implement.

Isenburg [2002] and Khodakovsky et al. [2002] independently proposed valence-
based approaches to encode the connectivity of manifold polygon meshes. Inspired by
the work of Touma and Gotsman [1998], their approaches encode both the valence of
vertices and faces with a face traversal of the mesh. Khodakovsky et al. [2002] demon-
strated the optimality of such schemes by proving that the entropy of the two valence
lists matches Tutte’s entropy for planar graphs [1963]. For both methods, experimen-
tal results range approximately from 0.8 to 2.6 bpv, thus improving over the Face Fixer
scheme [Isenburg and Snoeyink 2000a].

3.1.8. Compressing volume meshes. When the application requires to mesh the interior
of a volume, volume meshes must be used. They contain more information than surface
meshes to define the cells. It is therefore also interesting to compress them.

Szymczak and Rossignac [1999] proposed a spanning tree approach to encode tetra-
hedral meshes with about 7 bits per tetrahedron. The compressed format is composed
of a tetrahedral spanning tree string and a folding spanning tree. This second tree
codes the folding operations on the tetrahedral spanning tree edges needed to restore
the initial mesh. Gumhold et al. [1999] proposed a border extension approach based
on the original Cut-Border machine [Gumhold and Straßer 1998]. But here, instead
of being a curve composed of edges, the border is a surface composed of triangles. Ten
different symbols encode the connectivity. The connectivity of the tested models is com-
pressed at less than 2.4 bits per tetrahedron.

Isenburg and Alliez [2002a] investigated the compression of hexahedral volume
meshes with a valence-driven approach. Their scheme encodes the mesh edge degrees,
their number of incident faces, during an iterative traversal of all the mesh hexahe-
dra. The obtained average compression rate is 1.5 bits per hexahedron for the tested
models. The hexahedral mesh connectivity compressor of Krivograd et al. [2008] first
compresses the mesh boundary ; then, the interior of the mesh is compressed with six
different symbols and vertex degrees. Experimental results show that this approach
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compresses better (up to 50%) big meshes with a low genus compared to the scheme of
Isenburg and Alliez [2002a].

Lindstrom and Isenburg [2008] proposed an original approach to compress hexa-
hedral mesh connectivities. Their method encodes the vertex indices from the input
file indexed data structure. In this file, the hexahedra are described by a table with 8
columns of vertex indices. The principle is to compress independently each column of
the table. Indeed, if the vertices are coherently ordered, a context of few indices can
accurately predict the next value. The prediction residual are then coded with byte-
aligned variable length coding. The obtained string is later compressed by a standard
gzip data compression algorithm. Even if this algorithm is not as efficient as state-of-
the-art approaches, it has numerous advantages. Among them, it is fast and memory
efficient. It processes non-manifold meshes without any adaptation. It is easy to im-
plement: it does not need any particular mesh data structure and it heavily relies on
the freely available data compression algorithm gzip.

Prat et al. [2005] described a generic algorithm to compress the connectivity of any
kind of manifold meshes (surface or volume, orientable or not, with arbitrary face or
cell degrees). They based their scheme on a generalized map data structure containing
a single type of primitive elements called darts. Connectivity relations between these
elements called involutions are stored. Even if this method is not competitive in term
of compression rates with specialized approaches, its main advantage is its generic
property. Its ability to process different types of meshes is an advantage in scenarios
when the mesh type can vary.

Approaches have also been proposed for 3D regular grid compression, also known
as voxel compression. As for lower dimensional gridded data (e.g. images and videos),
several compression methods have been applied to volumetric data as for instance :
vector quantization [Ning and Hesselink 1992], Discrete Cosine Transform (DCT) [Yeo
and Liu 1995; Lum et al. 2002], Discrete Fourier Transform (DFT) [cker Chiueh et al.
1997], Run Length Encoding(RLE) [Anagnostou et al. 2000] or wavelets [Muraki 1992;
Guthe and Straßer 2001; Bajaj et al. 2001; Rodler 1999]. These approaches are all
lossy compression schemes. In [Fowler and Yagel 1995], the authors proposed the first
lossless compression scheme for voxel data based on prediction. Similarly, in [Ibarria
et al. 2003], the Lorenzo predictor is introduced for the compression of n-dimensional
scalar fields.

3.2. Geometry compression
Mesh geometry compression (the compression of the vertex coordinates) is very im-
portant as, in most cases, it is bigger than the connectivity information. Usually the
compression of the geometry of a mesh begins with the quantization of all the co-
ordinates of its vertices. Then, during each compression iteration, the position of an
encoded vertex is predicted thanks to the position of its already encoded neighbors. If
the prediction is accurate, the prediction error is small so, it can be later efficiently
entropy-coded. The compression rates provided in this subsection concerns only the
geometry.

3.2.1. Quantization. In input files, or in the memory of computers, the vertex coordi-
nates are often represented by 3 IEEE 32-bit floating-point numbers. The precision
provided by such a representation is not needed for most applications. Quantization
can significantly reduce the quantity of data to encode without any identifiable quality
loss.

Scalar quantization consists in transforming the floating-point number positions
into integer positions. The mesh bounding box is partitioned into a 3D grid. The num-
ber of cells per axis depends on the maximum integer that can be coded with the num-

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: September 2013.



3D mesh compression: survey, comparisons and emerging trends 39:11

ber of quantization bits. The size of each cell can be either uniform or non-uniform.
Each vertex of the mesh is moved to the center of the cell it belongs to. The integer
position is then composed of the three index coordinates of the cell.

Most of the geometry encoders that go along with the previously described well-
known connectivity compression schemes [Deering 1995][Taubin and Rossignac 1998]
[Rossignac 1999][Touma and Gotsman 1998] use an uniform scalar quantization. The
number of quantization bits usually ranges from 8 to 16. The mesh geometry is conse-
quently slightly altered contrary to the connectivity.

Bajaj et al. [1999] and then Lee et al. [2002] proposed to encode the vertex positions
with three angles. For the angle-analyzer encoder [Lee et al. 2002] two internal angles
and one dihedral angle are computed. Instead of being performed on global vertex
coordinates, the quantization is performed on these local angles. By applying different
quantizations to the different angles, this method can achieve a better rate-distortion
performance. Lee and Park [2005] proposed to locate the vertices within 4 different
range sizes as they noticed that very few vertices are located in the biggest range. To
encode the position of the vertex within a range, the ranges are more or less subdivided
depending on their size. The position of the vertex is therefore encoded by the type of
the range and the subcell number.

Vector quantization is an alternative technique that divides the set of points to quan-
tize into arbitrary shaped groups. Quantization cells are no longer cuboids. Their shape
can better adapt to the data. Each group has a representative point. All of these points
constitute the codebook that must be saved with the compressed data. Vector quan-
tization has experimentally demonstrated its ability to achieve better rate-distortion
performance than scalar quantization technique [Lee and Ko 2000] [Chou and Meng
2002][Bayazit et al. 2007][Lu and Li 2008][Meng et al. 2010]. However, the determi-
nation of the quantization cells can lead to intensive computations.

3.2.2. Prediction. The first mesh compression approaches [Deering 1995][Chow 1997]
only used delta prediction. The position of the next vertex to encode is predicted to be
the position of the previous vertex. The delta, the vector between the two positions,
is then encoded. Bajaj et al. [1999] uses a second order predictor that encodes the
differences between consecutive delta predictions.

The topological surgery algorithm [Taubin and Rossignac 1998] uses linear predic-
tion. The position of the next vertex to encode is predicted to be a linear combination
of the K previous vertices in the vertex spanning tree. The K parameters of the linear
function minimize the mean square prediction error over the mesh. Their values are
stored in the compressed file to be available to the decoder.

Besides valence-driven connectivity encoding, Touma and Gotsman [1998] also in-
troduced parallelogram prediction. Like valence-driven connectivity encoding, paral-
lelogram prediction is a founding idea that has inspired many later schemes. The com-
pression algorithm introduces a new vertex with a triangle from one edge. The new
vertex predicted position forms a parallelogram with the two edge vertices and the
third vertex of the opposite triangle (Figure 6 a). Experimental results show that tri-
angle mesh geometry can be compressed at about 8.5 bpv with a 8 bit quantization.

The dual parallelogram prediction [Sim et al. 2003] uses the average position given
by two parallelogram predictions whenever it is possible (Figure 6 b). Dual parallelo-
gram can be used in about 75 percent of the cases. It results to slight improvements
over parallelogram prediction.

Isenburg and Alliez [2002b] showed that parallelogram prediction can also be used
for the geometry compression of polygon meshes with arbitrary face degrees. Isenburg
et al. [2005a] later presented a generalization of the parallelogram prediction for arbi-
trary polygons. Missing vertex positions of a polygon are predicted with weights com-
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a. b. c.

Fig. 6. Parallelogram prediction. The already encoded part is in gray. a. Simple parallelogram prediction.
b. Dual parallelogram prediction. The predicted position is the average of the two parallelogram predictions.
c. Freelence prediction. The predicted position is the average of the three parallelogram predictions.

puted for polygons of different degrees with different known vertices. These weights
come from a Fourier decomposition of polygons where the highest frequencies are set
to 0 to ensure that the polygons are nicely shaped.

The Freelence coder [2005] uses the combination of three parallelogram predictions
to encode the geometry of triangular meshes: two standard ones, as with dual paral-
lelogram prediction, and a new one applied across a virtual edge joining the two outer
vertices (Figure 6 c).

Cohen-or et al. introduced multiway prediction [2002]. The principle is to predict the
position of new vertices with as many as possible parallelogram predictions based on
already encoded vertices.

The geometry predictor of Gumhold and Amjoun [2003] performs as many as pos-
sible parallelogram predictions to determine the tangential components of the predic-
tion. However, to estimate the normal component, encoded by a dihedral angle, the
encoder fits a high order surface to the already encoded part of the geometry. The
predicted position is therefore at the intersection of the higher order surface with the
circle defined by the tangential components. Ahn et al. [2006] also use as many as pos-
sible parallelogram predictions. They also added their own dihedral angle prediction
scheme that averages all the neighboring dihedral angles.

Recently, Váša and Brunett [2013] proposed weighted parallelogram prediction
methods, which weights are computed in function of the vertex valences. The three
proposed weight calculation methods have an increasing computational cost. Exper-
imental results report that residuals have a computed Shannon entropy up to 20%
lower than with standard parallelogram prediction.

Courbet and Hudelot [2011] used a Taylor expansion to determine prediction
weights for various prediction stencils. This method allows to theoretically determine
the best weights for the parallelogram prediction. It proves that the Freelence weights
[Kälberer et al. 2005] work better than the dual parallelogram prediction weights [Sim
et al. 2003] and determines better weights for the polygon prediction [Isenburg et al.
2005a].

Regarding volume meshes, Gumhold et al. [1999] resorted to delta coding to encode
the geometry of tetrahedral meshes. Isenburg and Alliez [2002a] compressed the geom-
etry of hexahedral meshes with intra and inter hexahedron parallelogram predictions.

3.2.3. Geometry-driven compression. For a compressed mesh, the size of the geometry
information is often superior to the size of the connectivity. Nevertheless for most al-
gorithms, the encoding is driven by the mesh connectivity. So, the idea of focusing on
geometry encoding before connectivity has been investigated.

Kronrod and Gotsman [2002] designed a compression scheme where the mesh en-
coding is driven by the geometry. This approach builds a mesh cover tree that contains
all the mesh vertices. This tree, which defines a particular traversal of the mesh ver-
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tices, is generated to minimize the parallelogram prediction errors needed for each
vertex position. The geometry compression becomes up to 50 percent more efficient at
the cost of a slightly higher connectivity compression rate. This approach particularly
benefits to CAD models, which often have a non-smooth geometry.

The tetrahedral mesh compression scheme of Chen et al. [2005] is also driven by
the geometry. It tries to build an optimal traversal tree that minimizes the predic-
tion errors of the new vertex positions. The used predictor is the generalization of the
parallelogram prediction for tetrahedral meshes.

Shikhare et al. [2001] pushed the geometry-driven compression idea one step fur-
ther. Their scheme tries to find repeated geometric patterns inside 3D models. The
recognized patterns can be either components, regions within components or region
across components. This approach particularly benefits to large CAD or digital her-
itage models. Cai et al. [2009] later proposed a similar scheme that achieves slightly
better performance. They included scaling transformations for the repeated patterns.

The connectivity encoding of the previous schemes is guided by the mesh geometry.
But the mesh geometry and connectivity are compressed at the same time and their
data is interleaved in the compressed stream. Lewiner et al. [2006] with the GEncode
algorithm proposed an alternative geometry-driven encoding technique. The mesh ge-
ometry is first compressed completely independently from the connectivity by encoding
a kd-tree decomposition of the quantized space. Then, a surface reconstruction algo-
rithm iteratively attaches new triangles to the border of the mesh by selecting a new
vertex among candidates around. The reference to the right vertex among the can-
didates is encoded. This algorithm can compress any kind of triangle meshes. This
approach is very competitive for the compression of tetrahedral meshes [Lewiner et al.
2006] compared to the Grow & Fold [Szymczak and Rossignac 1999] and streaming
[Isenburg et al. 2006] approaches.

In a similar idea, Chaine et al. [2009] proposed a mesh connectivity compression
scheme based on surface reconstruction. For the decompression, this technique as-
sumes that the geometry has already been decoded. For both the encoding and decod-
ing, a Delaunay triangulation is generated from the point sets. Then a convection al-
gorithm restores the initial connectivity of the input mesh. The connectivity of meshes
generated with similar techniques is therefore encoded at a very low cost.

3.2.4. Compressing floating-point positions. As described above, most of the mesh com-
pression algorithms quantize the coordinates of the vertices. But some applications
may require the exact restoration of the floating-point coordinates. Isenburg et al.
[2005b] investigated the lossless compression of floating-point geometry. The floating-
point coordinates are broken into sign, exponent, and mantissa components. The pre-
diction errors of these components are compressed independently with different arith-
metic contexts. This method is able to compress the geometry of a mesh at about 35
bpv.

3.3. Handling large meshes
Some models are too large to fit into the main memory of computers. Out-of-core
schemes were designed to compress such models. They dynamically load and unload
the different parts of the mesh depending on the currently processed region of the
mesh.

In [Ho et al. 2001], the authors proposed to partition the input model. Each part
is then compressed independently in-core. The Edgebreaker compression algorithm
[Rossignac 1999] compresses the connectivity. Additional symbols are integrated to
stitch the parts together during the decompression. For the geometry compression the
parallelogram prediction [Touma and Gotsman 1998] is used. In the same idea, Ueng
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[2003] proposed to compress large tetrahedral meshes connectivity by dividing them
into blocks called octans with an octree data structure based on the geometry. Each
octan is compressed in-core by encoding tetrahedral strips.

Isenburg and Gumhold [2003] proposed an out-of-core mesh data structure for the
compression of large polygon meshes. This data structure is built on a segmentation of
the input mesh. However, contrary to the previous out-of-core approaches, the clusters
are compressed together with a streaming approach. During the compression, the data
structure dynamically loads the mesh clusters that are on the active list of the Touma
and Gotsman encoder [1998] and unload them when they are no longer needed. The
decompression is performed with a small memory footprint composed only of the active
list. The authors claim that the obtained compression rates are about 25 percent lower
and the decompression speeds about 100 times faster than Ho et al. scheme [2001].

Following their idea of processing meshes with a streaming approach, Isenburg and
Lindstrom [2005] proposed a general I/O efficient streaming format for meshes. This
format interleaves indexed triangles and vertices with extra information describing
when mesh elements are introduced and finalized. Therefore, the application keeps
only in memory the small active part of the mesh currently being processed. The au-
thors propose several strategies to reorder the meshes indices in a layout compatible
with streaming.

This framework has been the basis of several streaming compression techniques
such as [Isenburg et al. 2005c] for triangle meshes, [Isenburg et al. 2006] for tetra-
hedral meshes and [Courbet and Isenburg 2010] for hexahedral meshes. Compared to
their non-streaming counterparts, these techniques have in general equivalent geome-
try compression rates but worse connectivity compression rates. Yet, the I/O efficiency
of the streaming approach allows them to compress large meshes quickly with a very
low memory footprint.

The Tetstreamer algorithm [Bischoff and Rossignac 2005] has been designed for
client-server visualization purposes also following a streaming strategy. The server
compresses and sends to the client a tetrahedral mesh in the back to front visibility
order. The input mesh is decomposed into surface layers called sheets that are com-
pressed by the Edgebreaker algorithm [Rossignac 1999]. The client also receives a bit
stream indicating how to attach each tetrahedron to the current sheet. The connectiv-
ity of tetrahedral meshes is compressed at about 1.7 bits per tetrahedron on average.

3.4. Compression and remeshing
Most of the compression schemes do not alter the connectivity of the mesh. But some
applications do not require the restoration of the initial connectivity after the decom-
pression. In this case, the compression rates can be further improved by exploiting this
new degree of freedom.

Szymczak et al. [2002] proposed a remeshing algorithm that produces piecewise reg-
ular meshes. The input mesh is first segmented into approximately flat regions called
reliefs. Each relief belongs to one of six different directions. They are then resampled
over a regular hexagonal grid defined by three families of parallel lines. All the orig-
inal vertices, except the boundary ones, are collapsed. A stitching algorithm reforms
a closed mesh. This scheme is associated with an Edgebreaker compression algorithm
optimized for regular meshes for the connectivity. The Swingwrapper scheme [Attene
et al. 2003] produces also semi-regular meshes. It aims at generating isosceles tri-
angles to encode only one quantized dihedral angle when their inserted vertex is en-
coded by an Edgebreaker encoder. Both methods benefit from the high regularity of
the generated meshes to compress them very efficiently (on average 4 bpv in total for
[Szymczak et al. 2002] and 6 bpv for the geometry for [Attene et al. 2003]).
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Mesh simplification can also be considered as lossy compression as it reduces the
connectivity and the geometry. A review of the mesh simplification method is beyond
the scope of this paper but we can redirect the interested reader to this useful survey:
[Cignoni et al. 1998]

Table I summarize what we consider as most relevant and seminal single-rate com-
pression approaches.

Table I. Summary of the main single-rate compression algorithms.

Algorithm Connect. Compress Embed Remarkscomp. rates (bpv) polygon meshes strips
Deering [Deering 1995] 11 no yes

Topological surgery 6 max. no no[Taubin and Rossignac 1998] 2.5 to 6
Cut border machine 4.4 no no[Gumhold and Straßer 1998] on avg.

Valence coder 2.3 no no Introduced valence encoding
[Touma and Gotsman 1998] on avg. & parallelogram prediction

Edgebreaker [Rossignac 1999] 3.55 max. no yes Many derived schemes[Gumhold 2000] 2.1 on avg.
Valence polygonal 1.8

yes no
Proven near-optimality

[Khodakovsky et al. 2002] on avg. for of the connect. coding
[Isenburg 2002] poly. meshes
Valence coder 2.1 no no Proven optimality

[Alliez and Desbrun 2001a] on avg. of the connect. coding

4. STATE OF THE ART ON PROGRESSIVE MESH COMPRESSION
With progressive algorithms, a coarse version of the mesh can be quickly displayed to
the user. It is then progressively refined as more data is decompressed until the ini-
tial model has been restored. Connectivity-preserving schemes restore during the de-
compression the connectivity of the input model while connectivity-oblivious schemes
resort to remeshing to encode an input model with a higher compression performance.

4.1. Connectivity-preserving schemes
4.1.1. Vertex split and edge collapse. Hoppe first introduced the concept of progressive

meshes (PM) [Hoppe 1996]. The idea is to incrementally decimate a mesh using the
edge collapse operator (see Figure 7) driven by an optimization procedure that min-
imizes an energy function. The compressed representation consists of the base mesh
followed by all parameters required for the incremental reverse operations, called ver-
tex splits. Hoppe encoded the connectivity of a vertex split by storing the index of the
vertex vs and approximately five bits to designate the vertices vl and vr (see Figure
7). For the geometry encoding, the vertex positions are globally quantized and en-
coded through delta prediction. The main advantage of this scheme is its high multi-
resolution granularity, together with the possibility to perform selective refinement
during decoding. Such granularity is achieved at the cost of low compression rates: in
the order of 37 bpv with a 10 bit quantization. Popović and Hoppe [1997] then extended
the PM representation to arbitrary simplicial complexes. Their main contribution is
the introduction of the generalized vertex split (and its counterpart the vertex unifi-
cation) which allows topological changes along the levels of detail which may thus be
composed of 2-, 1- and 0-simplices (i.e. triangles, edges and vertices). To keep a good
visualization of the levels of detail, 1- and 0-simplices are approximated by cylinders
and spheres of appropriate areas.

In order to come closer to compression rates of single-rate methods, some methods
were proposed to encode the vertex split operations in batches. Taubin et al. [1998]
built a progressive mesh compression scheme inspired by the single-rate topological
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vs
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vr vl vr
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Edge collapse

Vertex split

Fig. 7. Edge collapse and vertex split operations. The edge collapse merges the vertex vt with the vertex
vs. The vertex split inserts the vertex vt and the two triangles with the red edges.

surgery algorithm [Taubin and Rossignac 1998]. Their progressive forest split repre-
sentation encodes a manifold triangular mesh with a base mesh and a sequence of
forest split operations. The connectivity is encoded by marking the cut edges and the
way the holes are retriangulated.

Pajarola and Rossignac [2000] proposed to perform as many as possible edge collapse
operations to generate of a new level of detail. Vertex splits are then encoded by build-
ing a vertex spanning tree on the mesh and saving each split vertex and cut edges. The
vertex positions are uniformly quantized but Li et al. [2006] later demonstrated that
the use of vector quantization (see Section 3.2.1) improves the rate-distortion perfor-
mance of the algorithm. Karni et al. [2002] adapted this scheme to design a progressive
compression scheme which enables the fast rendering of all the levels of detail with
vertex buffers. Vertex buffers have been introduced by the graphic hardware manu-
facturers to accelerate rendering with the reuse of vertex data through generalized
triangle strips (see Section 3.1.1). The first step of the proposed algorithm is to cre-
ate an efficient vertex rendering sequence composed of series of incident vertices. The
mesh is then decimated by collapsing edges along this sequence.

Better compression ratios are achieved with these approaches (about 30 bpv [Taubin
et al. 1998] and 22 bpv [Pajarola and Rossignac 2000] with a 10 bit quantization).
Nevertheless the multiresolution granularity is lower than in the PM representation.

4.1.2. Vertex removals. Other progressive compression schemes use vertex removals
instead of edge collapses. Li and Kuo [1998b] pioneered a method based on vertex
removal followed by a local patch retriangulation. The connectivity is encoded with
a local index which specifies the patch pattern and a global index which locates this
pattern in the whole mesh. The geometry data is encoded with a barycentric error
prediction. The authors also pioneered the idea of adapting the vertex quantization
along the transmission of the levels of detail.

Cohen-Or et al. [1999] used the same decimation mechanism. However, they grouped
the vertex removal into batches to generate discrete levels of detail. For the genera-
tion of a new level, all the patches of the removed vertices must be independent. The
patches are then identified by assigning an identical color among three to triangles be-
longing to the same patch. Compression rates competitive with single rate techniques
can be achieved with this method (about 23 bpv with a 12 bit quantization).

Alliez and Desbrun [2001a] proposed what could be seen as a progressive version
of the Touma-Gotsman single-rate encoder [1998]. At each iteration, the mesh is dec-
imated by two deterministic mesh traversals. The decimating conquest (from a to b in
fig. 8) removes vertices with a valence inferior or equal to 6 (for the border vertices,
only vertices with a valence of 3 or 4 are removed). The created holes are then filled
by a deterministic retriangulation strategy which operates as follows : during the con-
quest, driven by a fifo queue of seed gates (blue arrows), vertices are tagged either ⊕
or 	 depending if their valence should be increased or decreased (to obtain a mesh as
regular as possible); then, for each gate, a table provides the accurate triangulation ac-
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cording to these flags and propagates accurate flag values to untagged vertices. After
this decimating conquest, a cleansing conquest (from b to c in fig. 8) removes valence 3
vertices. The mesh connectivity is encoded through the valence of the removed vertices
plus one null patch code to encode triangles not belonging to patches. The geometry is
encoded through the patch barycentric error prediction in a local Frenet frame. The
obtained compression rates are about 21 bpv with a 12 bit quantization.

a. b. c.
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Fig. 8. Decimation of a regular mesh by the Alliez-Desbrun progressive encoder. a. The red vertices and the
red edges of the input mesh will be removed by the decimating conquest. b. The deterministic triangulation
fills the holes with the green edges. c. The blue vertices have been removed by the cleansing conquest.

Since valence-driven encoding of the mesh connectivity has demonstrated its effi-
ciency for single-rate and progressive mesh compression, the original Alliez-Desbrun
has inspired numerous derived schemes that have improved its rate-distortion perfor-
mance. For instance, Cheng et al. [2006] forbid the removal of some vertices, called
anchors and detected by their principle curvatures, during the decimation conquests.
Experiments show that keeping these vertices in all levels of detail allows to improve
the rate-distortion performance. Lee et al. [2012] demonstrated that the rate-distortion
trade-off of the Alliez-Desbrun coder is improved by using an adaptive quantization
method. The idea consists in interleaving decimation operations and global quantiza-
tion operations encoded with the Peng and Kuo approach [2005] (see section 4.1.3).
They obtain both better rate-distortion performances and compression rates (about
1bpv improvement with a 12 bit quantization).

Ahn et al. [2011] optimized the mesh traversal to maximize the number of removed
vertices per decimation step. A curvature prediction is also used for encoding the ge-
ometry. The latter shares the general idea of spectral methods (see. Section 4.1.6) be-
cause a topology-based Karhunen-Loève transform concentrates the distribution of ge-
ometry residuals. The residuals are entropy coded with a bit plane coder. Decimation
conquests are interleaved with the transmission of bit planes to improve the rate-
distortion performance. They significantly improve the compression rates of the Alliez-
Desbrun coder (about 4 bpv reduction with a 12 bit quantization).

Lee et al. [2011] significantly improved the geometry compression (up to 60%) by
introducing two new prediction methods. The dual ring prediction aims at having the
same barycentric prediction for one vertex and its one-ring neighbor vertices. The min-
imum mean square error prediction constructs a linear predictor based on vertices
having a topological distance of 1 or 2 with the predicted vertex. The algorithm first
segments the input level of detail by an algorithm based on the mesh connectivity.
Then, the most efficient method is chosen to encode each cluster.

To improve the connectivity encoding, Kim et al. [2011] proposed to predict the va-
lence of the current patch inserted vertex during the decoding. With the geometry
information, each patch possibility corresponding to one valence value is tried. The
position of the inserted vertex is provided by the encoded geometry information. Then
all the possibilities are ranked by measuring the regularity of the generated triangle.
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The predicted possibility is the one with the highest regularity. For each level of detail,
the frequencies of each valence value is also used for better prediction.

4.1.3. Geometry-driven progressive mesh compression. As with single-rate mesh compres-
sion (see Section 3.2.3), the idea of focusing on geometry compression before connec-
tivity has also been tested for progressive mesh compression.

In the scheme of Gandoin and Devillers [2002], the vertex positions are stored in
a kD-tree. The initial cell is successively split along the three axis until the desired
geometry precision is obtained. Each time a split is performed, the number of vertices
of one of the child cell is encoded (see the Figure 9). The connectivity is encoded with
generalized vertex splits and prediction mechanisms based on the geometry.

10
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4 20

2
2

1 1

0 0 2 1
...

Fig. 9. Progressive geometry encoding of the Gandoin-Devillers algorithm in 2D. For each step, the emitted
symbols are the numbers that represent the number of vertices in each cell.

Peng and Kuo [2005] also developed a geometry-driven progressive mesh compres-
sion algorithm based on an octree data structure. After a subdivision, instead of en-
coding the number of vertices inside each cell as in [Gandoin and Devillers 2002],
the number of non-empty child cells is encoded. Then, the neighbor vertices allow to
predict which cells may be non-empty. Rate-distortion performance is improved by pri-
oritizing the subdivision of important cells. The connectivity of the mesh is encoded
through vertex splits. The number of vertices connected to the two vertices generated
by the split, called pivot vertices is encoded. Then a prediction algorithm based on the
geometry determines the most probable candidates. Triangle meshes are compressed
at about 15 bpv with a 12 bit quantization. Tian et al. [2012] later proposed an al-
ternative method to predict non-empty cells based on smoothness measure. They also
rank the cells that must be subdivided according to the valence of their representative
vertex.

One advantage of these progressive compression methods based on space subdivi-
sion is that they can compress arbitrary simplicial complexes. Besides, they achieve
very efficient compression rates with manifold meshes. However, their rate-distortion
performance suffers at low rates due to the low quantization. No control of the impor-
tant vertices removal is permitted. The mesh simplification cannot be driven with a
metric contrary to connectivity-guided approaches.

4.1.4. Wavelet for irregular meshes. Wavelet frameworks are traditionally reserved for
semi-regular connectivities as explained in Section 4.2.1 but Valette et al. [2004a] pro-
posed a subdivision scheme that can generate irregular meshes. They later built a pro-
gressive mesh compression algorithm based on this framework: Wavemesh [Valette
and Prost 2004b]. The initial mesh is progressively decimated with the subdivision
scheme tailored to irregular meshes. The connectivity data is composed of all face sub-
division operations. A triangle face can be subdivided into 4, 3, 2 faces or be unchanged.
The connectivity is encoded with three types of data described on Figure 10. The geom-
etry is encoded through a wavelet lifting scheme. The positions of the inserted vertices
are predicted as being at the middle of their parent edges. The obtained compression
rates are slightly better than those from [Alliez and Desbrun 2001a] (about 19bpv with
a 12 bit quantization).
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Fig. 10. Connectivity encoding with the Wavemesh scheme [2004b]. a. The four types of face subdivisions.
Red vertices are added to split the edges. b. In the case a face is subdivided into 3 faces, one bit encodes the
direction of the faces. c. In the case a face is subdivided into 2, to restore an initial connectivity modified to
merge faces, one bit encodes if an edge needs to be flipped. If yes, an other bit codes which edge.

Lee et al. [2013] improved the compression performance of the original Wavemesh
scheme by 16.9% on average. To improve the connectivity encoding, they proposed
methods based on mixture of Gaussian probability models to predict the inserted ver-
tices, the face directions and the edge flips from the geometry. For the geometry encod-
ing, they divide the new vertices of a level of detail into three groups. To encode the
vertex positions of a later group, the encoder uses the positions of the already encoded
group(s). Vertex positions are predicted with the dual-ring prediction scheme from [Lee
et al. 2011]. The residuals are encoded in a local coordinate frame like in [Alliez and
Desbrun 2001a] with a bit plane coder.

4.1.5. Progressive compression through reconstruction. Valette et al. [2009] cast the pro-
gressive mesh compression problem as a mesh generation problem in their incremental
parametric refinement framework. The encoder starts from a coarse version of the ini-
tial mesh generated by the simplification scheme from [Garland and Heckbert 1997].
The base mesh is incrementally refined by splitting the longest edge. The position of
the inserted vertex corresponds to the position of one vertex of the original mesh. Posi-
tions are adaptively quantized. The number of quantization bits depends on the level
of refinement. At each refinement step, the triangulation is modified by means of edge
flips to satisfy a local Delaunay property or to fix connectivity drifts. This process is
summarized on Figure 11. When all vertices of the original mesh have been inserted,
the initial connectivity is restored by flipping edges guided by a flip distance heuristic.
A bit per edge is encoded to tell if an edge must be flipped. This algorithm is known to
compress efficiently (about 15bpv with 12 bits quantization) and achieves good rate-
distortion performances. The complete connectivity restoration process is, however, not
guaranteed to succeed.

a. b. c.

Fig. 11. Incremental parametric refinement [2009]. a. The longest mesh edge in red is selected for refine-
ment. a. The red edge is split into two. b. The two blue edges are flipped to satisfy a local Delaunay property.

The idea of computing the best decimated version of an initial mesh has been re-
cently further investigated in [Peng et al. 2010]. The algorithm starts from the initial
mesh vertex set and recursively splits it into several child subsets using generalized
Lloyd’s algorithm [1982]. Each time a new vertex subset is generated, a representa-
tive vertex of this set is selected to be close to the geometric center of the set and to
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have high curvature. In this hierarchy, the number of children of a set is encoded. The
offsets between a representative and its parent representative are predicted in a cylin-
dric frame and adaptively quantized. The connectivity is encoded through vertex splits
with prediction of pivot vertices. This algorithm yields compression rates at about 16
bpv with a 12 bit quantization.

4.1.6. Geometry compression with the Laplacian operator. Fourier analysis has been com-
monly used for sound and image compression. Projecting the data into the frequency
domain and encoding the low frequencies often allows to retrieve during the decom-
pression a quality approximation of the original signal with few data. Karni and Gots-
man [2000] proposed to apply this technique to compress mesh vertex positions. To
project the coordinates from the space domain to the frequency domain, the encoder
uses the mesh Laplacian operator. The eigenvectors of the Laplacian matrix of a mesh
form an orthogonal basis of Rn and their associated eigenvalues are considered as fre-
quencies. The projections of each coordinate component vectors on the basis vectors are
the mesh spectrum. The underlining principle is that if the geometry is smooth enough,
its spectrum will be concentrated around low frequencies. So the spectral coefficients of
low frequencies, after being quantized and entropy coded, are sufficient to build a good
approximation of the initial mesh. In practice, spectral compression achieves excel-
lent rate-distortion performance. Incidentally, Ben-Chen and Gotsman [2005] proved
that spectral compression is optimal for certain classes of geometric mesh models as
it is equivalent to principal component analysis on these classes. Mahadevan [2007]
replaced the laplacian bases by diffusion wavelet bases and showed their ability to
better represent an input mesh with the same number of basis functions.

As eigenvector decomposition is a high complexity operation (O(n3)), the mesh must
be segmented in regions of about 500 vertices in [Karni and Gotsman 2000]. The com-
putation becomes realistic but is still very heavy. A later approach [Karni and Gots-
man 2001] proposed to use a fixed basis derived from a regular connectivity mapped
to the irregular connectivity of the mesh. The hope is that the average energy will
still be concentrated on low frequencies. The compression becomes less efficient but
the decompression is accelerated since the eigenvector decomposition is not anymore
computed. Bayazit et al. [2010] reduced the computational complexity of the mapping
method. They also used a bit plane encoder for the spectral coefficients. Cayre et al.
[2003] showed that rate-distortion gains can be obtained by introducing overlap be-
tween the segmented regions.

Mamou et al. [2010] devised an alternative algorithm that computes the Laplacian
matrix of a mesh. The mesh is then approximated by solving a heat equation with a
minimal set of control points. The vertex locations are encoded as residuals from the
approximation given by the heat equation. The connectivity is encoded by the Touma
and Gotsman single-rate encoder [1998]. This scheme achieves an excellent compres-
sion ratio (about 10 bpv with a 12 bit quantization). However, its high complexity due
to solving the heat equation is a significant drawback.

4.1.7. Polygon meshes. Most of the approaches described above can only compress
triangular meshes. For some of them, simple extensions were proposed to compress
meshes with arbitrary face degrees. A preliminary triangulation allows to compress
polygon meshes with an existing method restricted to triangle meshes. Additional
data has then to be encoded to restore the initial connectivity after the decompres-
sion. Taubin et al. [1998] followed this approach to extend the progressive forest split
algorithm. Li et al. [1998b] stated also that their compression scheme can be used on
polygonal meshes. However, they provide no details about how the algorithm would be
adapted. In more recent work, Peng and Kuo [2005] noted that, as their octree coder
can compress arbitrary connectivity between vertices, it is possible to modify the face
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construction algorithm to reconstruct polygon faces with two bits per split as addi-
tional information.

The encoder of Maglo et al. [2012] was specifically designed to progressively encode
polygon meshes. Successive levels of detail are generated by a patch decimation oper-
ator which removes patch center vertex and remeshes locally. The mesh connectivity
is encoded by two lists of Boolean symbols: one for the inserted edges and the other
for the faces with a removed center vertex. The mesh geometry is encoded with a
barycentric error prediction of the removed vertex coordinates. This scheme remains
also competitive for the compression of triangle meshes.

4.1.8. Volume meshes. As far as we know, very few works have been proposed for the
progressive compression of volume meshes. Pajarola et al. [1999] designed a progres-
sive compression algorithm for the connectivity of tetrahedral meshes. To generate the
levels of detail, batches of independent edge collapses are performed. The connectivity
is encoded by marking with one bit the vertices that must be split during the decom-
pression and identifying the cut-faces around a split-vertex. An alternative approach
can be to use the geometry-driven approaches [Gandoin and Devillers 2002][Peng and
Kuo 2005] (see Section 4.1.3) as they can compress arbitrary simplicial complexes.
They, however, do not integrate the notion of cells.

4.2. Connectivity-oblivious schemes
As for single-rate mesh compression (see Section 3.4), when the restoration of the ini-
tial mesh connectivity is not crucial, resorting to remeshing can further reduce the
compression rates.

4.2.1. Wavelet for semi-regular meshes. In the general case, progressive mesh compres-
sion schemes based on wavelet start from a coarse irregular version of the input
mesh and progressively refine it with a subdivision scheme that produces semi-regular
meshes. After each subdivision, the vertices are moved to reduce as much as possible
the distortion between the subdivided model and the input mesh. These delta displace-
ments, which are the wavelet coefficients, are then encoded. Loop’s subdivision [1987]
or the butterfly subdivision [Dyn et al. 1990] are often used for this purpose.

In image coding, wavelet representations are known to decorrelate efficiently the
original data. As a consequence, Khodakovsky et al. [2000] proposed to also use
wavelet for the compression of surfaces of arbitrary topology. However, this compres-
sion scheme cannot encode any connectivities. A remeshing of the input model is
performed by the MAPS algorithm [Lee et al. 1998]. The wavelet transform, based
on Loop’s subdivision [1987], replaces the original mesh with a coarsest irregular
mesh and a sequence of wavelet coefficients expressing the difference between suc-
cessive semi-regular levels of detail. The wavelet coefficients are represented in a local
frame and later encoded with a zero-tree coder. This scheme was later improved [Kho-
dakovsky and Guskov 2003] thanks to the normal mesh representation [Guskov et al.
2000]. Normal mesh is a wavelet decomposition where the detail coefficients contain
only one normal component wherever it is possible (above 90% of the cases) instead of
three coefficients for standard subdivision. As there is only one wavelet coefficient to
encode instead of three, normal mesh compression yields significantly better compres-
sion ratios.

Payan and Antonini [2002][2005][2006] allocate the bits across the wavelet sub-
bands for the standard and normal mesh representations in order to improve the rate
distortion performance. The proposed optimization framework varies the quantization
of the wavelet coefficients to minimize the global reconstruction error. To improve the
compression of normal meshes, Lavu et al. [2003] optimize locally the quantization of
the normal component based on values previously encoded in the neighborhood.
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Kammoun et al. [2012] proposed to optimize the prediction scheme of lifting-based
wavelet transforms (Butterfly and Loop). For each level of detail, the best parameters
of the predictor are computed to minimize the set of detail coefficients. Experimental
results show that, compared to classic wavelet decomposition, the root mean square
distortion is slightly reduced (about 2%) at similar rate. Chourou et al. [2008] resorted
to mesh segmentation in order to optimize the wavelet operators for each of the gen-
erated clusters. The parameters of lifting scheme prediction step are chosen to mini-
mize the variance of the detail coefficients. Zhao et al. [2011] based their compression
scheme on matrix-valued Loop’s subdivision for better shape control. The encoder of
Denis et al. [2010] exploits the statistical dependencies between the intraband and
composite wavelet coefficients to determine the best quantizers.

Chen et al. [2008] proposed to compress an input surface by regularly remeshing it
with quads. The quadrilateral subdivision splits each face into 4 new faces by inserting
one vertex. The wavelet decomposition is formulated through a lifting scheme. Zero-
tree coding is also used to encode the coefficients.

Other mesh methods using wavelet transforms focus on mobile decompression [Ma
et al. 2009] and the support of lossy transmission [Luo and Zheng 2008]. The ideas
behind are to reduce the number of computations needed for the decompression and
to use error protection techniques to fit mobile computational capabilities and lossy
networks.

As wavelet-based compression schemes resort to remeshing, it is not really possible
to give absolute compression rates for compressed models. Indeed, neither the geome-
try (even with a set quantization) or the connectivity are restored during the decom-
pression. Nevertheless in general, wavelet-based algorithms provide a significantly
better rate-distortion performance compared to their lossless counterparts.

4.2.2. Geometry image. Geometry image [2002] is an original approach that com-
presses manifold meshes with a wavelet image compression scheme. To resample the
input model over a regular 2D grid, the mesh is first cut in order to be homeomor-
phic to a disc. Then a parametrization function that maps the points of the cut mesh
to the points of an unit square allows to compute x y z values for each pixel of the
image. During the decompression, the geometry image pixels are used to build a tri-
angle mesh approximation of the original mesh. However, the lossy compression leads
to ’cracks’ along the surface cuts. Hoppe and Praum [2005] later proposed to construct
the geometry image using a spherical remeshing approach. To unfold the sphere on to
geometry image, they proposed a scheme based on a regular octahedron domain and
an other scheme based on flattened octahedron domain. The geometry of these domain
fits nicely with the use of spherical wavelet, thus avoiding boundary reconstruction
issues.

Shi et al. [2012] improved the compression of normal-map images since they are
generally more difficult to compress due to their high variations. Their framework
exploits the correlation between the normal-map image, the geometry image and be-
tween the three components of the normal-map image. Sander et al. [2003] mapped
the surface piecewise on several charts so as to reduce the distortion. Peyré and Mal-
lat [2005] investigated the compression of geometry images with bandelets. The aim
of the bandeletization is to remove the correlation between high amplitude wavelet
coefficients. Experimental results show that the distortion can be reduced by about 1,5
db compared to classical wavelet compression at similar rates.

Mamou et al. [2010] proposed a progressive mesh compression method based on b-
splines and geometry images. After a segmentation of the input mesh, each patch is
parameterized and approximated by a b-spline surface. The B-Spline control points
are quantized and encoded into three gray-scales geometry images (one per axis) with
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the progressive JPEG 2000 encoder. The connectivity of the patches is lossless encoded
with the Touma and Gotsman algorithm [1998]. Additional encoded information allows
to recover the patch adjacency relations.

Ochotta and Saupe [2008] proposed an alternative image-based surface compres-
sion method. The input mesh is first partitioned. Each region is then projected on a
plane. The resulting height fields are transformed into images and compressed with
an adaptive wavelet coder. After the decompression, the partitions are stitched in or-
der to generate a closed mesh. The obtained experimental results are similar to the
results of the normal mesh approach [2000].

Table II summarizes most important and seminal approaches. Prog. Granularity
represents the granularity of progressiveness (from 1 - lowest, to 5 - highest) and refers
to the number of new elements added when increasing the level of detail. The highest
granularity is obtained by the progressive algorithm from Hoppe [1996], for which
one vertex is added at each level of details. A low granularity is obtain for Wavemesh
[Valette and Prost 2004b] which generates a low number of levels of detail (i.e. because
adding many elements at each level refinement).

Table II. Summary of the main progressive mesh compression algorithms.

Algorithm
Lossless Total Compress Progr.

Remarksconnect. comp. non-manifold granularity
comp. rates (bpv) meshes

Progr. meshes yes 37 no 5/5[Hoppe 1996] (10 bit)
Compressed progr. meshes yes 22 no 3/5[Pajarola and Rossignac 2000] (10 bit)

Valence encoder yes 21 no 3/5[Alliez and Desbrun 2001a] (12 bit)
Wavemesh yes 19 no 1/5 Low number of

[Valette and Prost 2004b] (12 bit) levels of detail
Spectral compression yes 19 no 3/5 No progr. coding

[Karni and Gotsman 2000] (12 bit) of the connect.
Kd-tree coder yes 19 yes 2/5 High distortion

[Gandoin and Devillers 2002] (12 bit) at low rates
Octree coder yes 15 yes 2/5 Like above[Peng and Kuo 2005] (12 bit)

Incremental parametric
yes

15
no 5/5

Original connect.
refinement (12 bit) may fail to be

[Valette et al. 2009] restored
Geometry image no - no - Can generate cracks
[Gu et al. 2002] in decomp. models

Wavelet compression no 8 no 3/5 Fits well to smooth
[Khodakovsky et al. 2000] (eq. 12 bit) and dense meshes

Normal meshes no 6 no 3/5 Like above[Guskov et al. 2000] (eq. 12 bit)
Note: the figures in the parenthesis are the number of global quantization bits.

5. STATE OF THE ART ON RANDOM ACCESSIBLE MESH COMPRESSION
The issue with single-rate and progressive mesh compression algorithms is that, when
the user wants to access a specific part of a very large mesh, the full model must
be downloaded and decompressed. Random accessible algorithms allow to decompress
only the required parts. Some algorithms give access to only the original level of detail
of the mesh but others allow to decompress different parts at different levels of detail.

5.1. Random accessible compression
5.1.1. Cluster-based random accessible compression. The algorithm of Choe et al.

[2004][2009] first segments the input mesh using Lloyd’s method [1982]. Generated
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charts are desired to be planar and compact in order to achieve high compression ra-
tios. The important characteristic of this codec is that each chart is independently
compressed using the single rate Angle Analyzer encoder [2002]. In order to not du-
plicate the geometry information of the border vertices shared by two charts, their
positions are compressed independently in sequences called wires. The position of the
next wire vertex to encode is predicted as a linear combination of the two previously
encoded positions. The connectivity between the clusters is encoded under the form of
a polygonal mesh with the encoding scheme proposed by Khodakovsky et al. [2002].
The Figure 12 illustrates this compression scheme.

00011010...

00011010...

00011010...

Random accessible
decompression

Wire-net mesh

Wires

Charts

Encoded wire-net mesh

Compressed wires

Compressed charts

Input mesh Segmented mesh

Fig. 12. Cluster-based random-accessible mesh compression [Choe et al. 2004][Choe et al. 2009].

Chen et al. [2008] used a segmentation algorithm that generates meaningful re-
gions. Each cluster is then compressed with the Edgebreaker algorithm [1999]. The
difference here is that the boundaries between the clusters are triangle strips and not
wires. These strips are also compressed by the Edgebreaker algorithm but no geometry
information is embedded in the border data. The vertex positions are encoded inside
each cluster.

Yoon and Lindstrom [2007] also built a cluster-based random accessible compres-
sion scheme. They added the random-accessible support to streaming mesh compres-
sion [2005c]. The mesh is compressed by sequentially accessing and grouping the mesh
triangles and vertices in a cache-oblivious layout. Each cluster is composed of a con-
stant number of triangles (a few thousand) and are compressed independently with
the streaming mesh compression scheme. The geometry information of the border ver-
tices is not duplicated: it is encoded one time in a cluster and referenced for the others.
This scheme comes with a mesh access programming interface that allows to access
any element of the mesh by their identifier at a low computational cost. Experimental
results report 45:1 speedup over standard streaming mesh compression. However, the
compression overhead is about 40% compared to the approach of Choe et al. [2004].

The approach of Yoon and Lindstrom [2007] was recently extended to support ge-
ometry random access by compressing bounding volume hierarchies composed of axis-
aligned bounding boxes [Kim et al. 2010]. In this hierarchy, a parent bounding volume
is split into two children. The compression aims at preserving the cache coherency of
the generated hierarchy. A set of bounding volume clusters that contains about four
thousand bounding volumes is generated. These clusters are then compressed inde-
pendently to enable the random access. The vertex indices of the triangles are encoded
for each leaf bounding volume to enable the geometry random access to the mesh sur-
face.
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5.1.2. Hierarchical random accessible compression. Courbet and Hudelot [2009] proposed
an alternative hierarchical representation based on sequences of vertices also called
wires. The input mesh, which contains an already encoded exterior boundary, is split
into two balanced partitions. The start and end vertices of the border wire between the
two clusters as well as its size are encoded and form the connectivity information. The
wire geometry is encoded with the same linear predictor as in [Choe et al. 2009]. Both
partitions are then recursively split in the same way until each partition contains only
one polygon. The decoding of one element is done by recursively splitting the wires
until hitting an unsplittable polygon. This tree structure allows the decompression
of only one of its paths. Therefore, the random accessibility granularity is high (see
Figure 13). Besides, polygon meshes can be directly compressed. However, the com-
pression efficiency for triangle meshes is inferior to the two previous approaches. The
average cost is 3 bits per polygon for connectivity and 14 bpv for geometry using a 12
bit quantization.

1. 2. 3. 4. 5. 6.

Fig. 13. Random-accessible hierarchical decompression of a triangle mesh [2009]. The target points the
requested part of the mesh. For each step, the current decompressed wire is in blue. It forms with the red
wire, the cluster that is split in the next step.

5.2. Progressive and random accessible compression
5.2.1. Connectivity-based algorithms. Kim et al. [2006] based their multiresolution ran-

dom accessible mesh compression algorithm on their previous mesh refinement frame-
work [Kim and Lee 2001]. During the decompression, a vertex can be split even if its
neighbors are not the same than during the decimation. This breaks the symmetry of
the operations of standard progressive mesh representation [Hoppe 1996]. Thus, on the
decompressed model finely refined regions can be adjacent to coarse regions. The con-
nectivity and the geometry are compressed through an efficient encoding of the vertex
split hierarchy. This approach is therefore connectivity-based. It offers a fine-grained
multiresolution random access but the compression performance is limited (about 31
bpv with a 12 bit quantization).

Cheng et al. [2007] described a progressive random accessible mesh compression
algorithm based on an initial meaningful segmentation. The clustering is obtained by
cutting the mesh into parts along concave feature contours. Each part of the mesh
is then encoded with a modified version of the progressive encoder from [Alliez and
Desbrun 2001a]. The positions of inserted vertices are encoded with polar coordinates
and different quantizations for each component. No attention is, however, provided to
the part boundaries. Similarly, Maglo et al. [2011] extended the single-rate random
accessible coder of Choe et al. [2009] to progressively encode the charts. Chart border
vertices are still encoded independently but methods are proposed to fill the holes
between charts not fully decompressed.

The POMAR encoder [Maglo et al. 2013] however, does not require an initial seg-
mentation of the input model. Discrete levels of detail are generated with halfedge
collapses during the compression. The coarse levels are compressed globally as with
a progressive algorithm. Nevertheless, for the fine levels, clusters are generated by
dividing the vertex split hierarchy. By imposing a maximum difference of one level of

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: September 2013.



39:26 A. Maglo et al.

detail between adjacent clusters, this scheme generates smooth transitions between
the coarse and fine decompressed regions and achieves an efficient compression per-
formance (15 bpv with a 12 bit quantization).

5.2.2. Geometry-based algorithms. Better compression performances were obtained by
geometry-based encoders. Jamin et al. [2009] and Du et al. [2009] proposed both to add
random access support to the original Gandoin and Devilliers progressive algorithm
[2002]. Both algorithms are out-of-core (see Section 3.3). During the decompression,
different levels of detail can be selected for the different cells of the kd-tree. However,
a post-processing step must handle the boundaries between cells decompressed at dif-
ferent levels of detail.

The CHuMI viewer from Jamin et al. [2009] partitions the mesh bounding box into a
hierarchical structure called nSP-tree. This structure is composed of SP-cells encoded
independently. Vertices that belong to several SP-cells are duplicated to allow indepen-
dent decoding of each cell. Each SP-cell is subject to a Gandoin and Devilliers kd-tree
decomposition [2002] that encodes the connectivity and geometry information as in
the original progressive algorithm. The authors also bring a solution to the problem of
blocky effect at low rates due to the low quantization. For this purpose, their scheme
encodes some geometry bits in advance, in relation to the connectivity.

The approach of Du et al. [2009] decomposes the kd-tree of the original Gandoin and
Devilliers algorithm [2002] into two layers. The top tree is the first layer while the set
of its child subtrees is in the second layer. The top tree and each of the child sub-trees
are compressed separately to enable the random access. During the decompression,
the border vertices can be decompressed independently from the internal vertices. The
subtrees must be compressed and decompressed in a predefined order because to de-
compress a subtree, the border vertices of the previous subtrees in the dependency list
must be decompressed.

5.2.3. Connectivity-oblivious schemes. As for single-rate and progressive mesh compres-
sion algorithms, resorting to remeshing for progressive and random accessible com-
pression offers a new degree of freedom that allows to achieve better compression rates.
These schemes are often based on wavelet decomposition framework for semi-regular
meshes as their progressive counterparts (see Section 4.2.1).

Sim et al. [2005] used the normal mesh representation [Guskov et al. 2000] in their
scheme that assigns new edges to clusters after the butterfly subdivision. This frame-
work also includes a distortion model, a visibility test method and a visibility priority
method to view-dependently decompress the model. In [Roudet 2010], one level of the
wavelet decomposition of an input semi-regular mesh is used to segment the model
into regions of homogeneous coefficient magnitudes. Each of these regions are later
projected on the input semi-regular model to be later encoded separately. The frame-
work presented by Gioia et al. [2004] allows to dynamically add and remove wavelet
coefficients to refine or coarse the model without having to decode the whole decompo-
sition.

Wavelet schemes have a key advantage for progressive random accessible mesh com-
pression. No complex algorithms have to be developed to access randomly the original
connectivity graph. The difficulty comes indeed from the fact that the connectivity
must be compressed into independent clusters. For wavelet schemes, the only require-
ment is that the wavelet decomposition of one cluster must only depend on the ver-
tices of this cluster. The connectivity is only set by the base mesh and the subdivision
scheme. It has not to be encoded for each level of detail.
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5.3. Compact representation
Recently, researchers have proposed interesting data structures that support random
access and constant time traversal operators while being very compact (approaching
the storage of compressed formats). Gurung et al. [2011a] first proposed the Squad
representation for triangle meshes; they combine triangles into quads and sort them
that ith quad is the one matched with the ith vertex. This ordering allows them to store
only a table of swings for the quad corners; vertex indices are not stored explicitly
and are inferred at run time by examining a small set of candidates in the neighbor-
hood. The storage cost for the connectivity is about 2 integer references per triangle.
This representation was recently extended [Luffel et al. 2014] to support on-the-fly
streaming construction and processing as in [Isenburg and Lindstrom 2005], mostly
by interleaving geometry and connectivity and improving the coherency between ver-
tices and triangles. Gurung et al. [2011b] proposed another compact data structure:
the Laced Ring (LR) representation which needs only 1 reference per triangle. The
principle is to reorder the vertices along a nearly-Hamiltonian cycle (called the ring).
The same authors then introduced the improved Zipper approach [Gurung et al. 2013]
able to store only 6 bits per triangle, mostly thanks to differential coding of the vertex
indices and improved ring construction.

Table III summarizes most relevant approaches. Random access granularity (from 1
- lowest, to 5 - highest) refers, in a qualitative way, to the number of elements that must
be decompressed to access a specific part of the mesh. For instance a low granularity
is obtained when, for accessing a given vertex, it is necessary to decompress a large
region around it.

Table III. Summary of the main random accessible (first part) and progressive random accessible (second part) mesh
compression algorithms.

Algorithm
Lossless Total Compress Random

Remarksconnect. comp. non-manifold access
comp. rates (bpv) meshes granularity

Streaming random accessible yes 28 no 2/5 Preserve the
[Yoon and Lindstrom 2007] (12 bit) streaming layout
Hierarchical compression yes 20 no 5/5 High random-accessibility

[Courbet and Hudelot 2009] (12 bit) granularity
Chart-based compression yes 16 no 3/5 High compression

[Choe et al. 2009] (12 bit) performance
SQuad representation yes 2 references no 5/5 First compact
[Gurung et al. 2011a] per triangle representation

Dependency free vertex splits yes 31 no 5/5 Produce smooth transitions
[Kim et al. 2006] (12 bit) between mesh parts

Kd-tree cell compression yes 21 yes 3/5 Need post-processing to
[Jamin et al. 2009] (16 bit) stich adjacent mesh parts

POMAR yes 20 no 3/5 Produce smooth transitions
[Maglo et al. 2013] (16 bit) between mesh parts

Layered Kd-tree compression yes 17 yes 3/5 High distortion at low rates
[Du et al. 2009] (16 bit) Dependency between parts

Normal mesh compression no ? no 2/5 Fits well to smooth
[Sim et al. 2005] and dense meshes

Note: the figures in the parenthesis are the number of global quantization bits.

6. STATE OF THE ART ON MESH SEQUENCE COMPRESSION
Thanks to advances in the domain of camera-based 3D reconstruction, mesh sequences
are becoming increasingly widespread. Using short time steps, these are extremely
bulky and especially require efficient compression, as in the case of video compression,
which exploits the temporal coherence of successive images. 3D animation is another
domain which produces large quantities of mesh sequences. Almost all the techniques
proposed so far by the scientific community only compress sequences with constant
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connectivity (i.e. temporally coherent mesh sequence)(see Section 2). In the case of
sequences with variable connectivity (i.e. temporally incoherent mesh sequence), the
complexity of compression problems is considerably increased because spatio-temporal
redundancies are much harder to exploit without prior mapping. To our knowledge
only Han et al. [2007] and Yamasaki and Aizawa [2010] have tackled this problem;
inspired by video compression techniques, the authors consider a division of meshes
into blocks, then block matching and coding of the residuals.
Since most of the existing techniques concern temporally coherent mesh sequences, we
focus this state of the art on the compression of this kind of sequences (i.e. dynamic
meshes). We classify dynamic mesh compression methods into five categories: methods
with prior segmentation, PCA-based methods, methods that consider spatio-temporal
prediction, wavelets and finally the MPEG algorithms. Before starting we have to pro-
vide some insights on the useful functionalities of a dynamic mesh compression algo-
rithm. We distinguish two main features that characterize existing algorithms:r Local vs Global: As raised in [Amjoun and Straß er 2009], some algorithms analyze

the global coherence of the dynamic mesh to compress it, while on the other side,
others focus on local frame-to-frame changes. The main benefit of global approaches
is an improved compression performance, while local algorithms allow for faster
(often real-time) compression/decompression.r Scalability: Dynamic meshes carry important amounts of data, hence the scalability
is of importance for them. A scalable compression algorithm allows to decode only
parts of the embedded bit stream, in order to display the sequence at a reduced
frame rate (temporal scalability) or a reduced mesh resolution (spatial scalability).
Scalable methods for dynamic meshes are counterparts of progressive methods for
static meshes with the addition of the progressivity in the time dimension.

Scalable and local methods are of particular interest for scenarios of low-latency
streaming, especially on hand-held devices. Global and non-scalable methods are usu-
ally limited to download-and-play scenarios.

6.1. Compression based on prior segmentation
Several authors have proposed to partition the vertices of the dynamic mesh into
groups of points with similar movement. Lengyel [1999] proposed a method of this
type in 1999 (the first dynamic mesh compression algorithm). The basic principle
involves estimating the movement of a group of vertices by a rigid transformation,
which then acts as a predictor. The segmentation information, the parameters of each
transformation and the prediction errors are then coded to allow reconstruction of the
sequence. Alignment between successive meshes can be used to improve results, as
demonstrated by Gupta et al. [2002]. Sattler et al. [2005] proposed an improved seg-
mentation based on vertex trajectories using Lloyd’s clustering in combination with
principal component analysis (PCA) and then compress each cluster using PCA (see
section 6.2). Mamou et al. [2006] also consider a segmentation into almost rigid parts;
the motion of each vertex is then described as a weighted linear combination of the
cluster’s motions (a skinning model) plus a motion compensation error compressed
using discrete cosinus transform (DCT). This later approach makes possible a progres-
sive transmission (i.e. spatial scalability) by ordering the DCT coefficients.

6.2. PCA-based methods
Alexa and Muller [2000] were the first authors to consider principal component analy-
sis (PCA) for compression of dynamic mesh. Their idea is to represent each frame as a
linear combination of principal component bases obtained through SVD decomposition
of the matrix representation of the sequence (3v×f with v and f respectively the num-
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ber of vertices and frames, 3 stands for the number of coordinates - x,y,z). The first base
vector is the average shape and the others represent differences to this shape. Then by
transmitting only a few principal bases instead of the whole set, very efficient compres-
sion ratio can be obtained. It’s important to notice that before the decomposition, the
frames have to be normalized using an affine transform that minimizes the distance
of corresponding vertices. Their method was then improved by Karni and Gotsman
[2004] who applied linear prediction coding to the PCA coefficients. These authors also
introduced the KG distortion measure (basically the Frobenius norm of the matrix dif-
ferences) used by many authors as a reference for rate distortion evaluation. Improved
results were obtained by Sattler et al. [2005] who applied PCA on spatial clusters and
Luo et al. [2013] who applied it on temporal clusters. Some authors have also proposed
to apply PCA on the space of trajectories instead of shapes; the main benefit is that
it involves the eigenvalues decomposition of a covariance matrix of 3f × 3f instead of
3v× 3v. Vása and Skala have proposed several contributions based on trajectory space
PCA. In [Váša and Skala 2007], they predict PCA coefficients with the parallelogram
rules; they then improved this approach with an efficient mechanism to predict PCA
basis [Váša and Skala 2009] (+25% gain), accurate new predictors [Váša and Skala
2010] (+20% gain) and traversal order optimization [Váša 2011] (+15% gain). This lat-
ter method provides currently the best results (between 0.5 and 5 bit per frame per
vertex - bpfv - for a KG error of 0.05%). These PCA approaches are very efficient be-
cause they analyze the coherence of the entire sequence (i.e. they can be referred as
global methods). Moreover they theoretically allow for spatial scalability by ordering
the basis vectors, however this is not done in practice and they are only applicable in
a download-and-play scenario.

6.3. Methods using spatio-temporal prediction
Some methods exploit the spatio-temporal redundancy of sequences by predicting
the position of a vertex from surrounding spatial and/or temporal positions (by
interpolation) or from previous positions (by extrapolation). On the contrary to global
PCA algorithms, these methods exploit local coherences, hence they are usually
computationally simpler. Ibarria et al. [2003] present two spatio-temporal predictors,
the Extended Lorenzo Predictor (ELP) and REPLICA. The first extends the paral-
lelogram rule taking into account the prediction of the position of the vertex at the
previous time step. The REPLICA predictor makes the previous predictor robust to
rigid transformations such as rotations and changes of scale, using local reference
points and normalization. Zhang and Owen [2007] and Muller et al. [2006] place
vertex displacement vectors into a hierarchical tree structure (an octree), which
allows exploitation of spatio-temporal coherence. Amjoun and Strasser [2009] propose
to use local coordinate systems (which separate tangential and normal components)
to encode delta vectors. Stefanoski et al. [2007] propose to simplify the frames into
spatial layers (i.e. levels of detail) and then exploit spatial and temporal dependencies
between neighboring spatial layers and consecutive frames to estimate the motion of
each vertex. Their method supports spatial scalability. More recently Stefanoski and
Ostermann [2010] proposed their scalable predictive coding (SPC), which relies on
spatial and temporal layer decomposition and performs the prediction in the space of
rotation-invariant coordinates in order to compensate local rigid motion. Their scheme
was the first to support spatio-temporal scalability and provides excellent compression
ratio (between 3.5 and 8 pbfv). It was improved by Bici and Akar [2011] who proposed
novel prediction structures. Finally, Ahn et al. [2013] still improved this multi-layer
prediction to obtain a 30% gain in performance compared with SPC (and 20% again
Bici and Akar’s method). They obtain compression ratio between 2 and 6 bpfv.
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6.4. Methods using wavelets
Some authors also proposed algorithms based on a wavelet representation. Guskov and
Khodakovsky [2004] decompose the frames into layers using wavelet decomposition
(spatial scalability) and propose a delta coding of the wavelet coefficients among adja-
cent frames. In a different way, Payan and Antonini [2007] consider temporal wavelet
filtering (temporal scalability) combined with an efficient bit allocation process. Coding
rates are between 5 and 12 bpfv.

6.5. The MPEG framework
In 2007 a standard for dynamic mesh compression was adopted by the Moving Pic-
ture Experts Group (MPEG), referred to as Frame-based Animated Mesh Compression
(MPEG-4 FAMC) [Mamou et al. 2008]. It combines the skinning-based approach from
Mamou et al. [2006] and the scalable approach from Stefanoski et al. [2007]. This ap-
proach provides very good performance and, more importantly, proposes three modes:
downloadable (no scalability), scalable (both temporal and spatial) and finally stream-
able (the bit stream is partitioned into different packets encoded independently). The
downloadable mode provides the best compression rates (between 2 and 7 pbfv).
Table IV summarize what we consider as most important approaches.

Table IV. Summary of the main dynamic mesh compression algorithms.

Algorithm Comp. rates Local/global Scalability Remarks(bpfv)
PCA - Global No First spatial PCA method[Alexa and Müller 2000]

Dynapack - Local No First real-time algorithm[Ibarria and Rossignac 2003]
PCA + Linear Prediction - Global No Very efficient for long sequences

[Karni and Gotsman 2004] of relatively coarse meshes
Anisotropic Wavelet Transform - Local Spatial First wavelet method[Guskov and Khodakovsky 2004]

Scalable Predictive Coding 3.5 to 8 Local Spatial and Focus on low latency
[Stefanoski and Ostermann 2010] temporal streaming

MPEG-4 FAMC

2.5 to 8 Global

Different modes
[Mamou et al. 2006] Spatial and (dowloadable/streamable

[Stefanoski and Liu 2007] temporal /scalable)
[Mamou et al. 2008]

Fine Granular Scalable 2 to 6 Local Spatial and Focus on low latency
[Ahn et al. 2013] temporal streaming

CoDDyAC + Optimizations
0.5 to 5 Global No Trajectory space PCA[Váša and Skala 2007; 2009]

[Váša and Skala 2010; Váša 2011]
Note: compression rates in bit per vertex per frame for a KG error equal to 0.05%.

7. CONCLUSION
Pioneering mesh compression approaches were single-rate methods that focused on
connectivity compression. Some proposed schemes were based on triangle strips, fol-
lowed by vertex spanning trees. While better compression rates were obtained by com-
pressing face spanning trees, the best performances were obtained by valence-driven
schemes, whose optimality was proven. Seeing that geometry size is often far more
significant than connectivity size, the community started to become more interested in
developing efficient geometry predictors and quantization methods.

Progressive mesh compression methods quickly appeared after the first single-
rate approaches. Algorithms that do not restore initial connectivity (wavelet-based
approaches, spectral compression, etc.) lead to a better rate-distortion performance.
Among lossless progressive algorithms, geometry-driven approaches based on space
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subdivision provide very efficient final compression performance but with a high dis-
tortion at low rates. Excellent results are obtained with algorithms based on recon-
struction.

The interest in random accessible mesh compression came later with the desire to
compress and access large meshes. Compared to single-rate and progressive mesh
compression, few approaches have been proposed. For single-rate random accessible
mesh compression, two paradigms were proposed: the segmentation and the hierarchi-
cal approaches. For progressive random accessible mesh compression, wavelet-based
schemes have shown their high rate-distortion performance if connectivity can be mod-
ified. Connectivity-preserving schemes guided either by mesh connectivity or geometry
have also been proposed.

Regarding dynamic mesh compression, initial methods have focused on pure com-
pression rate using global schemes. The current trend is to consider local scalable
methods suited to low-delay streaming.

We summarized in tables I, II, III and IV what we judged to be the main approaches.
We see the future of mesh compression to be directed by the following two main points:

Evolution of the field
Until now, three independent fields of research have tackled the problems of 3D mesh
data storage and access for efficient visualization:

(1) Pure compression methods (the main topic of this survey); they include single-rate
and progressive algorithms. They are targeted for archival use and transmission.

(2) Compact and/or streamable data structures (briefly described in this survey).
These approaches, e.g. the recent Squad and LR representations [Gurung et al.
2011a][Gurung et al. 2011b], allow mesh traversal and constant-time access to
neighboring elements, while being more compact than classical data structures (e.g.
Half-Edge).

(3) Hierarchical data structure for real-time rendering of massive datasets (not dis-
cussed in this paper, because usually no compression is involved), e.g. [Cignoni et al.
2004]. In this case, the goal is to propose smart hierarchical structures compliant
with out-of-core construction, and optimized for parallel processing and rendering.
Simplification and approximation methods could also be mentioned here [Krishna-
murthy and Levoy 1996; Cohen-Steiner et al. 2004].

While each of these three fields of research has its own specific set of applications,
we believe that the new challenges facing 3D data access and visualization will fo-
cus on the convergence of these approaches. This convergence is already starting to
take place; for instance, very recent compact data structures are now getting close to
the bitrate of pure compression approaches [Gurung et al. 2013] and/or support data
parallel processing and streamed out-of-core access [Luffel et al. 2014]. Random ac-
cess compression methods may also be seen as hybrid between these three fields of
research. In particular, the recent random access progressive method from [Kim et al.
2010] presents a good compression ratio, allows fast random access, and is optimized
for fast rendering (it is based on Bounding Volume Hierarchies, a structure optimized
for ray tracing acceleration). More broadly, future compression methods will have to:r be aware of rendering, since it is usually the ultimate goal of content transmission.

An old yet excellent example is the work of Karni et al. [2002], who define their com-
pression mechanism in order to optimize the rendering sequence on decompression
(getting the benefits of the vertex cache of modern GPUs).r be compliant with out-of-core and parallel processing, as modern computer archi-
tecture is evolving towards increasingly more cores. Recently, Meyer et al. [2012]
described an innovative method for the GPU. They built a new mesh compression
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scheme based on generalized triangle strips, and encoded in parallel with scan-
operations. These kinds of smart ways to parallelize the compression process (which
is intrinsically incremental) should be sought.r adapt to the context. The use of 3D graphics is now spreading toward the general
public. This implies an increasing heterogeneity of contexts and terminals used for
3D data visualization. For instance, with the emergence of technologies such as We-
bGL, the embedding of 3D meshes inside Web applications is exploding; the visual-
ization of 3D data through handheld devices is also emerging. Consequently, com-
pression methods have now to adapt to this heterogeneous context by presenting dif-
ferent settings. For instance, for mobile platforms and scripted Web environments,
some of the compression features (complex prediction, entropy coding) could be dis-
abled to decrease complexity and minimize use of the CPU on decompression. Some
works compliant with Web and/or mobile platforms have been recently proposed in
this sense (e.g. [Chun 2012][Gobbetti and Marton 2012][Lavoué et al. 2013][Limper
et al. 2013]). Along the same lines, we can imagine a “random-access” setting that
would disable the entropy coding to encode symbols on fixed-size records.r be able to handle generic 3D data (arbitrary genus, surface or volume, manifold
or not, with borders or not, etc.) with any kinds of attributes (texture coordinates,
normals, colors). This would help the process of standardization already begun in
the MPEG and X3D communities.

Perceptual metrics, a new paradigm for design and evaluation
Mesh compression approaches are usually compared by their rate distortion perfor-
mance. To measure distortion, the traditional Root Mean Square or Hausdorff dis-
tances are often used. However, these measurements do not correlate with human
visual perception. Since the final destination of a compressed model is often to be dis-
played to a human observer, the perceived visual quality should be the criterion to
take into account when designing, configuring or evaluating a compression algorithm.
Cohen-Steiner et al. proposed the L2,1 metric based on the normal [Cohen-Steiner et al.
2004] as our visual system is more sensitive to changes in normals rather than in
changes in positions. To overcome the weakness of classical geometric measurements,
mesh visual quality (MVQ) metrics have been recently introduced by the scientific com-
munity [Corsini et al. 2013]; their goal is to predict the perceived visual fidelity of dis-
torted 3D data with respect to the original. Among existing works, Lavoué [2011] has
proposed a multi-scale perceptual metric (MSDM2) based on mean curvature statis-
tics, while Wang et al. [Wang et al. 2012] have considered the Laplacian of the Gaus-
sian curvature for designing their FMPD metric. Subjective experiments with human
observers demonstrated that these metrics can capture the perceived visibility of dis-
tortions better than RMS or Hausdorff distances. A perceptual metric was also recently
proposed for dynamic meshes [Váša and Skala 2011].
Such visual quality assessment metrics provide a new paradigm for the evaluation,
control and optimization of compression algorithms. For instance, as illustrated in
[Lavoué 2011], comparison of the rate-distortion curves of progressive mesh com-
pression algorithms computed with such perceptual metrics yields results different to
those obtained with traditional metrics. Consequently, a comprehensive study might
markedly change the currently admitted ranking of mesh compression algorithms.
More generally, as was the case for images and videos several years ago, 3D visual
quality metrics should now constitute a new gold standard for designing and evalu-
ating mesh compression algorithms. These new metrics, combined with recent efforts
to better understand the perceptual mechanisms linked to 3D scene visualization (e.g.
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visual making, contrast sensitivity function) should have a large impact on the design
of future 3D mesh compression algorithms.

8. PUBLICLY AVAILABLE ALGORITHMS
Martin Isenburg, Pierre Alliez and Jack Snoeyink provided an on-line Java implemen-
tation and a downloadable standalone version of their single-rate compression algo-
rithm [Touma and Gotsman 1998; Alliez and Desbrun 2001b; Isenburg 2002; Isenburg
and Alliez 2002b; Khodakovsky et al. 2002] at http://www.cs.unc.edu/\~isenburg/
pmc/. Source codes of the TFAN algorithm [Mamou et al. 2009] are available at
https://github.com/KhronosGroup/glTF/wiki/Open-3D-Graphics-Compression.
Source codes and executables of the progressive algorithm from Lee et al. [2012]
are available on the Mesh Processing Platform [Lavoué et al. 2012] (http://liris.
cnrs.fr/mepp/). The executable of the Wavemesh algorithm from Valette et al.
[2004b] is available at http://www.creatis.insa-lyon.fr/site/fr/users/valette.
The source code of the algorithms from [Maglo et al. 2012] and [Maglo et al. 2013]
can be downloaded at http://magsoft.dinauz.org/sourceCode.php. A CHuMI viewer
[Jamin et al. 2009] executable is available at http://clementjamin.free.fr/CHuMI/.
For dynamic mesh compression, the Coddyac algorithm from Váša et al. [2007] is
available at http://meshcompression.org/index.php/software-tools. Besides these
academic works, some open source compression software also exist, e.g. OpenCTM
(http://openctm.sourceforge.net/).
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