Coalescence & Breakup in emulsions and bubbly flows

Bubble column

Liquid-liquid pipe flow

"Fluides, Energétique & Procédés"

Olivier Masbernat, <u>Benjamin Lalanne</u>. <u>Benjamin.Lalanne@ensiacet.fr</u>

Evolution of interfacial area

Equation of **balance on the <u>number density</u>** *n* **of particles** *v* in a perfectly mixed zone (i.e. *with homogeneous hydrodynamics*), without mass transfer (i.e. *without growing/dissolution of the particles*):

NB: Case of <u>heterogeneous flows</u>: coupling of CFD (Two fluid approach) & PBE
 → Birth/death terms are introduced in a transport equation for n(v, t)
 examples in Marchisio et al., AIChE 2003 - Amokrane et al., Can J Chem Eng, 2013

Engineering approach

<u>*Time evolution of the size distribution*</u>: depends on the *local hydrodynamics* and the *physico-chemical properties* of the two phases and the interface.

- 1) Existing phenomena in the device: *breakup* or/and *coalescence*?
- 2) Determine the cause of deformation/collision.
 → physics at the particle scale

- 3) Select the accurate *kernel* for the Population Balance Equation (PBE)
 → model for frequency and size distribution
- 4) Solve the PBE to simulate the time evolution of the population

The interfacial tension: a mechanical property of the interface

Interfacial tension \rightarrow resisting force to surface deformation

Its importance on interfacial phenomena

Influence of surfactants

Interfacial tension σ : energy *or* force of the interface

A molecule in the bulk is surrounded by neighbors in all directions (equilibrium of energy of attraction and repulsion), while a molecule at the interface has a reduced number of neighbors => it is in an *energetically unfavorable state*: creation of new surface is energetically costly, and a fluid system will act to minimize surface of the interface.

→ Interfacial tension: work (energy) that must be provided to increase the surface of an interface, in isothermal, isobaric and reversible conditions, because interactions are different at the interface:

$$dG = \sigma dA$$

G is the Gibbs free energy (or free enthalpy)

 \rightarrow Interfacial tension: Force per unit length parallel to the interface (i.e. in the tangent plane), exerted perpendicular to any line drawn in the surface:

$$dF = \sigma dl$$

Why is surface tension a force parallel to the interface? Marchand et al., American Journal of Physics (2011)

Interfacial tension $\boldsymbol{\sigma}$

- $\sigma :$ Energy [J/m²] or force [N/m] of the interface
- → Explains why free bubbles are spherical (when no deformed by gravity *i.e.* at low Bond number Bo):

spherical shape = surface that minimizes the surface area for a given volume

 \rightarrow A droplet on a solid substrate:

Without gravity (Bo << 1) With gravity (Bo \ge 1) http://phyexpdoc.script.univ-paris-diderot.fr/projets_/sites_01_02_2/goutte/Approchetheorique.html

→ Some values of surface tension for clean interfaces: Water/air: $\sigma = 72 \text{ mN/m}$ Water/hexane: $\sigma = 50 \text{ mN/m}$ Water/butanol: $\sigma = 2.1 \text{ mN/m}$

 $\sigma = 0$: when the phases are totally miscible

Tintin (Hergé) – "Explorers on the Moon" (1976) \rightarrow A whisky drop at Bo = 0

Interface G-L: *superficial tension*

Interface L-L: *interfacial tension*

Laplace-Young equation for a bubble or droplet

Pressure jump across a static interface (without flow)

Across a sphere

Volume increase $dG_1 = \sigma d(4\pi r^2) = 8\pi r \sigma dr$ \Rightarrow Variation of free enthalpy $dG_2 = -(P - P_{ext})4\pi r^2 dr$

At equilibrium:
$$dG_1 + dG_2 = 0 = P - P_{ext} = 2\frac{\sigma}{r}$$

General case – Across a surface of two radii of curvature R1 and R2

$$\Delta P = P - P_{ext} = \sigma(\frac{1}{R_1} + \frac{1}{R_2})$$

Laplace law

- *F* : resultant of surface tension forces
- \rightarrow resultant is in the normal direction
- \rightarrow balances ΔP

http://www.msc.univ-paris-diderot.fr/%7Ecgay/documents/2016-05-formation-physique-lycee/cours-rio-poulard-adhesion-2017-04.pdf

Interfacial tension: examples

Surface tension force: pulling on the surface (tangent to the interface)

Examples:

Capillary rise of a liquid

Vertical component of surface tension force: $F_s = \sigma \cos(\theta) 2\pi r$

Balanced by the buoyancy force on the raised water: $P = \Delta \rho \ g \pi r^2 h$

Fs Fs

https://commons.wikimedia.org/wiki/File:Gerris_ssp._fm1.JPG

http://national.udppc.asso.fr/attachments/Memoires_OdPF/Mmoire_Marcher_sur_l-eau_final.pdf

Flottation of a sphere

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Surface_Tension_Diagram.svg/350px-Surface_Tension_Diagram.svg.png

a Gerris walking on the water surface

Interfacial tension: examples

A measurement method of surface tension: pendant drop test. Simple method, commonly used.

A drop of liquid is suspended at a capillary tube by surface tension.

 α : contact angle with the tube

Write the force balance on the droplet, giving the value of σ .

Interfacial tension: examples

Another measurement method of surface tension: Wilhelmy plate. For air-liquid F: Capi or liquid-liquid interfaces ZOOMOON triple contact Plate perpendicular to the interface Measure of the capillary force **F** exerted on the plate Force balance on the solid plate Forces the contact Young's law: 8 Lu con O = 8 SV - 8 SL air F = V coo wetted perimeter l = 2 w + 2 d liquid https://en.wikipedia.org/wiki/Wilhelmy_plate Adapted from Marchand et al., 11 (2011)

Importance of surface tension in interface phenomena

Surface tension resists to surface deformation, and acts to minimize the area of the interface.

Breakup of a stretched droplet (Stone, 1994)

Coalescence of two droplets approaching at constant velocity (Klaseboer, 1998)

Wetting of a droplet on a substrate (Pétrissans, 1996) Non-ideal surfaces

=> contact angle hysteresis effects (advancing and receding angles)

Surfactants: variation of interfacial tension

The Gibbs equation describes the *lowering* of surface tension due to surfactant adsorption (generally a decrease)

Variation of free enthalpy dG due to a variation of chemical potential (at constant area)

Surface concentration of adsorbed species

$$=> d\sigma = -\sum_{i} \frac{n_{i}^{S}}{A} d\mu_{i}^{L} = -\sum_{i} \prod_{i} d\mu_{i}^{L}$$

 $dG = Ad\sigma = -\sum n_i^S d\mu_i^S$

Surfactant: hydrophilic head, hydrophobic tail. At the interface, it decreases the interactions between molecules of the bulk fluids.

=> It becomes *energetically less defavorable* for the system to increase the interface area.

Danov (2010), Thin Liquid Films: Drainage and Stability; Role of Surfactant. https://en.wikipedia.org/wiki/Langmuir%E2%80%93Blodgett_film

13

Bulk concentration

Gradients of interfacial tension: Marangoni effect \rightarrow <u>change of hydrodynamics at interface</u>

Presence of surfactants at an interface, consequencies on fragmentation and coalescence

In **emulsions**, surfactants are present (naturally or introduced) in the fluid system. *They are widely used in the industry (generally at large coverage rate of the interfaces)* to **prevent drop coalescence** and **ensure emulsion stability**.

Bremond & Bibette, Soft Matter (2012)

Surfactants

- change the interfacial tension
- modify the hydrodynamics at the interface
 (Marangoni stresses and/or surface viscosity → interface immobilization)
 and give <u>elasticity</u> and <u>viscosity</u> to the interface

 \rightarrow <u>complex surface rheology</u> not only described by σ

- can modify the molecule surface charges
- \rightarrow <u>Strong changes of the coalescence and breakup rates</u> in the presence of surfactants.
- lower $\sigma =>$ lower resistance to interface deformation
- drop coalescence considerably reduced.

Danov (2010), Thin Liquid Films: Drainage and Stability; Role of Surfactant.

Breakup: physics and modelling

Causes of drop or bubble deformation Physical parameters describing breakup (rupture) *Breakup kernels*: how to model breakup frequency & daughter drop size distribution

Example of applications Chemical reactors with bubbly flows, extraction columns: High rate of breakup desired to increase interfacial area (then mass transfer)

Atomization, sprays(diesel engines, aerosols...)High surface area desired for efficient evaporation/combustion

Objective: modelling drop breakup mechanisms – Focus on "secondary breakup"

Problem: Modelling breakup and selecting accurate kernels:

- Breakup frequency: $\Gamma(v)$
- Daughter drop size distribution after breakup: $\beta(v,v')$

as a function of

- all physico-chemical properties of the fluid system
- local properties of the hydrodynamics field.

Secondary breakup = Breakup of already formed droplets

Question: important time scales, forces scales, velocity scales?

Methodology:

- \rightarrow analysis of breakup phenomena at local scale in controlled hydrodynamics conditions
- \rightarrow derivation of statistical models

Stresses that resist to deformation: surface tension & drop internal viscosity

• Surface tension and viscous stresses are compared in the Ohnesorge number of the drop:

• *Provided droplet viscosity is not too high (Oh*<<1), stress that resists to deformation is **due to** <u>surface tension</u> = σ / d [Pa]

• In <u>case of high viscosity of the deforming interface</u> (large Oh): stress that controls deformation is due to viscosity.

Ex: deformation of an interface honey – air
→ the relaxation process (after deformation) is controlled by viscosity, surface tension effects can be ignored.

case *mainly* studied

in the following

Cause responsible for drop or bubble breakup

Breakup: process that converts one drop/bubble into two or more fragments.

- deformation with surface increase
- eventually: growing of instabilities
- fragmentation in daughter droplets.

Condition of appearing of a **critical deformation**, given by:

Deformation not critical here!

(Hinze, 1955)

Stress that deforms the droplet > Stress that resists to deformation

depends on the type of flow when dominated by σ (= at Oh << 1)

 σ/d

 \rightarrow Breakup if the ratio $T_{\sigma/d}$ is larger than a critical value

 \rightarrow Breakup kernels are related to this critical number

1) Breakup in the viscous regime

Breakup condition: critical capillary number Ca_{crit}

Hydrodynamic stress responsible for breakup:

$$\underbrace{G_{c}}_{\rightarrow} \longrightarrow Ca_{c} = \frac{\mu_{c} G_{c} R}{\sigma} \qquad \text{responsible for breakup} \\ \lambda = \frac{\mu_{d}}{\mu_{c}} \longrightarrow Ca_{crit}(\lambda) \qquad T = \mu_{c} G_{c} \\ \text{Velocity gradient} \\ \text{seen by the droplet (shear rate)} \\ 20 \\ \end{bmatrix}$$

1) Breakup in the viscous regime

Experiment on the « four roll mills » device, in steady flow - $Re_p < 1$

1) Breakup in the viscous regime

1) Breakup in the viscous regime – Unsteady conditions

1) Breakup in the viscous regime – Case of an emulsion

 \rightarrow Influence of the volume fraction ϕ of droplets

For suspensions or concentrated emulsions: At low particulate Reynods number Re_p , assumption of equivalent media: effective density and viscosity, depending on ϕ .

$$\frac{\mu_e}{\mu_c} = (1 - a\emptyset)^{-n}$$

→ Emulsion = non-Newtonian fluid: shear thinning effects at high ϕ

Experiments of breakup in a *pure shearing flow* show:

same results as for a dilute emulsion, by using an equivalent capillary number:

$$\mu_{c} \rightarrow \mu_{e}$$

$$Ca_{crit} = \frac{\mu_{e}G_{crit}R}{\sigma} = f(\lambda_{e} = \frac{\mu_{d}}{\mu_{e}})$$

Jansen et al., (2001)

A colloidal mill is a rotor stator device, widely used in food processing or pharmaceutical manufacturing to produce emulsions with desired size.

The shear rate $\dot{\gamma}$ in the thin gap can be adjusted by varying the rotation speed.

- (a) With the target to produce an emulsion with droplets of diameter inferior to d=100 μ m, with a continuous phase of density $\rho_c = 1000 \text{ kg/m}^3$ and *effective* viscosity $\mu_c = 0.006 \text{ Pa.s}$, what minimal value of $\dot{\gamma}$ has to be produced in the gap?
- (b) Verify that the continuous flow regime is laminar in the gap of thickness h=0.3 mm (the transition Reynolds number for such a flow in a Couette device with smooth surfaces is superior to 10000).
- (c) Is breakup due to viscous forces or to inertial forces in this system? Comment.

Data available for the fluid system:

- The interfacial tension is found to be $\sigma = 5$ mN/m.

- Schuch et al. (2013) report a critical capillary number close to 3 - *based on the biggest droplet diameter of the emulsion* - for an emulsion with a viscosity ratio $\lambda = 16.7$ (inner phase viscosity $\mu_d = 0.1$ Pa.s).

rotor and stator: smooth or toothed teeth: various design

Karbstein and Schubert (1995)

2) Breakup in the inertial regime (determinist flows)

Drop/bubble deformed by inertial forces

Resisting stress to deformation is due to *surface tension*. → Breakup criterion: based on a critical Weber number

We consider determinist flows here:

deformation in extensional, oscillatory, rotating flows, due to impulsive accelerations,

Inertial stress: $T = \rho_c U^2$

$$We = \frac{\rho_c U^2 d}{\sigma} = Ca. \operatorname{Re}_p$$

$$U = \operatorname{drop \ relative \ velocity}_{or \ the \ velocity \ based \ on \ a}$$

characteristic velocity gradient due to the fall or rise of a bubble/drop with strong relative velocity...

t(ms)

2) Breakup in the inertial regime: examples

$$\frac{Extensional flow:}{\Rightarrow} \text{ Velocity gradient } G_c \text{ in the flow direction}} \Rightarrow \text{ Inertial stress at the drop scale based on } U = G_c R$$

$$For a \ bubble: \left(\frac{1}{We_{crit}}\right)^{10/9} = \left(\frac{1}{2.76}\right)^{10/9} + \left(\frac{1}{0.247Re_p^{3/4}}\right)^{10/9} \qquad We = \frac{\rho_c (G_c R)^2 d}{\sigma}$$

$$Ex: \text{ convective acceleration } G_c \sim \frac{\partial u}{\partial x}$$

$$Ex: \text{ convective acceleration } G_c \sim \frac{\partial u}{\partial x}$$

$$Re_p = \frac{\rho_c U_R d}{\mu_c} \qquad We = \frac{\rho_c U_R^2 d}{\sigma} \qquad Bo = \frac{\Delta \rho g d^2}{\sigma} \qquad Mo = \frac{\Delta \rho g \mu_c^4}{\rho_c^2 \sigma^3} \qquad \bigcup_{U_R}$$

$$Falling \ drops \ in \ quiescent \ air$$

$$Bo_{crit} = 12.4 \qquad We_{crit} = 12 \qquad \text{see Pilch & Erdman (1987), Jain et al. (2015)}$$

$$We_{crit} = 0.5Bo_{crit}$$

$$\rho^* = \frac{\rho_a \sqrt{2}}{\rho_c} \sqrt{2}$$

Bubbles rising in a quiescent liquid

$$Bo_{crit} = 733(1 + Mo^{1/4})^{1.66}$$
 $We_{crit} = 0.5Bo_{crit}$

27

Exercise: breakup due to inertia

Based on the critical breakup condition, estimate (i) the highest possible diameter of a raindrop and (ii) its terminal velocity.

Drop/bubble deformed by turbulent fluctuations

Breakup of droplets in the turbulent zone downstream of an orifice

In the same device: breakup of an emulsion

Existence of two regimes, depending on the drop size compared to the flow length scales:

Theory proposed by Hinze (1955):

Turbulent inertial regime: $\eta < d < L$

Main assumption: only the turbulent vortices of size comparable to the (initial) droplet diameter *d* are efficient for breakup. u'(x+d)

Ex : *Breakup of bubbles in a stirred tank*

Assumption: the velocity field created by the agitator in the tank is supposed to be a homogeneous isotropic turbulent flow (HIT).

Dissipation rate by the agitation device:

$$\varepsilon \propto P/\rho_c V_{cuve} \propto N^3 D^2$$

 $d_{
m max} \propto N^{-1.2} \ d_{
m max} \propto N^{-1.5}$

Power consumption:

 $P \propto \rho_c V_{cuve} N^3 D^2$

inertial regime: theory predicts $d_{max} \sim \varepsilon^{-0.4}$ viscous regime: theory predicts $d_{max} \sim \varepsilon^{-0.5}$

Drop breakup in turbulent pipe flow

Breakup probability of a droplet of diameter d is the highest in the near-wall region. We consider a droplet larger than the Kolmogorov scale.

The mean flow, of velocity U, induces an average wall shear rate of about $\dot{\gamma} \approx k \frac{U}{D}$, it is considered here that k = 4.

The turbulent field is characterized by a dissipation rate $\varepsilon = 2 f \frac{U^3}{D}$, with *f* the friction factor (or pressure drop coefficient) given by the Blasius law: f=0.079 Re^{-1/4}.

Give the condition where droplet deformation(a) is induced by viscous shearing due to the mean flow;(b) is induced by the turbulent fluctuations at the drop scale;

When will the risk of breakup due to turbulent fluctuations be higher than that due to viscous shearing at the wall? Write the condition as a criterion on d/D.

Ex : *Emulsification process – Transition between the two breakup regimes.*

Production of an emulsion of micrometer size droplets in a narrow-gap homogeneizer

Study of Vankova et al. (2007)

Use of high surfactant concentration \Rightarrow no coalescence, only breakup *due to turbulence*

An example of <u>experimental observation</u>: Breakup of a dilute emulsion of silicon oil in water: average drop size divided by 3 when μ_c is multiplied by 20.

<u>Comparison with theories</u> for the maximal stable diameter in inertial and viscous regimes:

→ the regime of breakup changes from turbulent inertial (at low μ_c) to turbulent viscous (at higher μ_c).

→ Maximal stable diameter in viscous regime: $d_{max} \sim cste \cdot \sigma \cdot (\rho_c \mu_c \epsilon)^{-1/2}$

Breakup kernels: (A) frequency and (B) daugher drop size distribution

• (A) *Breakup frequency*:

Modelled by a *frequency of collisions* with vortices, times a *probability* that collisions lead to breakup:

$$\Gamma(v) = f_{coll}(v).P_{rupt}(v)$$

Several kernels available in the review of Liao and Lucas (2009)

Constants C_1 et C_2 are not universal and are generally determined from experiments.

Effect of emulsion concentration: taken into account as a modulation of turbulence intensity ε . 35

Breakup kernels: (A) frequency and (B) daugher drop size distribution

• (B) Daughter drop size distribution:

A model that gives the number N_f of fragments after breakup

and the daughter size distribution function (or daughter drop volumes)

$$\checkmark \rightarrow \bigcirc + \bigcirc + \bigcirc + \bigcirc \qquad \int_0^{\nu'} \beta(\nu, \nu') \, d\nu = N_f$$

A distribution is assumed, depending generally on experimental observations: binary breakup, N_f fragments of same size, a Gaussian distribution for the fragments, ...

Ex: Gaussian distribution for N_f fragments; the daughter drops of volume v follow

$$\beta(\nu,\nu') = \frac{N_f}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\nu-m)^2}{2\sigma^2}\right) \qquad \text{Average volume } m = \frac{\nu'}{N_f} \text{ \& standard deviation } \sigma$$

Ex: Multimodal distribution with 2 characteristic sizes

Open questions on breakup modelling

A lot of existing models for breakup... predicting different breakup frequencies
 → physical reliability of the models to be improved

• Generally: *unsteady* conditions for breakup Stress is applied during a finite time

→ Importance of *time of residence*

 → Importance of *response time* of drops or bubbles to an instantaneous deformation
 Risso and Fabre (1998) – Lalanne, Masbernat and Risso (2019)

High pressure homogenizer (widely used in food industry for example) Picture from: https://korpro.com/product/high-pressure-homogenizer-applications/648/

Coalescence: physics and modelling

Physical description of coalescence

Hydrodynamics of film drainage process

Coalescence kernels: how to model collision frequency, coalescence probability

Milk = natural emulsion of fat globules in an aqueous phase

Garcia et al. (2014)

Example of applications Stability of food or beverage emulsions (milk, soda...): Coalescence has to be prevented to avoid ringing, creaming.

Time evolution of a foam

https://sensientfoodcolors.com/en-eu/emulsion_stability_in_rtd_sparkling_beverages/

Separation of emulsions in chemical processes, crude oil recovery: Coalescence has to be fastened to enhance phase separation.

Objective: modelling coalescence process

Problem: Modelling coalescence and selecting accurate kernels for term Q(v,v') of the PBE. Coalescence rate: $Q(v,v') = C(v,v') P_{coal}(v,v') \rightarrow same as for breakup rate$

- Collision frequency: C
- Coalescence efficiency or Probability of Coalescence: P_{coal}

which are functions of

- all physico-chemical properties of the fluid system
- local properties of the hydrodynamics field.

Note : <u>Coalescence</u>: only for drops / bubbles

<u>Aggregation, flocculation, coagulation</u>: only for solid particles, not mentioned hereafter.

Physical description of the problem

Coalescence: process that merges two droplets or bubbles (\rightarrow a way for the system to minimize the surface per unit volume).

Steps: (each of these steps can limit the coalescence rate.)

- 1. Collisions: approach of two droplets
- 2. Drainage of the film between the droplets
- 3. Hole opening: an hole bridge is established between the drops
- 4. Hole growth: the bridge grows and eventually the droplets merge
- 5. Shape relaxation of the new droplet

Collision and film drainage

Hole opening and growth

Pictures from Chireux et al. (2017)

Shape relaxation

This course: case of coalescence limited by film drainage (step 2)

 \rightarrow Generally a relevant case in bubble columns or emulsification processes with moderate surfactant concentrations (so that they do not induce molecular forces that retard hole opening).

During a collision: coalescence or bouncing?

An hydrodynamic stress causes collisions.

- Droplets interact during a characteristic time t_i (time of interaction or contact)
- Liquid film drainage requires a characteristic time t_d
- Coalescence if $t_d \leq t_i$; otherwise bouncing.

① drainage time ② contact time

1) Hydrodynamics of film drainage

Kinetics of **film drainage** of the liquid film between two bubbles or droplets:

• Decrease of the film thickness *h* in time

Order of magnitude:

 $d = 100 \ \mu m$,

 $h_c = 10 \text{ nm for a droplet of}$

with a decreasing h_c with d.

• Until a critical thickness is reached, where the attractive van der Waals forces (short-range forces) become dominant and lead to hole opening *in the absence of repulsive forces to coalescence due to surfactants*.

h

h_c

Methodology: Estimation of drainage time t_d required to reach h_c by modelling the hydrodynamics in the liquid film. \rightarrow Theoretical expressions in the following

1) Hydrodynamics of film drainage

Assumptions:

- *h/a* <<1 (*a* is the film radius, *h* its thickness)
- axial symmetry
- $Re_{film} << 1$

Navier-Stokes equations in the film:

Film between bubbles

 $\frac{\partial P}{\partial z} \cong 0$

 $\rho_{c}(u_{r})$

h/2

 $\frac{1}{r}\frac{\partial}{\partial r}(ru_r) + \frac{\partial}{\partial z}(u_z) = 0$

film

 $\frac{\partial u_r}{\partial r} = \mu_C \frac{\partial^2 u_r}{\partial r^2} - \frac{\partial P}{\partial r} + \mu_C$

Liquid film between droplets

 $\partial^2 u_r$

U

u_r(z,r)

Ζ

а

P = P(r)

Different boundary conditions for u_I **:**

1) Hydrodynamics of film drainage – Reynolds equation

1) Hydrodynamics of film drainage – Droplets with immobile interface

Case of liquid film bewteen droplets – case of immobile interfaces: $u_I = 0$

Expression of the normal force F exerted on the liquid film during drainage:

$$F = -2\pi \int_{0}^{r} (P(r') - P_{c})r' dr' = -\frac{3\pi \mu_{c} V r^{2}}{2h^{3}}$$

 \rightarrow Relationship between the exerted force and the drainage velocity

1) Hydrodynamics of film drainage – Deformable droplets with immobile interface

1) Hydrodynamics of film drainage – Summary of characteristic times of drainage

Deformable => the higher is F, the higher the drainage time because of interface deformation. Spherical => the higher is F, the lower the drainage time.

Fully mobile interfaces (clean bubbles) - constant approach velocity V

Viscous regime
(Re << 1 in the film)</th> $t_d = \frac{3\mu_c R}{2\sigma} \ln(h_0/h_{cr})$ Chesters, 1975Inertial regime
High Re $t_d = \frac{\rho_c V R^2}{8\sigma} \ln(h_0/h_{cr})$ Summary of the different expressions
in Chesters (1991)

Case of an <u>emulsion with very small droplets</u>. Surfactants have been used as emulsion stabilizer.

Bo << 1 => spherical droplets

 $\text{Re}_{\text{p}} \ll 1 \Longrightarrow$ sedimentation or creaming negligible

Such an emulsion is stable over a long period of time.

<u>Centrifugation</u> ("increased gravity") is used to accelerate the emulsion destabilization (= to observe if creaming/sedimentation/drop coalescence can occur).
→ Thus it is an experimental <u>test to simulate aging</u>.

Question: what is the effect of centrifugation on:

- \circ the drop sedimentation (or creaming) velocity?
- the drainage time?

1) Hydrodynamics of film drainage

Previous expressions are valid for droplets/bubbles of same radius, in the limit of small deformation h << a << R.

Case of droplets/bubbles of different sizes:

Chesters & Hofman (1982) have shown that these expressions remain valid provided an equivalent radius R_{eq} is used:

$$\frac{1}{R_{eq}} \cong \frac{1}{2} (\frac{1}{R_1} + \frac{1}{R_2})$$

Examples: 1)
$$R_2 = \frac{R_1}{2}$$
 $R_{eq} \cong \left[\frac{1}{2}\left(\frac{1}{R_2} + \frac{1}{2R_2}\right)\right]^{-1} = \frac{4}{3}R_2$ $\bigcirc R_1$

2) Drainage between a droplet and a planar interface:

$$R_2 \ll R_1$$
 $R_{eq} \cong \left[\frac{1}{2R_2}\right]^{-1} = 2R_2$ O_{R_2}

 \Rightarrow *Conclusion*: the radius of the smaller droplet drives the drainage kinetics.

2) Time of interaction (or contact time)

Time of interaction t_i (or contact time): time spent by the fluid particles in close proximity

Expressions given in Chesters (1991)

 $\eta < d < L$

Viscous collisions: droplets/bubbles are brought together by the flow

Shear flow

Inertial collisions: moderate and large Weber number

In a turbulent inertial regime (HIT)

Time for 2 droplets/bubbles to pass one another: $d/\dot{u_d} \sim d^{2/3} \varepsilon^{-1/3}$ in HIT

But the time of interaction is typically smaller: *because of inertia*, droplets/bubbles need time to deform, and coalescence can only occur during this time... *see next slide*.

2) Time of interaction (or contact time) – Inertial case

In the presence of inertia:

Colliding drops/bubbles have *kinetic energy*

→ Converted into *surface energy*: drops deform and film is created

 \rightarrow If no coalescence, converted again in *kinetic energy* (bouncing).

Actual time of interaction = time required for drop deformation.

V/2

d

а

51

Coalescence kernels: (A) coalescence probability and (B) collision frequency

• (A) *Probability of coalescence (or coalescence efficiency)*

Several kernels available in the review of Liao and Lucas (2010)

$$P_{coal} = \exp\left(-\frac{t_d}{t_i}\right)$$

t_i: interaction (or contact) time *t_d*: drainage time \rightarrow Based on the expressions shown in the previous slides

General rules: High contact time between droplets (as for concentrated media with low agitation) => high P_{coal}

Short contact time as in turbulent flows:

= low P_{coal} - especially in case of high drainage time of film (case with surfactants).

Coalescence kernels: (A) coalescence probability and (B) collision frequency

• (A) *Probability of coalescence*

Several kernels available in the review of Liao and Lucas (2010)

Drops in viscous simple shear

Partially mobile and deformable interfaces

$$t_{d} = \frac{\mu_{d}}{\sqrt{32\pi}} \left(\frac{FR^{3}}{\sigma^{3}}\right)^{1/2} \frac{1}{h_{c}} \qquad P_{coal} = \exp(-t_{d}/t_{i}) \sim \exp(-k_{0}\lambda Ca_{c}^{3/2}(8\pi\sigma R^{2}/A)^{1/3})$$

$$k_{0}, k_{1} \sim 1 \qquad Ca_{c} = \frac{\mu_{c}G_{c}R}{\sigma}$$

$$t_{d} \approx \left(\frac{3\mu_{c}R^{2}F}{16\pi\sigma^{2}h_{c}^{2}}\right) \qquad P_{coal} = \exp(-t_{d}/t_{i}) \sim \exp(-k_{1}Ca_{c}^{2}(8\pi\sigma R^{2}/A)^{2/3})$$

$$+ other expressions of t, on slide 47$$

+ other expressions of t_d on slide 47

Bubbles in turbulent flow

$$t_{d} \sim \frac{\rho_{c} V R^{2}}{8\sigma} \qquad \qquad t_{d} / t_{i} = \left(2k\rho_{c} R^{3} / 3\sigma\right)^{1/2}$$

$$P_{coal} = \exp(-t_{d} / t_{i}) \sim \exp(-\frac{1}{16}(3W e / k)^{1/2})$$

Probability of coalescence is higher at low Ca or We

=> coalescence is not expected in zones where intense breakup occurs. 53

Exercise: shearing of an emulsion and drop size evolution

A dilute emulsion of castor oil ($\rho_d = 961 \text{ kg/m}^3$, $\mu_d = 0.742 \text{ Pa.s}$) dispersed in silicone oil ($\rho_c = 963 \text{ kg/m}^3$, $\mu_c = 0.048 \text{ Pa.s}$) was produced, having drops of average size $d = 8.1 \mu m$ and an interfacial tension $\sigma = 0.0043$ N/m. As surfactants were employed as emulsifiers (at low concentration) and $\mu_d \gg \mu_c$, interfaces are immobile.

To study its evolution, the emulsion is sheared in a cone-and-plate device, at an average shear rate of 11 s⁻¹.

The drops are spherical, not deformed by gravity (Bo << 1), sedimentation or the imposed shear flow (Ca \ll 1).

- (a) Estimate the <u>critical film rupture thickness</u> h_c by balancing:
- the contact force exerted by the shear flow (drag in Stokes regime);
- the Van der Waals attraction force between equal spheres: AR

Hamaker constant A ~ 10^{-20} J.

(c) How does the coalescence probability changes: (i) if the shear is increased? (ii) when the drop average diameter increases?

Cone and plate rheometer Hemingway et al. (2017)

Fresh emulsion $d = 8.1 \mu m$

After 10mn of shearing: $d = 12.9 \mu m$

Data from Al-Mulla (2000), Al-Mulla and Gupta (2000)

Coalescence kernels: (A) coalescence probability and (B) collision frequency

• (B) Collision frequency between droplets/bubbles in the flow

It is defined based on the relative velocity u_d of the fluid particles of diameter d and d', times the section area of collision.

For droplets/bubbles of same size:

For droplets/bubbles of different sizes:

$$C(d,d) = -ku_d d^2 n^2 \qquad C(d,d') = ku_d (d_{eq}) \cdot d_{eq}^2 n(d)n(d')$$

sion frequency
$$d^2 n^2 = ku_d (d_{eq}) \cdot d_{eq}^2 n(d)n(d')$$

Collision frequency [m³/s]

$$d_{eq}^{-1} = \frac{d+d'}{2dd'}$$

 u_d depends on the local properties of the carrier flow.

In a turbulent flow: high $u_d =>$ high frequency of collisions. but low probability of coalescence.

Picture from Garg and Basaran Coalescence kernels: (A) coalescence probability and (B) collision frequency

• (B) Collision frequency between droplets/bubbles

For dilute media

- Expressions for fluid particles of same size

 $C(d,d) = -ku_d d^2 n^2$

Viscous shearing

Turbulent inertial collision $\eta < d < L$

 $u_d \sim G_c d$ et k = 2/3 $u_d \sim (ad)^{1/3}$ et $k = (8\pi/3)^{1/2}$

Turbulent viscous collision $d < \eta$

 $u_d \sim (\rho_c \varepsilon / \mu_c)^{1/2} d \text{ et } k = (2\pi/15)^{1/2}$

 V_{T1}

 $O^{V_{T2}}$

- Case of *inertial collision due to a difference in rising velocity*

$$u_d \sim V_{T1} - V_{T2} \qquad V_{T1} > V_{T2}$$

for $d_1 > d_2$

For concentrated media

Concept of effective media: use of an effective density and viscosity for equivalent properties of the continuous phase

Open questions on coalescence

• Expressions for drainage time (and contact time) depend on theoretical assumptions: interface (im)mobility, drop and film shape, symmetry of film drainage, ...

 \rightarrow need for experimental validations enabling a better understanding of coalecence

 \rightarrow effect of mass transfer of a solute on drainage?

An instability in the gap can change the film topology from convex to concave shape Danov et al. (2010)

• Presence of <u>surfactants</u> at high concentrations (generally the case in *emulsions*):

coalescence becomes limited by the formation of a hole:
 <u>barrier to coalescence</u> due to molecular repulsive forces.
 → coalescence times become much larger than those of drainage, and experiments show that coalescence becomes 'stochastic'...

No predictive model of the coalescence time in this case!

Brief summary [including slides numbers for references]

The main dimensionless numbers used to characterize interfacial phenomena

Particulate Reynolds number	$\operatorname{Re}_{p} = \frac{\rho_{c} V d}{\mu_{c}}$	Inertial force / viscous force <i>V</i> = relative velocity between drop and bulk fluid
Capillary number	$Ca_{c} = \frac{\mu_{c}V}{\sigma} \text{ or } Ca_{c} = \frac{\mu_{C}G_{C}F}{\sigma}$ in a veloci see slide [31] for Ca in the cas	Viscous force / interfacial tension ty gradient G_c experienced by the drop – <i>see slide</i> [20] e of a <u>turbulent</u> flow
Weber number	$We = \frac{\rho_c V^2 d}{\sigma} or We = \frac{\rho(G_c R)}{\sigma}$ in a velocities see slide [31] for We in the case	$\frac{Q}{d}$ Inertial force / interfacial tension $We = Ca_c . Re_p$ ty gradient G_c experienced by the drop – see slide [27] e of a <u>turbulent</u> flow
Bond (or Eötvö number	Bo or $E\ddot{o} = \frac{\Delta \rho g d^2}{\sigma}$	Buoyancy force / interfacial tension Characterizes the (static) drop deformation due to gravity forces
Ohnesorge number	$Oh = \frac{\mu_d}{\sqrt{\sigma d \rho_d}}$	Internal viscous force / (interfacial tension . inertial force) Characterizes the intensity of internal viscous forces, useful for highly viscous drops 59

Table of contents

I- General approach: *Population Balance Equations for dispersed two-phase flows* Need for closure models of breakup / coalescence

II- The interfacial tension: a mechanical property of the interface

- The interfacial tension: definition, examples and consequences
- Its role on interfacial phenomena
- Influence of surfactants

III- Breakup: physics and modelling

- General approach: definition of a critical non-dimensional number
- Breakup due to viscous forces
- Breakup due to inertial forces (laminar flow)
- Breakup due to turbulent fluctuations: turbulent inertial and viscous regimes
- Models of breakup frequency + daughter-drop size distribution

IV- Coalescence: physics and modelling

- Physical description of the coalescence process Coalescence or bouncing?
- Drainage flow and time scale
- Time of interaction
- Models for coalescence probability + collision frequency

V- Brief summary and main non-dimensional numbers

