

Catherine Colin

Local insta	ant equat	ions			
(Ishii, 1975)	•Balance for parameter ${\pmb{\phi}}_k$ in phase k				
	$\frac{\partial \phi_k}{\partial t} + \nabla \cdot (\phi_k \boldsymbol{u}_k) = \boldsymbol{\Pi}_k - \nabla \cdot (\boldsymbol{\Gamma}_k)$				
$\left(\partial_{\theta_{i}} \right)$	•Interfacial balance				
	$\nabla \cdot \boldsymbol{\Gamma}_{i} - 2\kappa \boldsymbol{\Gamma}_{i} \cdot \boldsymbol{n}_{ik} + \sum_{k=1,2} [\phi_{k} (\boldsymbol{u}_{k} - \boldsymbol{u}_{i}) + \boldsymbol{\Gamma}_{k}] \cdot \boldsymbol{n}_{ik} = 0$				
	$oldsymbol{\phi}_k$	Π_k	$arGamma_k$	Γ_i	
Mass	$ ho_{k}$	0	0		
Momentum	$ ho_k oldsymbol{U}_k$	$ ho_k oldsymbol{g}$	$-\Sigma_k = p_k I - \tau_k$	- <i></i> 0 <i>I</i>	
Energy	$\rho_k\left(e_k+\frac{U_k^2}{2}\right)$	$\rho_k r + \rho_k g. U_k$	$-\boldsymbol{U}_k\cdot\boldsymbol{\Sigma}_k+\boldsymbol{q}_k$		
Chemical Specy	$\rho_k C_k$		$\boldsymbol{J}_k = -\rho_k D \nabla C_k$		

Mass conservation equations
$\frac{\partial R_k \rho_k}{\partial t} + \frac{\partial}{\partial z} (R_k \rho_k U_k) = -\dot{M}_k \text{with} \dot{M}_k = -\frac{1}{A} \int_A \alpha_I \overline{\left[\rho_k (U_k - U_I)\right] \cdot n_{ik}}^i dA$
\dot{M}_k : mass flow rate per unit volume from the phase k through the interface
U_l , U_g : mean liquid and gas velocities in the tube section
$R_g + R_i = 1$
vapor $\frac{\partial \rho_g R_g}{\partial t} + \frac{\partial \rho_g R_g U_g}{\partial z} = -\dot{M}_g = \dot{M}_l$
liquid $\frac{\partial \rho_l (1-R_g)}{\partial t} + \frac{\partial \rho_l (1-R_g) U_l}{\partial z} = -\dot{M}_l$
Mixture $\frac{\partial \left[\rho_{l}(1-R_{g})+\rho_{g}R_{g}\right]}{\partial t}+\frac{\partial \left[\rho_{l}(1-R_{g})U_{l}+\rho_{g}R_{g}U_{g}\right]}{\partial z}=0$

Enthalpy balance equations
Parameters
Total enthalpy (J/kg) $H_{ik} = H_k + \frac{U_k^2}{2} - gz\sin\theta \approx H_k$
Source per unit volume r_{κ} (W/kg) ² Heat flux q (W/m ²) negligible
$\frac{\partial \rho_g R_g H_{ig}}{\partial t} + \frac{1}{A} \frac{\partial \rho_g R_g H_{ig} U_g A}{\partial z} = R_g r_g + \frac{q_{pg} S_{pg}}{A} + \frac{q_{ig} S_i}{A} + \dot{M}_i H_{ig} + R_g \frac{\partial p}{\partial t} + \xi \frac{\tau_i S_i U_i}{A}$ liquid $\frac{\partial \rho_i (1-R) H_i}{\partial t} + \frac{1}{A} \frac{\partial \rho_g R_g H_{ig} U_g A}{\partial z} = R_g r_g + \frac{q_{pg} S_{pg}}{A} + \frac{q_{ig} S_i}{A} + \dot{M}_i H_{ig}$
$\frac{\partial p_l(r - R_g)n_{il}}{\partial t} + \frac{1}{A} \frac{\partial p_l(r - R_g)n_{il}}{\partial z} = (1 - R_g)r_l + \frac{q_{pl}\sigma_{pl}}{A} + \frac{q_{il}\sigma_i}{A} - \dot{M}_l H_{il} + (1 - R_g)\frac{\partial p}{\partial t} - \xi \frac{r_i \sigma_i \sigma_i}{A}$
$ \text{mixture} \begin{cases} \frac{\partial \left[\rho_{g}R_{g}H_{ig}+\rho_{l}(1-R_{g})H_{il}\right]}{\partial t}+\frac{1}{A}\frac{\partial \left[\rho_{g}R_{g}H_{ig}U_{gl}A+\rho_{l}(1-R_{g})H_{il}U_{l}A\right]}{\partial z} \\ =(1-R_{g})r_{l}+R_{g}r_{g}+\frac{q_{p}S_{p}}{A}+\frac{\partial p}{\partial t} \\ \frac{\dot{M}_{l}(H_{ig}-H_{il})+\frac{S_{i}}{A}(q_{ig}+q_{il})=0}{24} \end{cases} $

Closure laws for the void	Fraction
$U_g = C_0 U_g$	$_m + U_\infty = C_0 (j_g + j_I) + U_\infty$
Churn flow: Ishii (1977)	
$C_0 = 1.2 - 0.2 \sqrt{\frac{\rho_v}{\rho_l}}, U_\infty$	$\rho_{p} = \sqrt{2} \left(rac{\sigma g \left(ho_l - ho_v ight)}{ ho_l^2} ight)^{0.25}$
Annular flows: Zuber et al. (1967)	$C_0 = 1.0, U_\infty = 23\sqrt{\frac{\mu_l j_l}{\rho_v D}} \left(\frac{\rho_l - \rho_v}{\rho_l}\right)$
Cioncolinio and Thome (2012)	$R_g = \frac{hx^n}{1 + (h-1)x^n}$
$h = a + (1 - a) \left(\frac{\rho_v}{\rho_l}\right)^{a_1}$	$a = -2.129 a_1 = -0.2186$
$n = b + (1 - b) \left(\frac{\rho_v}{\rho_l}\right)^{b_1}$	$b = 0.3487$ $b_1 = 0.515$
Awad and Muzychka (2010)	$R_g = \frac{0.5}{1 + 0.28 X^{0.71}} + \frac{0.5}{1 + X^{16/19}}$

Eit	ting of ovporim	antal recultate (V	andliker	1090)
FII	ung of experim	enital result ats (N	anun kai, .	1909)
	$H = H_{l} \left[C_{1} C_{0}^{c_{2}} \left(2 \right) \right]$ with $C_{0} = \left(\frac{1}{2} \right)$	$(5Fr)^{C_5} + C_3 Bo^{C_4} F_K]$ $\frac{-x}{x} \int_{0.8}^{0.8} \sqrt{\frac{\rho_g}{\rho_l}} \qquad Bo = \frac{q}{Gh_{lg}}$	$Fr = \frac{G^2}{\rho_l^2 gD}$	
	$C_0 < 0.65$	$C_0 > 0.65$	Fluide	F _K
C1			Eau	1,00
	-0.9	0.2	R-11	1,30
C3	667.2	-0,2	R-12	1,50
C ₄	0.7	0.7	R-13B1	1,31
C5	0.3	0,7	R-22 R-113	2,20
	0,5	0,5	R-115 R-114	1,50
$C_{\rm r}$ =0 for vertical tubes and horizontal tubes R-152a 1.10				
whe	when Fr>0,04. Azote 4,70			
				86

Correlation of Katto	et	Ohnc) (19	984)		
$q_{crit} = q_0 \left(1 + K \frac{h_l(T)}{k} \right)$	h_{lg}	$\left(h_{l}(T_{le}) \right)$				
$\gamma = \frac{\rho_v}{We} = \frac{G^2 l}{2}$		γ<0.15				
$\begin{array}{ccc} \rho_1 & \rho_1 \sigma \\ C = 0.25 & \text{pour} & 1/D < 50 \end{array} \qquad $	if	$q_{01} < q_{02}$	then	$q_0 = q_{01}$		
C = $0.25 + 0.0009 \left[\left(\frac{1}{D} \right) - 50 \right]$ if $50 < 1/D < 150$	if	$q_{01} > q_{02}$	then	$q_0 = q_{02}$ $q_0 = q_{03}$	for for	$q_{02} < q_{03}$ $q_{03} \le q_{02}$
C = 0.34 pour $1/D > 150$ $q_{01} = CGLWe^{-0.043}(D/1)$ $q_{02} = 0.1GL\gamma^{0.133}We^{-1/3}(1 + 0.0031(1/D))^{-1}$	if if	$\begin{split} & K_1 > K_2 \\ & K_1 \leq K_2 \end{split}$	then then	$K = K_1$ $K = K_2$	101	
$q_{03} = 0.098 \text{GL}\gamma^{0.133} \text{We}^{-0.433} \left(\frac{(1/\text{D})^{0.27}}{1 + 0.003 [(1/\text{D})]} \right)$		γ>0.1	5			
	if	$q_{01} < q_{05}$	then	$q_0 = q_{01}$		
$q_{04} = 0.0384 \text{GL}\gamma^{0.6} \text{We}^{-0173} \left(\frac{1}{1 + 0.280 \text{We}^{-0.233} (1/\text{D})} \right)$	if	$q_{01} > q_{05}$	then	$q_0 = q_{05}$ $q_0 = q_{04}$	for for	$q_{04} < q_{05}$ $q_{05} \le q_{04}$
$(1/D)^{0.27}$	if	$K_1 > K_2$	then	$K = K_1$	101	105 104
$q_{05} = 0.234 \text{GLY}$ we $\left(\frac{1}{1+0.0031(1/\text{D})}\right)$ $q_{05} = 1.043$ $q_{05} = 5.0.0124 + \text{D/l}$ $q_{05} = 1.52 \text{We}^{-0.233} + \text{D/l}$	if	$K_1 \leq K_2$	then	$K = K_2$ $K = K_3$	for for	$\begin{split} & \mathbf{K}_2 < \mathbf{K}_3 \\ & \mathbf{K}_2 \geq \mathbf{K}_3 \end{split}$
$K_1 = \frac{1}{4CWe^{-0.043}}$ $K_2 = \frac{1}{6} \frac{1}{\gamma^{0.133}We^{-1/3}}$ $K_3 = 1.12 \frac{1}{\gamma^{0.6}We^{-0.173}}$						92

Annular flow with entrainment
liquid $R_{lF} = 1 - R_g \left(1 + \frac{\rho_g}{\rho_l} \frac{1 - x}{x} E \right)$
vapour Momentum balance equations
(1) $\frac{d}{dz}\left[\frac{G^2x}{\rho_g R_g}\left(x+(1-x)E\right)\right] = -R_g\left(1+\frac{\rho_g}{\rho_l}\frac{1-x}{x}E\right)\frac{\partial p}{\partial z} - \rho_g R_g\left(1+\frac{1-x}{x}E\right)g + \dot{M}_l U_l + \frac{\tau'_i}{D}\frac{4}{\sqrt{R_g}}\frac{1-x}{\sqrt{R_g}}\frac{\partial p}{\partial z} - \rho_g R_g\left(1+\frac{1-x}{x}E\right)g + \dot{M}_l U_l + \frac{\tau'_i}{D}\frac{4}{\sqrt{R_g}}\frac{1-x}{\sqrt$
(2) $\frac{d}{dz} \frac{G^2 \left[(1-x)(1-E) \right]^2}{\rho_l R_{lF}} = -R_{lF} \frac{\partial p}{\partial z_i} - \rho_l R_{lF} g - \frac{\tau'_i 4}{D} \sqrt{R_g}$
Enthalpy balance equation
(3) $\frac{dx}{dz} = \frac{4q}{mh_{tv}}$ if T_p is imposed $q = \frac{\lambda (T_p - T_{sat})}{\delta}$ or $q = h(T_p - T_{sat})$
Iterative resolution
Calculation of <i>x</i> using (3)
Elimination of p between (1) and (2) and calculation of R_g
Calculation of $\delta = \frac{D}{2} \left[1 - \sqrt{1 - R_{iF}} \right]$ 95

24/11/2018

busselt number characteristic of the heat transfer
$$\kappa_{\mu} = \frac{\bar{h}L_{f}}{\lambda}$$
Mean heat transfer coefficient: $\bar{h}(z) = \frac{1}{z} \int_{0}^{z} h(z) dz = \frac{1}{z} \int_{0}^{z} \frac{\lambda}{\delta} dz = \frac{1}{z} \int_{0}^{z} \frac{\lambda}{L_{f}\delta^{*}} dz^{*}$ $(4\delta^{*3} + 4\delta^{*2}\tau_{i}^{*})d\delta^{*} = dz^{*}$ $\frac{1}{z^{*}}\int_{0}^{z} \frac{4\lambda}{L_{f}} \left(\delta^{*2} + \delta^{*}\tau_{i}^{*}\right) d\delta^{*} = \frac{4\lambda}{L_{f}z^{*}} \left(\frac{\delta^{*3}}{3} + \frac{\delta^{*2}}{2}\tau_{i}^{*}\right)$ $mu = \frac{\bar{h}L_{f}}{\lambda} = d\left(\frac{\delta^{*3}}{3z^{*}} + \frac{\delta^{*2}}{2z^{*}}\tau_{i}^{*}\right)$ Reprodus number $Re_{L} = \frac{\rho_{L}\overline{u}D_{h}}{\mu}$ $D_{h} = \frac{4b\delta}{b} = 4\delta$ $Re_{L} = \frac{4}{3}\frac{\rho_{L}(\rho_{L} - \rho_{*}^{*})g\sin\theta}{\rho^{2}}\delta^{3} + \frac{4\tau_{i}\rho_{L}}{2\mu^{2}}\delta^{2} = \frac{4}{3}\delta^{*3} + 4\tau_{i}^{*}\delta^{*2}$ Nusselt model: $\tau_{i} = 0$ $\delta^{*4} = z^{*}$ $Re_{L}(z) = \frac{4}{3}\delta^{*3}$ $Nu = \frac{4\delta^{*3}}{3z^{*}} = \frac{4}{3\delta^{*}}$ $Nu = \left(\frac{4}{3}\right)^{4/3}Re_{L}^{-1/3} = 1.47Re_{L}^{-1/3}$

Filmwise condensation of pure vapour with inertia effects $1 + f''' + \frac{1}{\Pr} \Big[3ff'' - 2f'^2 \Big] = 0$ f'(0) = 0h(0) = 1with f(0) = 0 $h(\eta_{\rm o}) = 0$ 3f'h'+h''=0 $f''(\eta) = 0$ Energy balance at the interface $\int_{0}^{5} \left[\lambda_{L} \left(\frac{\partial T}{\partial y} \right)_{y=\delta} \right] dx = \frac{\dot{M}}{b} h_{LV} = \int_{0}^{\delta} \rho_{L} u h_{LV} dy$ Implicite equation for the calculation of δ versus z $-\frac{3f(\eta_{\delta})}{h'(\eta_{\delta})} = Ja = \frac{C_{pL}(T_{sat} - T_p)}{h_{tv}} \quad \text{with} \quad \eta_{\delta} = C_1 \delta z^{-1/4}$ Convective heat transfer coefficient *h* and *Nu* $h = \frac{q}{T_{sat} - T_p} = \frac{\lambda_L}{T_{sat} - T_p} \left(\frac{\partial T}{\partial y}\right)_{y=0} = -\lambda_L h'(0) C_1 x^{-1/4} = \lambda_L \left(0.68 + Ja^{-1}\right)^{1/4} C_1 z^{-1/4}$ $Nu_{x} = \left[\frac{g(\rho_{L} - \rho_{V})z^{3}h_{LV}(1 + 0.68Ja)}{4\nu_{L}\lambda_{L}(T_{sat} - T_{p})}\right]^{1/4}$ 109

