TD4 : TWO-PHASE FLOW WITH PHASE CHANGE

VERTICAL EVAPORATOR

In a vertical cylindrical evaporator of diameter D=5mm, liquid refrigerant R134a is flowing at a pressure of 10 bars. The wall temperature is constant and equal to 58°C.

In the saturation conditions at 10 bars, corresponding to a saturation temperature T_{st} equal to 40°C, the physical properties of the refrigerant are:

- liquid density	$\rho_1 = 1147,6 \text{ kg/m}^3$
- vapour density	$\rho_{v}=49.802 \text{ kg/m}^{3}$
- liquid dynamic viscosity	$\mu = 1,64.10^{4}$ Pa.s
- vapour dynamic viscosity	μ.=1,25.10 ^{-s} Pa.s
- surface tension	σ=0.0061 N/m
- latent heat of vaporisation	h _v =255,7 kJ/kg
- liquid thermal conductivity	λ=0,07479 W/m/K
- liquid heat capacitance	C _P =1497 J/kg/K

1) Liquid enters at the tube bottom z=0 with a mass flow rate $\dot{m}=15g/s$ at saturation temperature. Boiling immediately starts. The heat transfer coefficient H will be calculated using Schrock and Grossman correlation, based on a convective heat transfer coefficient H₄ and the Martinelli parameter X:

$$H = 7390H_{L}\left[\frac{q}{Gh_{lv}} + 0,00015\frac{1}{X^{0,66}}\right] \qquad \text{avec} \qquad q = H(T_{P} - T_{sat}) \quad \text{et} \qquad G = \frac{4\dot{m}}{\pi D^{2}}$$

$$H_{L} = \frac{\lambda}{D} 0,023 \left(\frac{G(1-x)D}{\mu_{l}} \right)^{0.8} Pr^{1/3} \qquad \text{et} \qquad X = \left(\frac{1-x}{x} \right)^{0.875} \sqrt{\frac{\rho_{v}}{\rho_{l}}} \left(\frac{\mu_{l}}{\mu_{v}} \right)^{0.125}$$

With the previous equations, estimate the heat transfer coefficient H and the wall heat flux q for the following quality values: $x=0.2 \quad x=0.3 \quad x=0.4 \quad x=0.6$ and x=0.8. Fit the numerical values of the heat flux with a first order polynomia versus x. Compare to the proposed expression q=-348767x + 316408.

2) Give an analytical expression of the quality x versus z distance from the entrance of the evaporator. Calculate the superficial velocities of liquid and vapour j_{L} and j_{v} , and identify the flow pattern from the following flow pattern map.

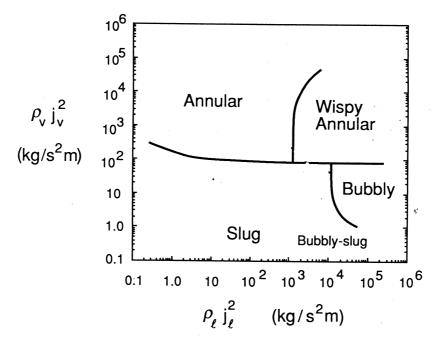


Figure 1 : Flow pattern map of a boiling flow of refrigerant

3) In annular flow regime without droplet entrainment, write an equation to calculate the evolution of the mean void fraction R_{GI} along the tube. The expression obtained in question 2 for x can be used to calculate dx/dz. A value of 0.005 is taken for the wall and interfacial friction factors f_{μ} and f_{i} . This equation can be solved numerically. The values of R_{GI} versus the quality x are plotted in figure 2. Plot the evolution of the liquid film δ in fonction of z.

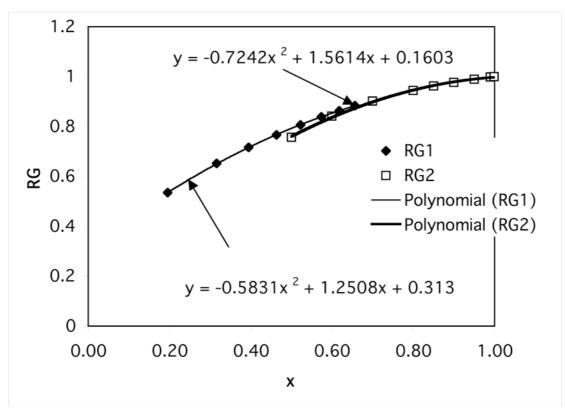


Figure 2 : Numerical resolution of the equations $f(R_{G},x)=0$

4) When the liquid film becomes thin enough, the flow in the film is laminar (Re₁=U₁ $\delta\rho_{i}/\mu_{i}$ < 2000). Write an equation to calculate the evolution of the quality x versus δ , D, λ , T_p-T_{st}, G and h_i. Consider heat transfer by conduction only through the liquid film. As in the previous question, write an equation to calculate the void fraction R₆₂ versus x. Propose an algorithm to calculate R₆₂ versus z. Figure 2 gives the evoluation of R₆₂ versus x. Thanks to this figure, plot an evolution of the liquid film thickness versus z. At which value of z is it reasonnable to use this model?

5) Determine the value of z for which a pure vapour flow is observed.

6) Express the pressure difference between the tube inlet (z=0) and the tube outlet (z=4m). Calculate its value and the contribution of the different terms.