CALCUL DES PERTES DE CHARGE DANS LES RESEAUX

Notations:

$$H = \alpha \frac{V^2}{2g} + \frac{p^*}{\rho g}$$
$$p^* = p + \rho g z$$

$$p^* = p + \rho gz$$

$$V = \frac{1}{S} \iint_{S} u dS$$

$$\alpha = \frac{\iint_{S} u^{3} dS}{SV^{3}}$$

$$\Delta H$$
: perte de charge

$$Re = \frac{VD}{V}$$

$$v = \frac{\mu}{\rho}$$

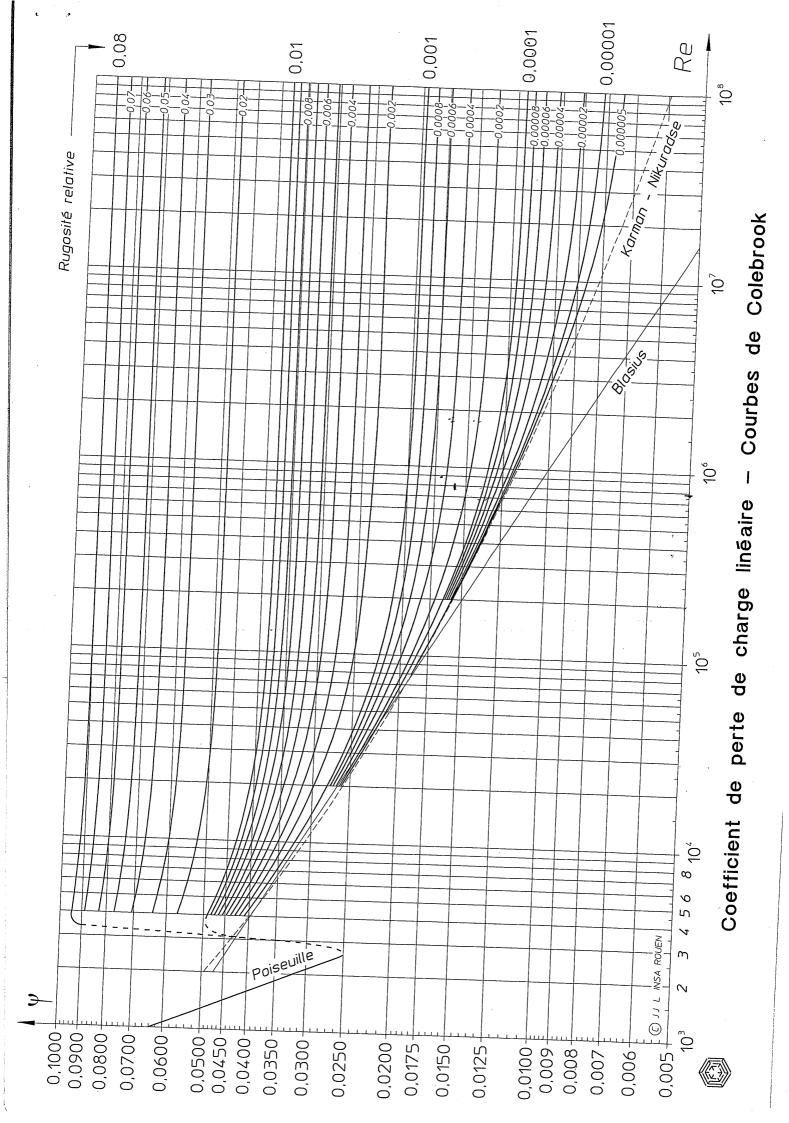
Pertes de charge dans les tuyaux rectilignes à section circulaire :

$$\Delta H = \psi \frac{V^2}{2g} \frac{L}{D}$$

Régime laminaire établi : L/D >
$$5.10^{-2}$$
 Re, α =2 , ψ =64/Re

Tuyau lisse: Re
$$\leq 10^5$$
 $\psi = \frac{0.316}{Re^{0.25}}$

$$\psi = \frac{0.316}{Re^{0.25}}$$

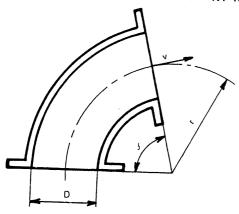

Formule de Blasius

Re
$$\geq 10^5$$
 $\psi = 0.004 + \frac{0.25}{Re^{0.25}}$

Tuyaux complètement rugueux :
$$\frac{1}{\sqrt{\psi}} = 2\log(D/\varepsilon) + 1,14$$

Tuyaux semi-rugueux :
$$\frac{1}{\sqrt{\psi}} = 1{,}14 - 2\log\left(\varepsilon/D + \frac{9{,}32}{Re\sqrt{\psi}}\right)$$
 formule de Colebrook

Dans la pratique, on utilisera le diagramme de Moody (fig1).



Pertes de charge dans les coudes et tés, ϕ m.c.l. = K

catalogue nº 2

Coudes de section circulaire : K = K1 K2

Valeurs de K1

D,	D, mm		60 à 125	125 à 200	200 à 1000	> 1000
К1	Coude acier	5	2	1,5	1,5	1
	Coude fonte	5	2	2	1,5	1

Valeurs de K2 = f $(\frac{r}{D}, \infty)$

				υ	
0,6	8,0	1	1,5	2,5	5
0,142	0.070	0.042	0.027		<u> </u>
0.275	+	 	0,037	0,035	0,037
	0,136	0,083	0,072	0.064	0,072
0,351	0,179	0.105	0.002	 	
0.500	0.249	<u> </u>		0,084	0,096
	 	0,150	0,133	0,122	0.140
0,612	0,307	0,185	0.165	0.154	
0,790	0.405	0.242	 		0,202
0.025			0,217	0,208	0,252
	0,464	0,287	0,261	0.256	0,305
0,968	0,488	0.302	0.270		
1.012	0517			0,276	0,353
	0,517	0,323	0,297	0,298	0,385
1,120	0,570	0,358	0.332	0.240	0,450
	0,142 0,275 0,351 0,500 0,612	0,142 0,070 0,275 0,136 0,351 0,179 0,500 0,248 0,612 0,307 0,790 0,405 0,925 0,464 0,968 0,488 1,012 0,517	0,142 0,070 0,042 0,275 0,136 0,083 0,351 0,179 0,105 0,500 0,248 0,150 0,612 0,307 0,185 0,790 0,405 0,242 0,925 0,464 0,287 0,968 0,488 0,302 1,012 0,517 0,323	0,142 0,070 0,042 0,037 0,275 0,136 0,083 0,072 0,351 0,179 0,105 0,093 0,500 0,248 0,150 0,133 0,612 0,307 0,185 0,165 0,790 0,405 0,242 0,217 0,925 0,464 0,287 0,261 0,968 0,488 0,302 0,279 1,012 0,517 0,323 0,297	0.6 0.8 1 1.5 2.5 0.142 0.070 0.042 0.037 0.035 0.275 0.136 0.083 0.072 0.064 0.351 0.179 0.105 0.093 0.084 0.500 0.248 0.150 0.133 0.122 0.612 0.307 0.185 0.165 0.154 0.790 0.405 0.242 0.217 0.208 0.925 0.464 0.287 0.261 0.256 0.968 0.488 0.302 0.279 0.276 1.012 0.517 0.323 0.297 0.298

Coudes complexes

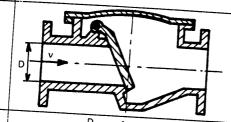
Coude à 90°	n éléments intermédiaires		r/D	≥ 2	1 à 2
	- % The state of t		n = 3	0,3	0,6
,		. К	n = 2	0,4	0,7
Coude en Z 2 x 30°	Troping I	N = 1 0,8		0,8	
Coude en S 2 × 90° Dians /	V D	K	S = 2		
Coude en S × 90° lans 1		K = 1.6		<u>r</u> ≥	1,5
oude sinueux x 45° es alignés	45° V D	K	= 2,5		

Tés : branchements et bifurcations

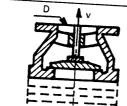
	T TOUCHS							
	А	В	С		r/D	I A	В	C
T droit	v	<u> </u>	- ·		0	0,05	2	2
	\\ \frac{1}{1}	*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Κ	0,2	0,05	1	1
T oblique				K	0	0,05	1	1
	107.00	, , , , , , , , , , , , , , , , , , ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0,2	0,05	0,5	0,5

Clapet de retenue à battant

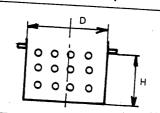
Clapet de pied crépine


Perte de charge dans les accessoires φ m.c.l. = $K \frac{v^2}{2e}$

catalogue nº 2 K - 4

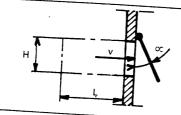

Vanne à opercule	
Vanne papillon	v

Ouverture- levée d'opercule	25 %	50 %	75 %	100%
К	30	5,3	1	0,2


œ	0	15°	30°	45°	60°	90°
К	0,2	0,9	3,9	19	118	∞

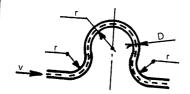
D mm	40	70	100	150	200	300	500	800	7
K	1,3	1,4	1,5	1,7	1,9	2,1	2,5	3	

D	mm	40 à 60	60 à 150	> 150
K	Clapets normaux	10	7	5
	Clapets spéciaux à veine formée	2	2	2

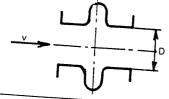


$v = \frac{Q}{}$	$S = surface totale \pi DH$
S	So = surface de perforation

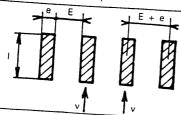
			- PO//	31411011		
	S _o	0,6	0,5	0,4	0,3	1
. [K	2	4	. 8	20	


Clapet
d'extrémité

Crépine

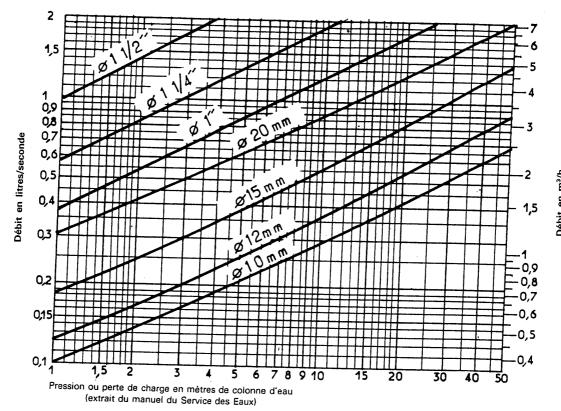

		т			
	L/H ^α	30°	45°	60°	90°
K	1	4	3	2,5	2
	2	6,9	4	3,1	2,5
L	1∞	8,6	4,7	3,3	2,5
					4,5

Lyre			
r	_	_	
d	~	5	

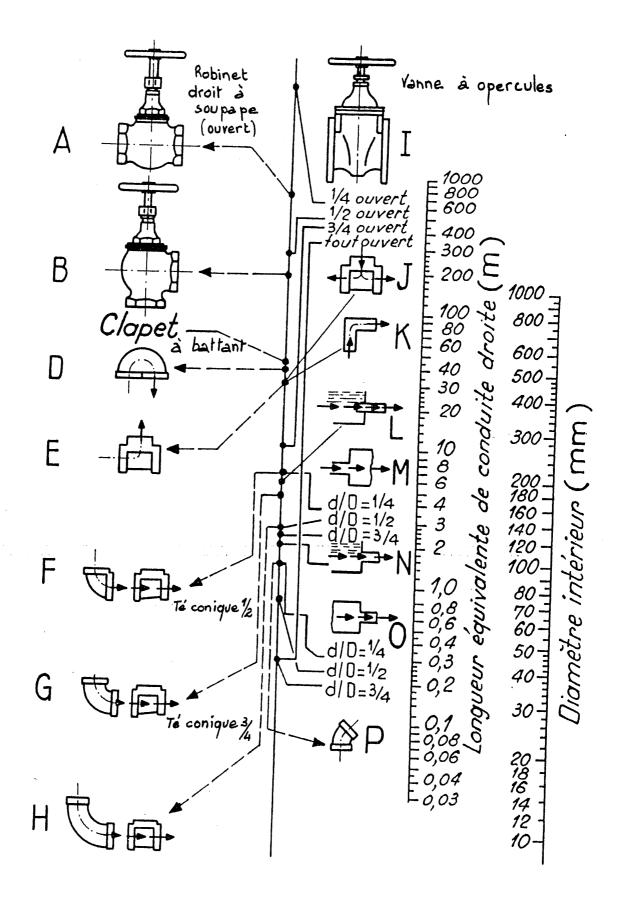

D mm	50	100	200	300	400	500	7
κ	1,7	1,8	2	2,2	2,4	2,6	

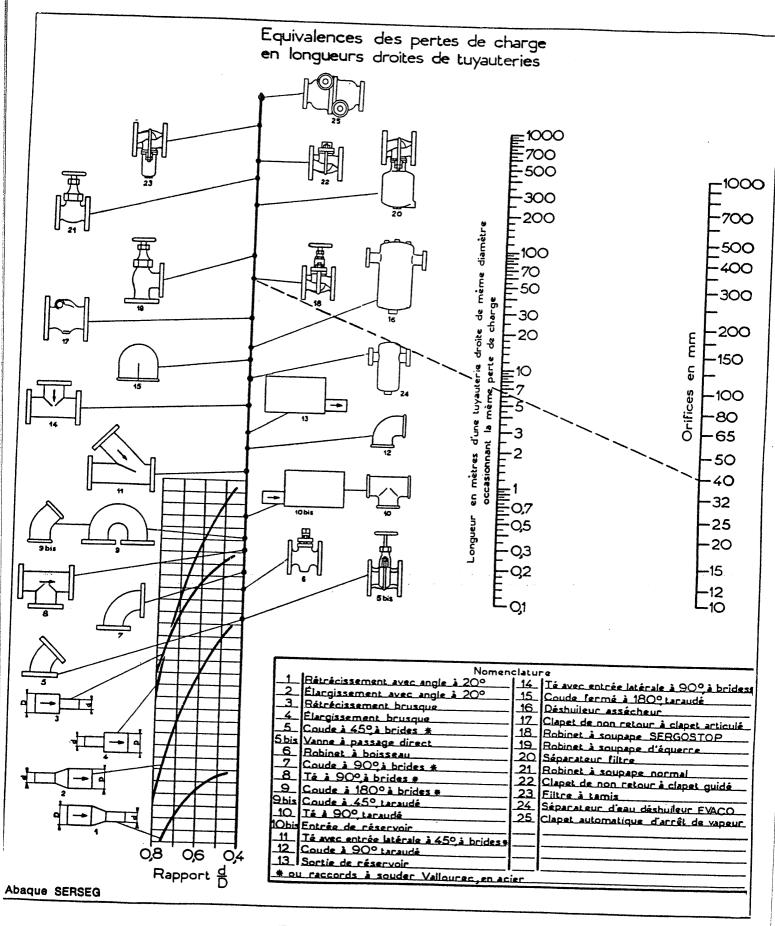
Compensateur de dilatation

D mm	50	100	200	300	400	500	1
K	1,7	1,6	1,6	1,8	2,1	2,3	1


Grille l > 5 e

		E/E+e	0,6	0,7	0,8	7		
	K	angles vifs	1,4	0,75	0,35	1		
L		angles arrondis	1,1	0,6	0,3			


K - 5


Pertes de charge dans les robinets

Perte de charge par changement de vitesse d'écoulement

Convergent		
	D ₀	$\varphi = 0.10 \frac{v_1^2}{2 \cdot g} \text{ pour } L = 4 (D_0 - D_1)$ $\varphi = 0.05 \frac{v_1^2}{2 \cdot g} \text{ pour } L = 2 (D_0 - D_1)$
 Rétrécissement brusque	D ₀	$\varphi = 0.5 \left[1 - \left(\frac{D_1}{D_0} \right)^2 \right] \frac{v_1^2}{2 g}$
Orifice rentrant	D ₀	$\varphi = K \left[1 - \left(\frac{D_1}{D_0} \right)^2 \right] \frac{v_1^2}{2 \text{ g}} \text{ avec } K = f \left(\frac{L}{D_1}, \frac{e}{D_1} \right)$ $K = 1 \text{ pour :}$ $\frac{e}{D_1} \simeq 0, \frac{L}{D_1} \geqslant 0.5 \frac{K = 0.5 \text{ pour :}}{D_1} \simeq 0 \frac{K = 0.5 \text{ pour :}}{D_1} > 0.5 \text{ tous } \frac{L}{D_1}$
Divergent	D ₀	$\varphi = 0.12 \left[1 - \left(\frac{D_0}{D_1} \right)^2 \right] \frac{v_0^2}{2 \text{ g}} \text{ pour L} = 7 (D_1 + D_0)$ $\varphi = 0.17 \left[1 - \left(\frac{D_0}{D_1} \right)^2 \right] \frac{v_0^2}{2 \text{ g}} \text{ pour L} = 5 (D_1 - D_2)$
Elargissement brusque .	D ₀	$\varphi = \frac{(v_0 - v_1)^2}{2 g} = \left[1 - \left(\frac{D_0}{D_1} \right)^2 \right]^2 \frac{v_0^2}{2 g}$
Débouché de conduite	100 m	$\varphi = \frac{v_0^2}{2\;g}$
Déversoir circulaire	$D_1 = 1.7 D_0$ V_0 $h = 0.5 D_0$	$\varphi = 0.35 \frac{v_0^2}{2 \; g}$

EXEMPLE D'APPLICATION

Soit un robinet à soupape du modèle « Sergostop », orifice 40 mm, dont on veut connaître la perte de charge évaluée en longueur fictive de tuyauterie. Du repère 18 correspondant au robinet considéré, sur l'échelle de gauche, on trace une ligne rejoignant l'orifice 40 mm de l'échelle de droite. A l'intersection de cette ligne avec l'échelle centrale, on lit directement le résultat : 6,5 m. On remarque qu'un robinet courant du commerce, repère 21, causerait une perte de charge équivalant à 16 m, soit plus du double. L'abaque ci-dessus s'applique aussi bien aux tuyauteries d'eau qu'à celles de vapeur ou d'air comprimé.

Influence de la température sur des caractéristiques de l'eau :

Température °C	Masse vol. p kg.m ^{.s}	Viscosité dynamique µ kg.m ⁻¹ .s ⁻¹ (x 10 ⁻³)	Viscosité cinématique v m².s ⁻¹ (x 10 ⁻⁶)	Tension de surface σ N.m ⁻¹ (x 10 ⁻²)	Pression de vapeur Pv\$/pg J.N ⁻¹ ou m de fluide	Module d'élasticité 1/χ MN.m ²
0 5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95 100	999,9 1000,0 999,7 999,1 998,2 997,1 995,7 994,1 992,2 980,2 988,1 985,7 983,2 980,6 977,8 971,8 974,9 971,8 968,6 965,3 961,9 958,4	1,792 1,519 1,308 1,140 1,005 0,894 0,801 0,723 0,656 0,599 0,549 0,506 0,469 0,436 0,469 0,436 0,436 0,380 0,357 0,336 0,317 0,299 0,284	1,792 1,519 1,308 1,141 1,007 0,897 0,804 0,727 0,661 0,605 0,556 0,513 0,477 0,444 0,415 0,390 0,367 0,347 0,328 0,311 0,296	7,62 7,54 7,48 7,41 7,36 7,26 7,18 7,10 7,01 6,92 6,82 6,74 6,68 6,58 6,50 6,40 6,30 6,40 6,30 6,12 6,02 5,94	0,06 0,09 0,12 0,17 0,25 0,33 0,44 0,58 0,76 0,98 1,26 1,61 2,03 2,56 3,20 3,96 4,86 5,93 7,18 8,62 10,33	2040 2060 2110 2140 2220 2220 2230 2240 2270 2290 2300 2310 2280 2250 2250 2250 2210 2170 2160 2110 2070

Influence de la température sur des caractéristiques de l'air à la pression atmosphérique :

Température °C	Masse vol. ρ kg.m ⁻³	Viscosité dynamique μ kg.m ⁻¹ .s ⁻¹ (x.10 ⁻⁶)	Viscosité cinématique v m².s ⁻¹ (x 10 ⁻⁶)
- 40	1,152	14,94	9,83
- 20	1,40	15,92	11,37
0	1,29	17,05	13,22
20	1,20	18,15	15,13
40	1,12	19,05	17,01
60	1,06	19,82	18,70
80	0,99	20,65	20,86
100	0,94	21,85	23,24
120	0,90	23,20	25.78