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Abstract

Feature matching is at the base of many computer vi-
sion problems, such as object recognition or structure from
motion. Current methods rely on costly descriptors for de-
tection and matching. In this paper, we propose a very fast
binary descriptor based oBRIEF, called ORB, which is
rotation invariant and resistant to noise. We demonstrate
through experiments ho®RB is at two orders of magni-
tude faster tharSIFT, while performing as well in many
situations. The efficiency is tested on several real-wopld a
plications, including object detection and patch-traakonm
a smart phone. FAST and Rotated BRIEF). Both these techniques are at-
tractive because of their good performance and low cost.
In this paper, we address several limitations of these tech-

1. Introduction niques vis-a-vis SIFT, most notably the lack of rotational
invariance in BRIEF. Our main contributions are:

Figure 1. Typical matching result using ORB on real-world im
ages with viewpoint change. Green lines are valid matchess; r
circles indicate unmatched points.

The SIFT keypoint detector and descriptdr/], al-
though over a decade old, have proven remarkably success- e The addition of a fast and accurate orientation compo-
ful in a number of applications using visual features, in- nent to FAST.
cluding object recognitionl[/], image stitching ], visual e The efficient computation of oriented BRIEF features.
mapping P5], etc. However, it imposes a large computa- . . . .
tional burden, especially for real-time systems such as vi- * Analysis of variance and correlation of oriented
sual odometry, or for low-power devices such as cellphones. BRIEF features.
This has led to an intensive search for replacements with e A learning method for de-correlating BRIEF features
lower computation cost; arguably the best of these is SURF ~ under rotational invariance, leading to better perfor-
[2]. There has also been research aimed at speeding up the  mance in nearest-neighbor applications.
computation of SIFT, most notably with GPU devic&s]|

In this paper, we propose a cgmputat|or1ally-eﬁ|0|ent re- properties of ORB relative to SIFT and SURF, for both
placement to SIFT that has similar matching performance,

. . . . . raw matching ability, and performance in image-matching
is less affected by image noise, and is capable of beingused . . . -

. . T applications. We also illustrate the efficiency of ORB
for real-time performance. Our main motivation is to en-

hance many common image-matching applications, e.g., toby implementing & patch-tracking application on a smart

. . : phone. An additional benefit of ORB is that it is free from
enable low-power devices without GPU acceleration to per- : . L
oo ) the licensing restrictions of SIFT and SURF.

form panorama stitching and patch tracking, and to reduce
the time for feature-based object detection on standard PCs
Our descriptor performs as well as SIFT on these tasks (andz' Related Work
better than SURF), while being almost two orders of mag- Keypoints FAST and its variants3, 24] are the method
nitude faster. of choice for finding keypoints in real-time systems that

Our proposed feature builds on the well-known FAST match visual features, for example, Parallel Tracking and
keypoint detector43] and the recently-developed BRIEF Mapping [L3]. It is efficient and finds reasonable corner
descriptor p]; for this reason we call it ORB (Oriented keypoints, although it must be augmented with pyramid

To validate ORB, we perform experiments that test the



schemes for scalé.{], and in our case, a Harris corner filter We use FAST-9 (circular radius of 9), which has good per-
[11] to reject edges and provide a reasonable score. formance.

Many keypoint detectors include an orientation operator ~ FAST does not produce a measure of cornerness, and we
(SIFT and SURF are two prominent examples), but FAST have found that it has large responses along edges. We em-
does not. There are various ways to describe the orientatiorploy a Harris corner measuré] to order the FAST key-
of a keypoint; many of these involve histograms of gradient points. For a target numbé¥ of keypoints, we first set the
computations, for example in SIFT.]] and the approxi-  threshold low enough to get more thahkeypoints, then
mation by block patterns in SURPE][ These methods are order them according to the Harris measure, and pick the
either computationally demanding, or in the case of SURF, top IV points.
yield poor approximations. The reference paper by Rosin  FAST does not produce multi-scale features. We employ
[27] gives an analysis of various ways of measuring orienta- a scale pyramid of the image, and produce FAST features
tion of corners, and we borrow from his centroid technique. (filtered by Harris) at each level in the pyramid.

Unlike the orientation operator in SIFT, which can have

multiple value on a single keypoint, the centroid operator

gives a single dominant result. Our approach uses a simple but effective measure of cor-
ner orientation, théntensity centroid22]. The intensity

Descriptors BRIEF [6] is a recent feature descriptor that centroid assumes that a corner’s |nter_1$|ty IS offset_ frcsm_n
uses simple binary tests between pixels in a smoothed imag&ent_er’ an_d this vector may be used to impute an orientation.
patch. Its performance is similar to SIFT in many respects, Rosin defines the moments of a patch as:
|ncl_ud|ng robustng;s to Ilghtlng_,_blur, gnd perspectl_\fe di Mpq = pryql(x’ Y), 1)
tortion. However, it is very sensitive to in-plane rotation =

BRIEF grew out of research that uses binary tests to
train a set of classification tree€][ Once trained on a set and with these moments we may find the centroid:
of 500 or so typical keypoints, the trees can be used to re-
turn a signature for any arbitrary keypoii{[ In a similar C= (
manner, we look for the tests least sensitive to orientation
The classic method for finding uncorrelated tests is Princi- We can construct a vector from the corner’s ceritetto the
pal Component Analysis; for example, it has been shown centroid,OC'. The orientation of the patch then simply is:
that PCA for SIFT can help remove a large amount of re-
dundant informationZ7]. However, the space of possible
binary tests is too big to perform PCA and an exhaustive where atan2 is the quadrant-aware version of arctan. Rosin
search is used instead. mentions taking into account whether the corner is dark or

Visual vocabulary methods& [, 27] use offline clustering  light; however, for our purposes we may ignore this as the
to find exemplars that are uncorrelated and can be used irangle measures are consistent regardless of the corner type
matching. These techniques might also be useful in finding  To improve the rotation invariance of this measure we
uncorrelated binary tests. make sure that moments are computed witlnd y re-

The closest system to ORB i§][ which proposes a  maining within a circular region of radius We empirically
multi-scale Harris keypoint and oriented patch descriptor chooser to be the patch size, so that thaandy run from
This descriptor is used for image stitching, and shows good[—r, r]. As|C| approache$, the measure becomes unsta-
rotational and scale invariance. It is not as efficient to €com ble; with FAST corners, we have found that this is rarely the

3.2. Orientation by Intensity Centroid

()

mio Mot )
b
moo ™Moo

0 = atanZmo1, mio), 3

pute as our method, however. case.
We compared the centroid method with two gradient-
3. oOFAST: FAST Keypoint Orientation based measures, BIN and MAX. In both casés,and

. . Y gradients are calculated on a smoothed image. MAX
FAST features are widely used because of their compu-.pqqses the largest gradient in the keypoint patch; BIN

tational properties. However, FAST features do not have ang,rms a histogram of gradient directions at 10 degree inter-
orientation component. In this section we add an efficiently 515 and picks the maximum bin. BIN is similar to the SIFT
computed orientation. algorithm, although it picks only a single orientation. The
3.1. FAST Detector variance of the orlenta_tlon ina S|mu!ateq datas_et (inplan
rotation plus added noise) is shown in FigareNeither of

We start by detecting FAST points in the image. FAST the gradient measures performs very well, while the cen-
takes one parameter, the intensity threshold between thedroid gives a uniformly good orientation, even under large
center pixel and those in a circular ring about the center.image noise.
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Figure 2. Rotation measure. The intensity centroid (IC) per
forms best on recovering the orientation of artificiallyatetd noisy
patches, compared to a histogram (BIN) and MAX method.

4. rBRIEF: Rotation-Aware Brief

In this section, we first introduce a steered BRIEF de-
scriptor, show how to compute it efficiently and demon-
strate why it actually performs poorly with rotation. We
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Figure 3. Distribution of means for feature vectors: BRI&Egred
BRIEF (Sectiort.1), and rBRIEF (Sectiod.3). The X axis is the
distance to a mean 6f5

then introduce a learning step to find less correlated binarypt this solution is obviously expensive. A more efficient

tests leading to the better descriptor rBRIEF, for which we
offer comparisons to SIFT and SURF.

4.1. Efficient Rotation of the BRIEF Operator
Brief overview of BRIEF

The BRIEF descriptord] is a bit string description of an

method is to steer BRIEF according to the orientation of
keypoints. For any feature set nfbinary tests at location
(xi,y:), define the2 x n matrix

k) Xn

' Yn

S — (Xl,...
Vi,

image patch constructed from a set of binary intensity tests Using the patch orientatichand the corresponding rotation

Consider a smoothed image patgh, A binary testr is
defined by:

1 :p(x) <p(y)

Tpixy) = { 0 :p(x) >ply)’ @

wherep(x) is the intensity ofp at a pointx. The feature is
defined as a vector of binary tests:

> 27 (pixiyi)

1<i<n

fn(p) : (5)

Many different types of distributions of tests were consid-

matrix Ry, we construct a “steered” versi&p of S:
Sy = ReS,
Now the steered BRIEF operator becomes
(6)

We discretize the angle to increments2af/30 (12 de-
grees), and construct a lookup table of precomputed BRIEF
patterns. As long at the keypoint orientati®is consistent
across views, the correct set of poirtls will be used to
compute its descriptor.

gn(P,0) == fn(P)|(Xi,yi) € Sp

ered in f]; here we use one of the best performers, a Gaus-4 2 \/riance and Correlation

sian distribution around the center of the patch. We also

choose a vector length = 256.
It is important to smooth the image before performing

One of the pleasing properties of BRIEF is that each bit
feature has a large variance and a mean near 0.5. Figure

the tests. In our implementation, smoothing is achieved us-shows the spread of means for a typical Gaussian BRIEF

ing an integral image, where each test point is>a 5 sub-
window of a31 x 31 pixel patch. These were chosen from
our own experiments and the results @. [

Steered BRIEF

We would like to allow BRIEF to be invariant to in-plane
rotation. Matching performance of BRIEF falls off sharply

pattern of 256 bits over 100k sample keypoints. A mean
of 0.5 gives the maximum sample variance 0.25 for a bit
feature. On the other hand, once BRIEF is oriented along
the keypoint direction to give steered BRIEF, the means are
shifted to a more distributed pattern (again, Fig8yreOne
way to understand this is that the oriented corner keypoints
present a more uniform appearance to binary tests.

High variance makes a feature more discriminative, since

for in-plane rotation of more than a few degrees (see Figureit responds differentially to inputs. Another desirablegpr

7). Calonder {] suggests computing a BRIEF descriptor

erty is to have the tests uncorrelated, since then each test

for a set of rotations and perspective warps of each patchwill contribute to the result. To analyze the correlatiomian



U ; ; ; T Ia_rge seF of binary tests, identify 256 new features t_hgehav
Steered BRIEF high variance and are uncorrelated over a large training set

| R However, since the new features are composed from a larger

\ ] number of binary tests, they would be less efficient to com-

pute than steered BRIEF. Instead, we search among all pos-

sible binary tests to find ones that both have high variance

‘ ‘ : — (and means close to 0.5), as well as being uncorrelated.

© 5 10 15 20 25 3H 3B 40 The method is as follows. We first set up a training set of

Component

Figure 4. Distribution of eigenvalues in the PCA decomposit ~ S0Me 300k keypoints, drawn from images in the PASCAL
over 100k keypoints of three feature vectors: BRIEF, sttere 2006 set{]. We also enumerate all possible binary tests
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BRIEF (Sectiort.1), and rBRIEF (Sectiod. 3. drawn from a31 x 31 pixel patch. Each test is a pair ok 5
sub-windows of the patch. If we note the width of our patch
Distance Disibution asw, = 31 and the width of the test sub-windowas = 5,
o e then we haveV = (w, — w;)? possible sub-windows. We

steered BRIEF ———
BRIEI

would like to select pairs of two from these, so we hé)¢
binary tests. We eliminate tests that overlap, so we end up
with M = 205590 possible tests. The algorithm is:

1. Run each test against all training patches.

Relative Frequency

2. Order the tests by their distance from a mean of 0.5,
forming the vector T.

3. Greedy search:

o (a) Put the first test into the result vector R and re-
Descriptor Distance move |t from T

Figure 5. The dotted lines show the distances of a keypoiotito (b) Take the next test from T, and compare it against
liers, while the solid lines denote the distances only betwialier all tests in R. Ifits absolu,te correlation is greater

matches for three feature vectors: BRIEF, steered BRIEE(Se . o .
4.1), and rBRIEF (Sectiod. 3. than a threshold, discard it; else add it to R.

(c) Repeat the previous step until there are 256 tests

in R. If there are fewer than 256, raise the thresh-
variance of tests in the BRIEF vector, we looked at the re- old and try again.

sponse to 100k keypoints for BRIEF and steered BRIEF.
The results are shown in Figufe Using PCA on the data, This algorithm is a greedy search for a set of uncorrelated
we plot the highest 40 eigenvalues (after which the two de- tests with means near 0.5. The result is call&RIEF.
scriptors converge). Both BRIEF and steered BRIEF ex- rBRIEF has significant improvement in the variance and
hibit high initial eigenvalues, indicating correlation ang correlation over steered BRIEF (see Figdje The eigen-
the binary tests — essentially all the information is caoredi values of PCA are higher, and they fall off much less
in the first 10 or 15 components. Steered BRIEF has signif- quickly. Itis interesting to see the high-variance binasts
icantly lower variance, however, since the eigenvalues areproduced by the algorithm (Figu®. There is a very pro-
lower, and thus is not as discriminative. Apparently BRIEF nounced vertical trend in the unlearned tests (left image),
depends on random orientation of keypoints for good per- which are highly correlated; the learned tests show better
formance. Another view of the effect of steered BRIEF is diversity and lower correlation.
shown in the distance distributions between inliers and out )
liers (Figure5). Notice that for steered BRIEF, the mean for 4-4- Evaluation
outliers is pushed left, and there is more of an overlap with  \we evaluate the combination of oFAST and rBRIEF,
the inliers. which we call ORB, using two datasets: images with syn-
thetic in-plane rotation and added Gaussian noise, and a
real-world dataset of textured planar images captured from
To recover from the loss of variance in steered BRIEF, differentviewpoints. For each reference image, we compute
and to reduce correlation among the binary tests, we de-the oFAST keypoints and rBRIEF features, targeting 500
velop a learning method for choosing a good subset of bi- keypoints per image. For each test image (synthetic ratatio
nary tests. One possible strategy is to use PCA or someor real-world viewpoint change), we do the same, then per-
other dimensionality-reduction method, and starting fam form brute-force matching to find the best correspondence.

4.3. Learning Good Binary Features



Comparison of SIFT and rBRIEF considering Gaussian Intensity Noise

Percentage of Inliers

Figure 6. A subset of the binary tests generated by consigleri s
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high-variance under orientation (left) and by running th&rhing Angle of Rotaton (Degrees)
algorithm to reduce correlation (right). Note the disttibn of the Figure 8. Matching behavior under noise for SIFT and rBRIEF.
tests around the axis of the keypoint orientation, whicloisiting The noise levels are 0, 5, 10, 15, 20, and 25. SIFT performance

up. The color coding shows the maximum pairwise correladion degrades rapidly, while rBRIEF is relatively unaffected.
each test, with black and purple being the lowest. The |ebtess

clearly have a better distribution and lower correlation.
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Figure 9. Real world data of a table full of magazines and a@n ou
door scene. The images in the first column are matched to those
the second. The last column is the resulting warp of the fimgt o
the second.
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Figure 7. Matching performance of SIFT, SURF, BRIEF with we measure the performance of ORB relative to SIFT and

FAST, and ORB (0FAST +rBRIEF) under synthetic rotations SURF. The test is performed in the following manner:

with Gaussian noise of 10. ) )
1. Pick a reference view.

. . 2. For all V;, find a homographic wargi; that maps
The results are given in terms of the percentage of correct Vi = Ve grap Pio b

matches, against the angle of rotation.
Figure7 shows the results for the synthetic test set with 3.
added Gaussian noise of 10. Note that the standard BRIEF

Now, use theH;, as ground truth for descriptor
matches from SIFT, SURF, and ORB.

operator falls off dramatically after about 10 degrees.TSIF inlier % N points

outperforms SURF, which shows quantization effects at 45- Magazines

degree angles due to its Haar-wavelet composition. ORB ORB 36180 54850

has the best performance, with over 70% inliers. SURF 38..305 513"55
ORB is relatively immune to Gaussian image noise, un- SIFT 34.010 584.15

like SIFT. If we plot the inlier performance vs. noise, SIFT Boat

exhibits a steady drop of 10% with each additional noise ORB 458 789

inc_:rement of 5. ORB also drops, but at a much lower rate SURF 28'.6 795

(Figures). SIFT 302 714

To test ORB on real-world images, we took two sets of
images, one our own indoor set of highly-textured mag- ORB outperforms SIFT and SURF on the outdoor dataset.
azines on a table (Figur®), the other an outdoor scene. It is about the same on the indoor se€i} hoted that blob-
The datasets have scale, viewpoint, and lighting changesdetection keypoints like SIFT tend to be better on graffiti-
Running a simple inlier/outlier test on this set of images, type images.
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Figure 10. Two different datasets (7818 images from the BPANSC  Figure 11. Speedis accuracy. The descriptors are tested on

2009 datasetd and 9144 low resolution images from the Caltech warped versions of the images they were trained on. We used 1,

101 [29]) are used to train LSH on the BRIEF, steered BRIEF and 2 and 3 kd-trees for SIFT (the autotuned FLANN kd-tree gave

rBRIEF descriptors. The training takes less than 2 minutes a worse performance), 4 to 20 hash tables for rBRIEF and 16 to 40

is limited by the disk 0. rBRIEF gives the most homogeneous tables for steered BRIEF (both with a sub-signature of 16)bit

buckets by far, thus improving the query speed and accuracy. Nearest neighbors were searched over 1.6M entries for SHET a
1.8M entries for rBRIEF.

5. Scalable Matching of Binary Features the data. As shown in FigurH), buckets are much smaller

In this section we show that ORB outperforms inaverage compared to steered BRIEF or normal BRIEF.
SIFT/SURF in nearest-neighbor matching over large

databases of images. A critical part of ORB is the recovery >.3. Evaluation

of variance, which makes NN search more efficient. We compare the performance of r BRIEF LSH with kd-
_ N _ ) trees of SIFT features using FLANN(]. We train the dif-
5.1. Locality Sensitive Hashing for rBrief ferent descriptors on the Pascal 2009 dataset and test them

on sampled warped versions of those images using the same
affine transforms as inl].
Our multi-probe LSH uses bitsets to speedup the pres-

As rBRIEF is a binary pattern, we choose Locality Sen-
sitive Hashing [ (] as our nearest neighbor search. In LSH,
points are stored in several hash tables and hashed in-differ :
ent buckets. Given a query descriptor, its matching buckets"¢® Of keys in the hash maps. It _also com_putes the Ham-
are retrieved and its elements compared using a brute forcd"NY _dlstance between two descriptors using an SSE 4.2
matching. The power of that technique lies in its ability Gptimized popcount.

: : : : b Figure 11 establishes a correlation between the speed
to retrieve nearest neighbors with a high probability given ; . ;
enough hash tables. and the accuracy of kd-trees with SIFT (SURF is equiv-

For binary features, the hash function is simply a subsetalem) and LSH with rBRIEF. A successful match of the

of the signature bits: the buckets in the hash tables containteSt Image occurs When_ more than 50 _descnptors are found
: . . . ._In the correct database image. We notice that LSH is faster
descriptors with a common sub-signature. The distance is

. . than the kd-trees, most likely thanks to its simplicity alnel t
the Hamming distance. speed of the distance computation. LSH also gives more
We use multi-probe LSHI1[8] which improves on the '

. . : : ; _ flexibility with regard to accuracy, which can be interegtin
traditional LSH by looking at ngghpormg buckets n which in bag-of-feature approachesi] 27]. We can also notice
a query descriptor falls. While this could result in more

. that the steered BRIEF is much slower due to its uneven
matches to check, it actually allows for a lower number of buckets

tables (and thus less RAM usage) and a longer sub-signature
and therefore smaller buckets. 6. Applications

5.2. Correlation and Leveling 6.1. Benchmarks

rBRIEF improves the speed of LSH by making the One emphasis for ORB is the efficiency of detection and
buckets of the hash tables more even: as the bits are lesdescription on standard CPUs. Our canonical ORB detec-
correlated, the hash function does a better job at pariitgpn ~ tor uses the oFAST detector and rBRIEF descriptor, each



computed separately on five scales of the image, with a scal-
ing factor of /2. We used an area-based interpolation for
efficient decimation.

The ORB system breaks down into the following times
per typical frame of size 640x480. The code was executed
in a single thread running on an Intel27/8 GHz processor:

ORB: | Pyramid| oFAST | rBRIEF
Time (ms)| 4.43 | 868 | 212

When computing ORB on a set @686 images ats
scales, it was able to detect and compute @ver10° fea-
tures in42 seconds. Comparing to SIFT and SURF on the
same data, for the same number of features (roughly 1000),
and the same number of scales, we get the following times:

Detector| ORB  SURF  SIFT
Time per frame (ms] 15.3 217.3 5228.7

These times were averaged over 24 640x480 images from
the Pascal datasei]] ORB is an order of magnitude faster
than SURF, and over two orders faster than SIFT.

6.2. Textured object detection

We apply rBRIEF to object recognition by implement- Figure 12. Two images of our textured obejct recognitionhwit
ing a conventional object recognition pipeline similar to POS€ estimation. The blue features are the training fesisuper-

[19: we first detect OFAST features and rBRIEF de- imposed on the query image to indicate that the pose of thecbbj

scriptors, match them to our database, and then performwas found properly. Axes are also displayed for each object a

PROSAC [/] and EPnP [ €] to have a pose estimate. :’xetlrl]ea i;g;k;ﬁg_el' Top image misses two objects; all aradou
Our database contains 49 household objects, each taken

under 24 views with a 2D camera and a Kinect device from

Microsoft. The testing data consists of 2D images of sub- ~ While there are real-time feature trackers that can run on

sets of those same objects under different view points anda cellphone 5], they usually operate on very small images

occlusions. To have a match, we require that descriptors ard€.9., 120x160) and with very few features. Systems com-

matched but also that a pose can be computed. In the endparable to oursi(] typically take over 1 second per image.

our pipeline retrieves 61% of the objects as shown in Figure We were able to run ORB with40 x 480 resolution at 7

12. Hz on a cellphone with &GHz ARM chip and 512 MB of
The algorithm handles a database of 1.2M descriptorsRAM. The OpenCV port for Android was used for the im-

in 200MB and has timings comparable to what we showed plementation. These are benchmarks for about 400 points

earlier (14 ms for detection and 17ms for LSH matching in per image:

average). The pipeline could be sped up considerably by not

matching all the query descriptors to the training data but

our goal was only to show the feasibility of object detection

with ORB.

| ORB | Matching | H Fit
Time (ms)| 66.6 | 72.8 | 20.9

7. Conclusion

6.3. Embedded real-time feature tracking In this paper, we have defined a new oriented descrip-

Tracking on the phone involves matching the live frames tor, ORB, and demonstrated its performance and efficiency
to a previously captured keyframe. Descriptors are storedrelative to other popular features. The investigation of-va
with the keyframe, which is assumed to contain a planar ance under orientation was critical in constructing ORB
surface that is well textured. We run ORB on each incom- and de-correlating its components, in order to get good per-
ing frame, and proced with a brute force descriptor match- formance in nearest-neighbor applications. We have also
ing against the keyframe. The putative matches from the contributed a BSD licensed implementation of ORB to the
descriptor distance are used in a PROSAC best fit homog-community, via OpenCV 2.3.
raphyH. One of the issues that we have not adequately addressed



here is scale invariance. Although we use a pyramid scheme
for scale, we have not explored per keypoint scale from

depth cues, tuning the number of octaves, etc.. Future work{14]

also includes GPU/SSE optimization, which could improve
LSH by another order of magnitude.

[15]
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