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Abstract

Convolutional neural networks are capable of learning
powerful representational spaces, which are necessary for
tackling complex learning tasks. However, due to the model
capacity required to capture such representations, they are
often susceptible to overfitting and therefore require proper
regularization in order to generalize well.

In this paper, we show that the simple regularization
technique of randomly masking out square regions of in-
put during training, which we call cutout, can be used to
improve the robustness and overall performance of con-
volutional neural networks. Not only is this method ex-
tremely easy to implement, but we also demonstrate that
it can be used in conjunction with existing forms of data
augmentation and other regularizers to further improve
model performance. We evaluate this method by applying
it to current state-of-the-art architectures on the CIFAR-
10, CIFAR-100, and SVHN datasets, yielding new state-of-
the-art results of 2.56%, 15.20%, and 1.30% test error re-
spectively. Code available at https://github.com/
uoguelph-mlrg/Cutout.

1. Introduction
In recent years deep learning has contributed to consid-

erable advances in the field of computer vision, resulting
in state-of-the-art performance in many challenging vision
tasks such as object recognition [8], semantic segmenta-
tion [11], image captioning [19], and human pose estima-
tion [17]. Much of these improvements can be attributed to
the use of convolutional neural networks (CNNs) [9], which
are capable of learning complex hierarchical feature repre-
sentations of images. As the complexity of the task to be
solved increases, the resource utilization of such models in-
creases as well: memory footprint, parameters, operations
count, inference time and power consumption [2]. Modern
networks commonly contain on the order of tens to hun-
dreds of millions of learned parameters which provide the
necessary representational power for such tasks, but with

Figure 1: Cutout applied to images from the CIFAR-10
dataset.

the increased representational power also comes increased
probability of overfitting, leading to poor generalization.

In order to combat the potential for overfitting, several
different regularization techniques can be applied, such as
data augmentation or the judicious addition of noise to ac-
tivations, parameters, or data. In the domain of computer
vision, data augmentation is almost ubiquitous due to its
ease of implementation and effectiveness. Simple image
transforms such as mirroring or cropping can be applied
to create new training data which can be used to improve
model robustness and increase accuracy [9]. Large models
can also be regularized by adding noise during the training
process, whether it be added to the input, weights, or gradi-
ents. One of the most common uses of noise for improving
model accuracy is dropout [6], which stochastically drops
neuron activations during training and as a result discour-
ages the co-adaptation of feature detectors.

In this work we consider applying noise in a similar fash-
ion to dropout, but with two important distinctions. The
first difference is that units are dropped out only at the input
layer of a CNN, rather than in the intermediate feature lay-
ers. The second difference is that we drop out contiguous
sections of inputs rather than individual pixels, as demon-
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strated in Figure 1. In this fashion, dropped out regions are
propagated through all subsequent feature maps, producing
a final representation of the image which contains no trace
of the removed input, other than what can be recovered by
its context. This technique encourages the network to bet-
ter utilize the full context of the image, rather than relying
on the presence of a small set of specific visual features.
This method, which we call cutout, can be interpreted as
applying a spatial prior to dropout in input space, much in
the same way that convolutional neural networks leverage
information about spatial structure in order to improve per-
formance over that of feed-forward networks.

In the remainder of this paper, we introduce cutout and
demonstrate that masking out contiguous sections of the in-
put to convolutional neural networks can improve model
robustness and ultimately yield better model performance.
We show that this simple method works in conjunction with
other current state-of-the-art techniques such as residual
networks and batch normalization, and can also be com-
bined with most regularization techniques, including stan-
dard dropout and data augmentation. Additionally, cutout
can be applied during data loading in parallel with the main
training task, making it effectively computationally free. To
evaluate this technique we conduct tests on several pop-
ular image recognition datasets, achieving state-of-the-art
results on CIFAR-10, CIFAR-100, and SVHN. We also
achieve competitive results on STL-10, demonstrating the
usefulness of cutout for low data and higher resolution prob-
lems.

2. Related Work
Our work is most closely related to two common regu-

larization techniques: data augmentation and dropout. Here
we examine the use of both methods in the setting of train-
ing convolutional neural networks. We also discuss denois-
ing auto-encoders and context encoders, which share some
similarities with our work.

2.1. Data Augmentation for Images

Data augmentation has long been used in practice when
training convolutional neural networks. When training
LeNet5 [9] for optical character recognition, LeCun et
al. apply various affine transforms, including horizontal
and vertical translation, scaling, squeezing, and horizontal
shearing to improve their model’s accuracy and robustness.

In [1], Bengio et al. demonstrate that deep architectures
benefit much more from data augmentation than shallow ar-
chitectures. They apply a large variety of transformations
to their handwritten character dataset, including local elas-
tic deformation, motion blur, Gaussian smoothing, Gaus-
sian noise, salt and pepper noise, pixel permutation, and
adding fake scratches and other occlusions to the images,
in addition to affine transformations.

To improve the performance of AlexNet [8] for the 2012
ImageNet Large Scale Visual Recognition Competition,
Krizhevsky et al. apply image mirroring, cropping, as well
as randomly adjusting colour and intensity values based on
ranges determined using principal component analysis on
the dataset.

Wu et al. take a more aggressive approach with image
augmentation when training Deep Image [21] on the Ima-
geNet dataset. In addition to flipping and cropping they ap-
ply a wide range of colour casting, vignetting, rotation, and
lens distortion (pin cushion and barrel distortion), as well as
horizontal and vertical stretching.

Lemley et al. tackle the issue of data augmentation with
a learned end-to-end approach called Smart Augmenta-
tion [10] instead of relying on hard-coded transformations.
In this method, a neural network is trained to intelligently
combine existing samples in order to generate additional
data that is useful for the training process.

Of these techniques ours is closest to the occlusions ap-
plied in [1], however their occlusions generally take the
form of scratches, dots, or scribbles that overlay the tar-
get character, while we use zero-masking to completely ob-
struct an entire region.

2.2. Dropout in Convolutional Neural Networks

Another common regularization technique is dropout [6,
15], which was first introduced by Hinton et al. Dropout is
implemented by setting hidden unit activations to zero with
some fixed probability during training. All activations are
kept when evaluating the network, but the resulting output is
scaled according to the dropout probability. This technique
has the effect of approximately averaging over an exponen-
tial number of smaller sub-networks, and works well as a
robust type of bagging, which discourages the co-adaptation
of feature detectors within the network.

While dropout was found to be very effective at regular-
izing fully-connected layers, it appears to be less powerful
when used with convolutional layers [16]. This reduction in
potency can largely be attributed to two factors. The first is
that convolutional layers already have much fewer parame-
ters than fully-connected layers, and therefore require less
regularization. The second factor is that neighbouring pix-
els in images share much of the same information. If any
of them are dropped out then the information they contain
will likely still be passed on from the neighbouring pixels
that are still active. For these reasons, dropout in convo-
lutional layers simply acts to increase robustness to noisy
inputs, rather than having the same model averaging effect
that is observed in fully-connected layers.

In an attempt to increase the effectiveness of dropout
in convolutional layers, several variations on the original
dropout formula have been proposed. Tompson et al. in-
troduce SpatialDropout [16], which randomly discards en-



tire feature maps rather than individual pixels, effectively
bypassing the issue of neighbouring pixels passing similar
information.

Wu and Gu propose probabilistic weighted pooling [20],
wherein activations in each pooling region are dropped with
some probability. This approach is similar to applying
dropout before each pooling layer, except that instead of
scaling the output with respect to the dropout probability at
test time, the output of each pooling function is selected to
be the sum of the activations weighted by the dropout prob-
ability. The authors claim that this approach approximates
averaging over an exponential number of sub-networks as
dropout does.

In a more targeted approach, Park and Kwak introduce
max-drop [13], which drops the maximal activation across
feature maps or channels with some probability. While this
regularization method performed better than conventional
dropout on convolutional layers in some cases, they found
that when used in CNNs that utilized batch normalization,
both max-drop and SpatialDropout performed worse than
standard dropout.

2.3. Denoising Auto-encoders & Context Encoders

Denosing auto-encoders [18] and context encoders [14]
both rely on self-supervised learning to elicit useful feature
representations of images. These models work by corrupt-
ing input images and requiring the network to reconstruct
them using the remaining pixels as context to determine
how best to fill in the blanks. Specifically, denoising auto-
encoders that apply Bernoulli noise randomly erase indi-
vidual pixels in the input image, while context encoders
erase larger spatial regions. In order to properly fill in the
missing information, the auto-encoders are forced to learn
how to extract useful features from the images, rather than
simply learning an identity function. As context encoders
are required to fill in a larger region of the image they are
required to have a better understanding of the global con-
tent of the image, and therefore they learn higher-level fea-
tures compared to denoising auto-encoders [14]. These fea-
ture representations have been demonstrated to be useful for
pre-training classification, detection, and semantic segmen-
tation models.

While removing contiguous sections of the input has pre-
viously been used as an image corruption technique, like in
context encoders, to our knowledge it has not previously
been applied directly to the training of supervised models.

3. Cutout
Cutout is a simple regularization technique for convolu-

tional neural networks that involves removing contiguous
sections of input images, effectively augmenting the dataset
with partially occluded versions of existing samples. This
technique can be interpreted as an extension of dropout in

input space, but with a spatial prior applied, much in the
same way that CNNs apply a spatial prior to achieve im-
proved performance over feed-forward networks on image
data.

From the comparison between dropout and cutout, we
can also draw parallels to denoising autoencoders and con-
text encoders. While both models have the same goal, con-
text encoders are more effective at representation learning,
as they force the model to understand the content of the im-
age in a global sense, rather than a local sense as denoising
auto-encoders do. In the same way, cutout forces models
to take more of the full image context into consideration,
rather than focusing on a few key visual features, which
may not always be present.

One of the major differences between cutout and other
dropout variants is that units are dropped at the input stage
of the network rather than in the intermediate layers. This
approach has the effect that visual features, including ob-
jects that are removed from the input image, are correspond-
ingly removed from all subsequent feature maps. Other
dropout variants generally consider each feature map indi-
vidually, and as a result, features that are randomly removed
from one feature map may still be present in others. These
inconsistencies produce a noisy representation of the input
image, thereby forcing the network to become more robust
to noisy inputs. In this sense, cutout is much closer to data
augmentation than dropout, as it is not creating noise, but
instead generating images that appear novel to the network.

3.1. Motivation

The main motivation for cutout comes from the prob-
lem of object occlusion, which is commonly encountered
in many computer vision tasks, such as object recognition,
tracking, or human pose estimation. By generating new im-
ages which simulate occluded examples, we not only better
prepare the model for encounters with occlusions in the real
world, but the model also learns to take more of the image
context into consideration when making decisions.

We initially developed cutout as a targeted approach
that specifically removed important visual features from the
input of the image. This approach was similar to max-
drop [13], in that we aimed to remove maximally activated
features in order to encourage the network to consider less
prominent features. To accomplish this goal, we extracted
and stored the maximally activated feature map for each im-
age in the dataset at each epoch. During the next epoch we
then upsampled the saved feature maps back to the input
resolution, and thresholded them at the mean feature map
value to obtain a binary mask, which was finally overlaid
on the original image before being passed through the CNN.
Figure 2 demonstrates this early version of cutout.

While this targeted cutout method performed well, we
found that randomly removing regions of a fixed size per-



Figure 2: An early version of cutout applied to images from
the CIFAR-10 dataset. This targeted approach often oc-
cludes part-level features of the image, such as heads, legs,
or wheels.

formed just as well as the targeted approach, without re-
quiring any manipulation of the feature maps. Due to the
inherent simplicity of this alternative approach, we focus
on removing fixed-size regions for all of our experiments.

3.2. Implementation Details

To implement cutout, we simply apply a fixed-size zero-
mask to a random location of each input image during each
epoch of training, as shown in Figure 1. Unlike dropout
and its variants, we do not apply any rescaling of weights
at test time. For best performance, the dataset should be
normalized about zero so that modified images will not have
a large effect on the expected batch statistics.

In general, we found that the size of the cutout region
is a more important hyperparameter than the shape, so for
simplicity, we conduct all of our experiments using a square
patch as the cutout region. When cutout is applied to an im-
age, we randomly select a pixel coordinate within the image
as a center point and then place the cutout mask around that
location. This method allows for the possibility that not all
parts of the cutout mask are contained within the image. In-
terestingly, we found that allowing portions of the patches
to lay outside the borders of the image (rather than con-
straining the entire patch to be within the image) was criti-
cal to achieving good performance. Our explanation for this
phenomenon is that it is important for the model to receive
some examples where a large portion of the image is visible
during training. An alternative approach that achieves sim-
ilar performance is to randomly apply cutout constrained
within the image region, but with 50% probability so that
the network sometimes receives unmodified images.

The cutout operation can easily be applied on the CPU
along with any other data augmentation steps during data
loading. By implementing this operation on the CPU in
parallel with the main GPU training task, we can hide the
computation and obtain performance improvements for vir-
tually free.

4. Experiments
To evaluate the performance of cutout, we apply it to a

variety of natural image recognition datasets: CIFAR-10,
CIFAR-100, SVHN, and STL-10.

4.1. CIFAR-10 and CIFAR-100

Both of the CIFAR datasets [7] consist of 60,000 colour
images of size 32 × 32 pixels. CIFAR-10 has 10 distinct
classes, such as cat, dog, car, and boat. CIFAR-100 contains
100 classes, but requires much more fine-grained recogni-
tion compared to CIFAR-10 as some classes are very visu-
ally similar. For example, it contains five different classes
of trees: maple, oak, palm, pine, and willow. Each dataset
is split into a training set with 50,000 images and a test set
with 10,000 images.

Both datasets were normalized using per-channel mean
and standard deviation. When required, we apply the stan-
dard data augmentation scheme for these datasets [5]. Im-
ages are first zero-padded with 4 pixels on each side to ob-
tain a 40× 40 pixel image, then a 32× 32 crop is randomly
extracted. Images are also randomly mirrored horizontally
with 50% probability.

To evaluate cutout on the CIFAR datasets, we train mod-
els using two modern architectures: a deep residual net-
work [5] with a depth of 18 (ResNet18), and a wide resid-
ual network [22] with a depth of 28, a widening factor of
10, and dropout with a drop probability of p = 0.3 in the
convolutional layers (WRN-28-10). For both of these ex-
periments, we use the same training procedure as specified
in [22]. That is, we train for 200 epochs with batches of
128 images using SGD, Nesterov momentum of 0.9, and
weight decay of 5e-4. The learning rate is initially set to
0.1, but is scheduled to decrease by a factor of 5x after
each of the 60th, 120th, and 160th epochs. We also apply
cutout to shake-shake regularization models [4] that cur-
rently achieve state-of-the-art performance on the CIFAR
datasets, specifically a 26 2 × 96d “Shake-Shake-Image”
ResNet for CIFAR-10 and a 29 2 × 4 × 64d “Shake-Even-
Image” ResNeXt for CIFAR-100. For our tests, we use the
original code and training settings provided by the author
of [4], with the only change being the addition of cutout.

To find the best parameters for cutout we isolate 10% of
the training set to use as a validation set and train on the
remaining images. As our cutout shape is square, we per-
form a grid search over the side length parameter to find
the optimal size. We find that model accuracy follows a
parabolic trend, increasing proportionally to the cutout size
until an optimal point, after which accuracy again decreases
and eventually drops below that of the baseline model. This
behaviour can be observed in Figure 3a and 3b, which de-
pict the grid searches conducted on CIFAR-10 and CIFAR-
100 respectively. Based on these validation results we select
a cutout size of 16 × 16 pixels to use on CIFAR-10 and a
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Figure 3: Cutout patch length with respect to validation accuracy with 95% confidence intervals (average of five runs). Tests
run on CIFAR-10 and CIFAR-100 datasets using WRN-28-10 and standard data augmentation. Baseline indicates a model
trained with no cutout.

Method C10 C10+ C100 C100+ SVHN
ResNet18 [5] 10.63± 0.26 4.72± 0.21 36.68± 0.57 22.46± 0.31 -
ResNet18 + cutout 9.31± 0.18 3.99± 0.13 34.98± 0.29 21.96± 0.24 -
WideResNet [22] 6.97± 0.22 3.87± 0.08 26.06± 0.22 18.8± 0.08 1.60± 0.05
WideResNet + cutout 5.54± 0.08 3.08± 0.16 23.94± 0.15 18.41± 0.27 1.30± 0.03
Shake-shake regularization [4] - 2.86 - 15.85 -
Shake-shake regularization + cutout - 2.56± 0.07 - 15.20± 0.21 -

Table 1: Test error rates (%) on CIFAR (C10, C100) and SVHN datasets. “+” indicates standard data augmentation (mirror
+ crop). Results averaged over five runs, with the exception of shake-shake regularization which only had three runs each.
Baseline shake-shake regularization results taken from [4].

cutout size of 8× 8 pixels for CIFAR-100 when training on
the full datasets. Interestingly, it appears that as the num-
ber of classes increases, the optimal cutout size decreases.
This makes sense, as when more fine-grained detection is
required then the context of the image will be less useful
for identifying the category. Instead, smaller and more nu-
anced details are important.

As shown in Table 1, the addition of cutout to the
ResNet18 and WRN-28-10 models increased their accuracy
on CIFAR-10 and CIFAR-100 by between 0.4 to 2.0 per-
centage points. We draw attention to the fact that cutout
yields these performance improvements even when applied
to complex models that already utilize batch normalization,
dropout, and data augmentation. Adding cutout to the cur-
rent state-of-the-art shake-shake regularization models im-
proves performance by 0.3 and 0.6 percentage points on
CIFAR-10 and CIFAR-100 respectively, yielding new state-
of-the-art results of 2.56% and 15.20% test error.

4.2. SVHN

The Street View House Numbers (SVHN) dataset [12]
contains a total of 630,420 colour images with a resolution
of 32 × 32 pixels. Each image is centered about a num-
ber from one to ten, which needs to be identified. The
official dataset split contains 73,257 training images and
26,032 test images, but there are also 531,131 additional
training images available. Following standard procedure for
this dataset [22], we use both available training sets when
training our models, and do not apply any data augmenta-
tion. All images are normalized using per-channel mean
and standard deviation.

To evalute cutout on the SVHN dataset we apply it to
a WideResNet with a depth of 16, a widening factor of
8, and dropout on the convolutional layers with a dropout
rate of p = 0.4 (WRN-16-8). This particular configuration
currently holds state-of-the-art performance on the SVHN
dataset with a test error of 1.54% [22]. We repeat the same
training procedure as specified in [22] by training for 160



epochs with batches of 128 images. The network is op-
timized using SGD with Nesterov momentum of 0.9 and
weight decay of 5e-4. The learning rate is initially set to
0.01, but is reduced by a factor of 10x after the 80th and
120th epochs. The one change we do make to the origi-
nal training procedure (for both baseline and cutout) is to
normalize the data so that it is compatible with cutout (see
§ 3.2). The original implementation scales data to lie be-
tween 0 and 1.

To find the optimal size for the cutout region we conduct
a grid search using 10% of the training set for validation
and ultimately select a cutout size of 20× 20 pixels. While
this may seem like a large portion of the image to remove,
it is important to remember that the cutout patches are not
constrained to lie fully within the bounds of the image.

Using these settings we train the WRN-16-8 and observe
an average reduction in test error of 0.3 percentage points,
resulting in a new state-of-the-art performance of 1.30% test
error, as shown in Table 1.

4.3. STL-10

The STL-10 dataset [3] consists of a total of 113,000
colour images with a resolution of 96 × 96 pixels. The
training set only contains 5,000 images while the test set
consists of 8,000 images. All training and test set images
belong to one of ten classes, such as airplane, bird, or horse.
The remainder of the dataset is composed of 100,000 un-
labeled images belonging to the target ten classes, plus ad-
ditional but visually similar classes. While the main pur-
pose of the STL-10 dataset is to test semi-supervised learn-
ing algorithms, we use it to observe how cutout performs
when applied to higher resolution images in a low data set-
ting. For this reason, we discard the unlabeled portion of
the dataset and only use the labeled training set.

The dataset was normalized by subtracting the per-
channel mean and dividing by the per-channel standard de-
viation. Simple data augmentation was also applied in a
similar fashion to the CIFAR datasets. Specifically, images
were zero-padded with 12 pixels on each side and then a
96 × 96 crop was randomly extracted. Mirroring horizon-
tally was also applied with 50% probability.

To evaluate the performance of cutout on the STL-10
dataset we use a WideResNet with a depth of 16, a widening
factor of 8, and dropout with a drop rate of p = 0.3 in the
convolutional layers. We train the model for 1000 epochs
with batches of 128 images using SGD with Nesterov mo-
mentum of 0.9 and weight decay of 5e-4. The learning rate
is initially set to 0.1 but is reduced by a factor of 5x after
the 300th, 400th, 600th, and 800th epochs.

We perform a grid search over the cutout size param-
eter using 10% of the training images as a validation set
and select a square size of 24 × 24 pixels for the no data-
augmentation case and 32 × 32 pixels for training STL-10

with data augmentation. Training the model using these val-
ues yields a reduction in test error of 2.7 percentage points
in the no data augmentation case, and 1.5 percentage points
when also using data augmentation, as shown in Table 2.

Model STL10 STL10+
WideResNet 23.48± 0.68 14.21± 0.29
WideResNet + cutout 20.77± 0.38 12.74± 0.23

Table 2: Test error rates on STL-10 dataset. “+” indicates
standard data augmentation (mirror + crop). Results aver-
aged over five runs on full training set.

4.4. Analysis of Cutout’s Effect on Activations

In order to better understand the effect of cutout, we
compare the average magnitude of feature activations in a
ResNet18 when trained with and without cutout on CIFAR-
10. The models were trained with data augmentation using
the same settings as defined in Section 4.1, achieving scores
of 3.89% and 4.94% test error respectively.

In Figure 4, we sort the activations within each layer by
ascending magnitude, averaged over all samples in the test
set. We observe that the shallow layers of the network ex-
perience a general increase in activation strength, while in
deeper layers, we see more activations in the tail end of the
distribution. The latter observation illustrates that cutout is
indeed encouraging the network to take into account a wider
variety of features when making predictions, rather than re-
lying on the presence of a smaller number of features. Fig-
ure 5 demonstrates similar observations for individual sam-
ples, where the effects of cutout are more pronounced.

5. Conclusion
Cutout was originally conceived as a targeted method for

removing visual features with high activations in later layers
of a CNN. Our motivation was to encourage the network to
focus more on complimentary and less prominent features,
in order to generalize to situations like occlusion. How-
ever, we discovered that the conceptually and computation-
ally simpler approach of randomly masking square sections
of the image performed equivalently in the experiments we
conducted. Importantly, this simple regularizer proved to be
complementary to existing forms of data augmentation and
regularization. Applied to modern architectures, such as
wide residual networks or shake-shake regularization mod-
els, it achieves state-of-the-art performance on the CIFAR-
10, CIFAR-100, and SVHN vision benchmarks. So why
hasn’t it been reported or analyzed to date? One reason
could be the fact that using a combination of corrupted and
clean images appears to be important for its success. Fu-
ture work will return to our original investigation of visual
feature removal informed by activations.
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Figure 4: Magnitude of feature activations, sorted by descending value, and averaged over all test samples. A standard
ResNet18 is compared with a ResNet18 trained with cutout at three different depths.
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(a) 2nd Residual Block
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(b) 3rd Residual Block
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(c) 4th Residual Block
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(d) 2nd Residual Block
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(e) 3rd Residual Block
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(f) 4th Residual Block
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(g) 2nd Residual Block
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(h) 3rd Residual Block
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(i) 4th Residual Block
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(j) 2nd Residual Block
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(k) 3rd Residual Block
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(l) 4th Residual Block

Figure 5: Magnitude of feature activations, sorted by descending value. Each row represents a different test sample. A
standard ResNet18 is compared with a ResNet18 trained with cutout at three different depths.


