
[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

Quick start with

Image, Modelisation et Rendu
2e année SN, Parcours Multimédia

Version: v2022.0.0-rc3
(ocv4.2 @ 84ccadb 2022-02-17)

Contents
1 About this document 1

2 The tutorial code 2
2.1 Building the code with CMake . 2
2.2 On your personal machine . 3

3 OpenCV 3

4 Mat - The Basic Image Container 5
4.1 Creating explicitly a Mat object . 6

4.1.1 Access to Mat elements . 8
4.2 Print out formatting . 9
4.3 Print for other common items . 10

5 Load and Display an Image 12
5.1 Goal . 12
5.2 Source Code . 12
5.3 Explanation . 13
5.4 Result . 14

6 Load, Modify, and Save an Image 16
6.1 Goals . 16
6.2 Code . 17
6.3 Explanation . 17
6.4 Result . 18

1 About this document
This documents collects some of the tutorials that are part of the OpenCV library. These are
the most basic yet relevant ones that will help you to get started with the library and complete
the TP more easily. Some of them has been adapted, reduced or rewritten with the code you
will have to write during the TP in mind. You can always access to the original tutorials and
all the other ones from the online documentation that you can find at this address.

1/19

https://docs.opencv.org/4.2.0/d9/df8/tutorial_root.html

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

2 The tutorial code
The archive containing the tutorials is organized as follows:

• data contains some images that can be used with the programs of this tutorial.

• src contains the source files for the tp they are organize in directories:

– tutorials contains the code used in these tutorials .

2.1 Building the code with CMake
CMake is a cross-platform free software program that helps managing the build process of soft-
ware using a compiler-independent method. In simpler words, this means that CMake is an
utility that helps to set up the compilation environment for a given source code, independently
from the compiler and the building system that is actually used to generate the code, be it
Linux’s make, Apple’s Xcode, or Microsoft Visual Studio.

In the case of this TP, CMake will check for all the libraries that are needed to compile our
programs and it will automatically generate the corresponding Makefile. Let’s see how this
work.

From the starting path of the code, create a new directory, let’s call it build :

mkdir build
cd build

This directory will contain the results of the compilation, i.e. all the executables that you will
generate. Now we can tell CMake to configure and create the relevant makefile for us:

cmake ..

CMake will look for all the necessary libraries and generate the makefile for all the programs.
On your screen you should see something like this:

This has to be done only once at the beginning, from now on you have just to compile the
code you modify in src using the usual make command. Indeed, in the build directory you can
see the Makefile we will use to compile the code. The code can be compiled form the build
directory with the usual

2/19

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

make <filename_without_extension>

and

make clean

to delete all the executable and the compilation objects. Try for example to build the code for
the first tutorial with

make mat_the_basic_image_container

The executable will be placed in build/bin/ and you can run the code with

./bin/mat_the_basic_image_container

2.2 On your personal machine
The code can be compiled in any machine of the computer rooms at ENSEEIHT. If you want to
try it on your personal machine you have to first install the opencv library. The library can be
downloaded from this address http://opencv.org/downloads.html. At this webpage you can
find all the information to compile and install them on any supported platform.

Once you have installed them, you have just to follow the steps in Section 2.1, but you may
need to do a

cmake .. -DOpenCV_DIR=path/to/OpenCVConfig.cmake/

in order to specify where the OpenCVConfig.cmake file is. In general it is located in the
directory you used to build the library or in a system path, typically /usr/local/share/OpenCV,
if you install them.

Finally, remember to set the LD LIBRARY PATH to allow your application to access the
project libraries (for example if the OpenCV are not installed in the usual system path).

3 OpenCV
OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine
learning software library. OpenCV was built to provide a common infrastructure for computer
vision applications and to accelerate the use of machine perception in the commercial products.

The library has more than 2500 optimized algorithms, which includes a comprehensive set
of both classic and state-of-the-art computer vision and machine learning algorithms. These
algorithms can be used to detect and recognize faces, identify objects, classify human actions in
videos, track camera movements, track moving objects, extract 3D models of objects, produce
3D point clouds from stereo cameras, stitch images together to produce a high resolution image
of an entire scene, find similar images from an image database, remove red eyes from images
taken using flash, follow eye movements, recognize scenery and establish markers to overlay it
with augmented reality, etc.

3/19

http://opencv.org/downloads.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

It has C++, C, Python, Java and MATLAB interfaces and supports Windows, Linux, Android
and Mac OS. OpenCV leans mostly towards real-time vision applications and takes advantage
of MMX and SSE instructions when available. A full-featured CUDA and OpenCL interfaces are
being actively developed right now. There are over 500 algorithms and about 10 times as many
functions that compose or support those algorithms. OpenCV is written natively in C++ and
has a templated interface that works seamlessly with STL containers.

4/19

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

4 Mat - The Basic Image Container
Mat is basically a class having two data parts: the matrix header (containing information such
as the size of the matrix, the method used for storing, at which address is the matrix stored
and so on) and a pointer to the matrix containing the pixel values (may take any dimensionality
depending on the method chosen for storing). The matrix header size is constant. However,
the size of the matrix itself may vary from image to image and usually is larger by order of
magnitudes. Therefore, when you’re passing on images in your program and at some point you
need to create a copy of the image the big price you will need to build is for the matrix itself
rather than its header. OpenCV is an image processing library. It contains a large collection of
image processing functions. To solve a computational challenge most of the time you will end up
using multiple functions of the library. Due to this passing on images to functions is a common
practice. We should not forget that we are talking about image processing algorithms, which
tend to be quite computational heavy. The last thing we want to do is to further decrease the
speed of your program by making unnecessary copies of potentially large images.

To tackle this issue OpenCV uses a reference counting system. The idea is that each Mat
object has its own header, however the matrix may be shared between two instance of them
by having their matrix pointer point to the same address. Moreover, the copy operators will
only copy the headers, and as also copy the pointer to the large matrix too, however not the
matrix itself.

1 // creates just the header parts
2 Mat A, C;
3

4 // allocate the matrix from the image file
5 A = imread(argv[1], cv::IMREAD_COLOR);
6

7 // Use the copy constructor
8 Mat B(A);
9

10 // Assignment operator
11 C = A;

All the above objects, in the end point to the same single data matrix. Their
headers are different, however making any modification using either one of them
will affect all the other ones too. In practice the different objects just provide
different access method to the same underlying data. Nevertheless, their header parts
are different. The real interesting part comes that you can create headers that refer only to a
subsection of the full data. For example, to create a region of interest (ROI) in an image you
just create a new header with the new boundaries:

1 // using a rectangle
2 Mat D (A, Rect(10, 10, 100, 100));
3

4 // extracts A columns, from 1 (inclusive) to 3 (exclusive).
5 // like matlab E = A(:,2:3)
6 // columns and rows start from 0 in C/C++
7 Mat E = A(Range:all(), Range(1,3));

Here is another way to select and use columns and rows of the matrix

5/19

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

1 // add the 6th row, multiplied by 3 to the 4th row
2 M.row(3) = M.row(3) + M.row(5)*3;
3

4 // now copy the 8th column to the 2nd column
5 // M.col(1) = M.col(7); // this will not work!
6 Mat M1 = M.col(1);
7 M.col(7).copyTo(M1);

In order to select more than one column (row) you can use the Mat method
colRange(int start, int end)

(rowRange(int start, int end)).
start is the index of first column/row to consider, end is the exclusive index of the last col-
umn/row, i.e. colRange(1, 5) will return the columns from the second (index 1) to the fifth
(index 4).

Now you may ask if the matrix itself may belong to multiple Mat objects who will take
responsibility for its cleaning when it’s no longer needed. The short answer is: the last object
that used it. For this a reference counting mechanism is used. Whenever somebody copies a
header of a Mat object a counter is increased for the matrix. Whenever a header is cleaned this
counter is decreased. When the counter reaches zero the matrix too is freed. Because, sometimes
you will still want to copy the matrix itself too, there exists the clone() or the copyTo() function.

1 Mat F = A.clone();
2 Mat G;
3 A.copyTo(G);

Now modifying F or G will not affect the matrix pointed by the Mat header. What you need
to remember from all this is that:

• Output image allocation for OpenCV functions is automatic (unless specified otherwise).

• No need to think about memory freeing with OpenCV C++ interface.

• The assignment operator and the copy constructor copies only the header.

• Use the clone() or the copyTo() function to copy the underlying matrix of an image.

4.1 Creating explicitly a Mat object
In the Load, Modify, and Save an Image tutorial you will see how to write a matrix to an image
file by using the imwrite function. However, for debugging purposes it’s much more convenient
to see the actual values. You can achieve this via the << operator of Mat. However, be aware
that this only works for two dimensional matrices.

Although Mat is a great class as image container it is also a general matrix class. Therefore,
it is possible to create and manipulate multidimensional matrices. You can create a Mat object
in multiple ways:

• Mat() Constructor

1 Mat M(2,2, CV_8UC3, Scalar(0,0,255));
2 cout << "M = " << endl << " " << M << endl << endl;

6/19

https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#aadc8f9210fe4dec50513746c246fa8d9
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#aa6542193430356ad631a9beabc624107
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#adff2ea98da45eae0833e73582dd4a660
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a626fe5f96d02525e2604d2ad46dd574f
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#adff2ea98da45eae0833e73582dd4a660
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a626fe5f96d02525e2604d2ad46dd574f
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a3620c370690b5ca4d40c767be6fb4ceb

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

For two dimensional and multichannel images we first define their size: row and
column count wise.
Then we need to specify the data type to use for storing the elements and the number
of channels per matrix point. To do this we have multiple definitions made according
to the following convention:

1 CV_[number of bits per item][Type Prefix]C[Channels]

For instance, CV 8UC3 means we use unsigned char types that are 8 bit long and
each pixel has three items of this to form the three channels. This are predefined for
up to four channel numbers. The Scalar is four element short vector. Specify this
and you can initialize all matrix points with a custom value. However if you need
more you can create the type with the upper macro and putting the channel number
in parenthesis as you can see below.

• Use C\C++ arrays and initialize via constructor

1 int sz[3] = {2,2,2};
2 Mat L(3,sz, CV_8UC(1), Scalar::all(0));

The upper example shows how to create a matrix with more than two dimensions.

• Specify its dimension, then pass a pointer containing the size for each dimension and the
rest remains the same.

• Create() function:

1 M.create(4,4, CV_8UC(2));
2 cout << "M = "<< endl << " " << M << endl << endl;

You cannot initialize the matrix values with this construction. It will only reallocate
its matrix data memory if the new size will not fit into the old one.

• MATLAB style initializer: zeros(), ones(), eye().

• Specify size and data type to use:

7/19

https://docs.opencv.org/4.2.0/d0/d3a/classcv_1_1DataType.html
https://docs.opencv.org/4.2.0/d1/da0/classcv_1_1Scalar__.html
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a55ced2c8d844d683ea9a725c60037ad0
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a0b57b6a326c8876d944d188a46e0f556
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a69ae0402d116fc9c71908d8508dc2f09
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a2cf9b9acde7a9852542bbc20ef851ed2

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

1 Mat E = Mat::eye(4, 4, CV_64F);
2 cout << "E = " << endl << " " << E << endl << endl;
3

4 Mat O = Mat::ones(2, 2, CV_32F);
5 cout << "O = " << endl << " " << O << endl << endl;
6

7 Mat Z = Mat::zeros(3,3, CV_8UC1);
8 cout << "Z = " << endl << " " << Z << endl << endl;

• For small matrices you may use comma separated initializers:

1 Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
2 cout << "C = " << endl << " " << C << endl << endl;

• Create a new header for an existing Mat object and clone() or copyTo() it.

1 Mat RowClone = C.row(1).clone();
2 cout << "RowClone = " << endl << " " << RowClone << endl << endl;

Note: You can fill out a matrix with random values using the randu() function. You
need to give the lower and upper value between what you want the random values:

1 Mat R = Mat(3, 2, CV_8UC3);
2 randu(R, Scalar::all(0), Scalar::all(255));

4.1.1 Access to Mat elements

In order to access to a single element of a matrix you can use its template method Mat::at():

8/19

https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#adff2ea98da45eae0833e73582dd4a660
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#a626fe5f96d02525e2604d2ad46dd574f
https://docs.opencv.org/4.2.0/d2/de8/group__core__array.html#ga1ba1026dca0807b27057ba6a49d258c0
https://docs.opencv.org/4.2.0/d3/d63/classcv_1_1Mat.html#aa5d20fc86d41d59e4d71ae93daee9726

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

1 template<typename T> T& Mat::at(int i, int j)

where the type T is the type of the matrix we are accessing, so it can be float, double, int
etc. The indices i and j are the indices of the element (always 0-based). For example:

1 // a 3x4 matrix of floats
2 Mat A = Mat(3, 4, CV_32FC1);
3

4 for(int i = 0; i < A.rows; ++i)
5 {
6 for(int j = 0; j < A.cols; ++j)
7 {
8 // set the value of the element
9 A.at<float>(i,j) = i*A.cols + j;

10 // get the value of the element value
11 cout << A.at<float>(i,j) << endl;
12 }
13 }

4.2 Print out formatting
In the above examples you could see the default formatting option. Nevertheless, OpenCV allows
you to format your matrix output format to fit the rules of:

• Default

1 cout << "R (default) = " << endl << R << endl << endl;

• Python

1 cout << "R (python) = " << endl << R << endl << endl;

• Comma separated values (CSV)

1 cout << "R (cvs) = " << endl << R << endl << endl;

9/19

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

• Numpy

1 cout << "R (numpy) = " << endl << R << endl << endl;

• C

1 cout << "R (c) = " << endl << R << endl << endl;

4.3 Print for other common items
OpenCV offers support for print of other common OpenCV data structures too via the <<
operator like:

• 2D Point

1 Point2f P(5, 1);
2 cout << "Point (2D) = " << P << endl << endl;

• 3D Point

1 Point3f P3f(2, 6, 7);
2 cout << "Point (3D) = " << P3f << endl << endl;

• std::vector via cv::Mat

10/19

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

1 vector<float> v;
2 v.push_back((float)CV_PI);
3 v.push_back(2);
4 v.push_back(3.01f);
5

6 cout << "Vector of floats via Mat = " << Mat(v) << endl << endl;

• std::vector of points

1 vector<Point2f> vPoints(20);
2 for (size_t i = 0; i < vPoints.size(); ++i)
3 vPoints[i] = Point2f((float)(i * 5), (float)(i % 7));
4

5 cout << "A vector of 2D Points = " << vPoints << endl << endl;

Most of the samples here have been included into a small console application. You can
download it from here or in the core section of the cpp samples.

11/19

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

5 Load and Display an Image
5.1 Goal
In this tutorial you will learn how to:

• Load an image (using imread)

• Create a named OpenCV window (using namedWindow)

• Display an image in an OpenCV window (using imshow)

5.2 Source Code
The source code is in src/tutorials/display image.cpp . The program takes as input an
image file and it displays it in a window

1 # include <opencv2 / core / core.hpp>
2 # include <opencv2 / highgui / highgui.hpp>
3 # include <iostream>
4 using namespace cv;
5 using namespace std;
6 int main(int argc, char** argv)
7 {
8 if(argc != 2)
9 {

10 cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
11 return -1;
12 }
13 Mat image;
14 // Read the file
15 image = imread(argv[1], cv::IMREAD_COLOR);
16 if(! image.data)
17 // Check for invalid input
18 {
19 cout << "Could not open or find the image" << std::endl ;
20 return EXIT_FAILURE;
21 }
22 // Create a window for display.
23 namedWindow("Display window", cv::WINDOW_AUTOSIZE);
24 // Show our image inside it.
25 imshow("Display window", image);
26 // Wait for a keystroke in the wind
27 waitKey(0);
28 return EXIT_SUCCESS;
29 }

12/19

https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/4.2.0/d7/dfc/group__highgui.html#ga5afdf8410934fd099df85c75b2e0888b
https://docs.opencv.org/4.2.0/d7/dfc/group__highgui.html#ga453d42fe4cb60e5723281a89973ee563

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

5.3 Explanation
In OpenCV 4 we have multiple modules. Each one takes care of a different area or approach
towards image processing. You could already observe this in the structure of the user guide of
these tutorials itself. Before you use any of them you first need to include the header files where
the content of each individual module is declared.

You’ll almost always end up using the:

• core section, as here are defined the basic building blocks of the library

• highgui module, as this contains the functions for input and output operations

1 # include <iostream> // for standard I/O
2 # include <string> // for strings

We also include the iostream to facilitate console line output and input. To avoid data struc-
ture and function name conflicts with other libraries, OpenCV has its own namespace: cv. To
avoid the need appending prior each of these the cv:: keyword you can import the namespace
in the whole file by using the lines:

1 using namespace cv;
2 using namespace std;

This is true for the STL library too (used for console I/O). Now, let’s analyze the main func-
tion. We start up assuring that we acquire a valid image name argument from the command line.

1 if(argc != 2)
2 {
3 cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
4 return EXIT_FAILURE;
5 }

Then create a Mat object that will store the data of the loaded image.

1 Mat image;

Now we call the imread function which loads the image name specified by the first argument
(argv[1]). The second argument specifies the format in what we want the image. This may be:

• cv::IMREAD UNCHANGED (<0) loads the image as is (including the alpha channel if present)

• cv::IMREAD GRAYSCALE (0) loads the image as an intensity one

• cv::IMREAD COLOR (>0) loads the image in the RGB format

1 // Read the file
2 image = imread(argv[1], cv::IMREAD_COLOR);

13/19

https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

After checking that the image data was loaded correctly, we want to display our image, so we
create an OpenCV window using the namedWindow function. These are automatically managed
by OpenCV once you create them. For this you need to specify its name and how it should
handle the change of the image it contains from a size point of view. It may be:

• cv::WINDOW AUTOSIZE is the only supported one if you do not use the Qt backend.

• In this case the window size will take up the size of the image it shows. No resize permitted!

• cv::WINDOW NORMAL on Qt you may use this to allow window resize.

• The image will resize itself according to the current window size.

• By using the | operator you also need to specify if you would like the image to keep its
aspect ratio (cv::WINDOW KEEPRATIO) or not (cv::WINDOW FREERATIO).

1 // Create a window for display.
2 namedWindow("Display window", cv::WINDOW_AUTOSIZE);

Finally, to update the content of the OpenCV window with a new image use the imshow
function. Specify the OpenCV window name to update and the image to use during this opera-
tion:

1 // Show our image inside it.
2 imshow("Display window", image);

Because we want our window to be displayed until the user presses a key (otherwise the
program would end far too quickly), we use the waitKey function whose only parameter is just
how long should it wait for a user input (measured in milliseconds). Zero means to wait forever.

1 //Wait for a keystroke in the window
2 waitKey(0);

5.4 Result
• Compile your code and then run the executable giving an image path as argument.

• For exemple from the build directory:

./bin/display_image ../data/images/HappyFish.png

• You should get a nice window as the one shown below:

14/19

https://docs.opencv.org/4.2.0/d7/dfc/group__highgui.html#ga5afdf8410934fd099df85c75b2e0888b
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=imshow#imshow
https://docs.opencv.org/4.2.0/d7/dfc/group__highgui.html#ga5628525ad33f52eab17feebcfba38bd7

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

15/19

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

6 Load, Modify, and Save an Image

Note: We assume that by now you know how to load an image using imread and
to display it in a window (using imshow). Read the Load and Display an Image tutorial
otherwise.

6.1 Goals
In this tutorial you will learn how to:

• Load an image using imread

• Transform an image from BGR to Grayscale format by using cvtColor

• Save your transformed image in a file on disk (using imwrite)

16/19

https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=imshow#imshow
https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/4.2.0/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab
https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#gabbc7ef1aa2edfaa87772f1202d67e0ce

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

6.2 Code
The source code is in src/tutorials/load modify image.cpp . The program takes as input
an image file, it converts it into a greyscale image, it displays the two images inside two separate
windows and save the greyscale version into a file.

Here it is:

1 # include <cv.h>
2 # include <highgui.h>
3 using namespace cv;
4 int main(int argc, char** argv)
5 {
6 char* imageName = argv[1];
7 Mat image;
8 image = imread(imageName, 1);
9 if(argc != 2 || !image.data)

10 {
11 printf(" No image data \n ");
12 return EXIT_FAILURE;
13 }
14 Mat gray_image;
15 cvtColor(image, gray_image, cv::COLOR_BGR2GRAY);
16 imwrite("../../data/images/Gray_Image.jpg", gray_image);
17 namedWindow(imageName, cv::WINDOW_AUTOSIZE);
18 namedWindow("Gray image", cv::WINDOW_AUTOSIZE);
19 imshow(imageName, image);
20 imshow("Gray image", gray_image);
21 waitKey(0);
22 return EXIT_SUCCESS;
23 }

6.3 Explanation
1. We begin by:

• Creating a Mat object to store the image information
• Load an image using imread, located in the path given by imageName.
• For this example, assume you are loading a RGB image.

2. Now we are going to convert our image from BGR to Grayscale format. OpenCV has a
really nice function to do this kind of transformations:

1 cvtColor(image, gray_image, cv::COLOR_BGR2GRAY);

As you can see, cvtColor takes as arguments:

• a source image (image)

17/19

https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/4.2.0/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

• a destination image (gray image), in which we will save the converted image.
• an additional parameter that indicates what kind of transformation will be performed.
• In this case we use cv::COLOR BGR2GRAY (because of imread has BGR default channel

order in case of color images).

3. So now we have our new gray image and want to save it on disk (otherwise it will get lost
after the program ends).

4. To save it, we will use a function analogous to imread: imwrite

1 imwrite("../../images/Gray_Image.jpg", gray_image);

Which will save our gray image as Gray Image.jpg in the folder images located two levels
up of my current location.

5. Finally, let’s check out the images. We create two windows and use them to show the
original image as well as the new one:

1 namedWindow(imageName, cv::WINDOW_AUTOSIZE);
2 namedWindow("Gray image", cv::WINDOW_AUTOSIZE);
3 imshow(imageName, image);
4 imshow("Gray image", gray_image);

6. Add the waitKey(0) function call for the program to wait forever for an user key press.

6.4 Result
When you run your program you should get something like this:

And if you check in your folder (in my case images), you should have a newly .jpg file named
Gray Image.jpg:

18/19

https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html#gabbc7ef1aa2edfaa87772f1202d67e0ce

[git] • Branch: ocv4.2 @ 84ccadb • Release: v2022.0.0-rc3 (2022-02-17)
Head tags: v2022.0.0-rc3

Toulouse INP–ENSEEIHT Image, Modelisation et Rendu

Congratulations, you are done with this tutorial!

19/19

	About this document
	The tutorial code
	Building the code with CMake
	On your personal machine

	OpenCV
	Mat - The Basic Image Container
	Creating explicitly a Mat object
	Access to Mat elements

	Print out formatting
	Print for other common items

	Load and Display an Image
	Goal
	Source Code
	Explanation
	Result

	Load, Modify, and Save an Image
	Goals
	Code
	Explanation
	Result

