
[git] • Branch: master @ 90489b2 • Release: v2024.1.0-rc1 (2024-04-24)

Head tags: v2024.1.0-rc1

Modélisation et rendu

TP3 - 3D Modelling
Drawing geometric primitives in OpenGL.

Modélisation et rendu
2nd year, Multimedia track

Session 3

Version: v2024.1.0-rc1
(master @ 90489b2 2024-04-24)

Contents
1 Objective 1

2 Drawing primitives in OpenGL 1

3 Exercise 1 - The Robotic Arm 2
3.1 The code . 3
3.2 Let’s implement it . 4

1 Objective
In this TP we review the concepts that have been introduced in the last TP about the OpenGL
pipeline and the scene modelling. In this TP we will introduce another aspect of the scene
modelling: so far we used some built-in function to draw 3D objects, now we will start to see
how we can build our own 3D object using some low level geometric primitives such as points
and lines.

In Section 2 you find a brief introduction on how to draw geometric primitives in OpenGL,
then in Section 3 you are asked to implement an interactive OpenGL program that will cover all
the different aspects we saw in the last TP and the OpenGL geometric primitives.

2 Drawing primitives in OpenGL
In the last TP we saw that GLUT provides a number of nice high-level objects (cones, spheres,
cubes, teapots etc.). All these high-level objects are ultimately composed of points (or vertices)
that are connected with lines to form the wire-frame of the object. If we want to build our own
object, we then have to express it in terms of more low-level primitives, such as points, lines,
triangles etc.

OpenGL provides a number of primitives including points, lines, and polygons. Each of these
objects is ultimately made up of an (ordered) collection of vertices. Vertex coordinates are
specified with the OpenGL function glVertex (here the doc):

1

http://www.opengl.org/sdk/docs/man2/xhtml/glVertex.xml

[git] • Branch: master @ 90489b2 • Release: v2024.1.0-rc1 (2024-04-24)

Head tags: v2024.1.0-rc1

Modélisation et rendu

1 void glVertex3f(GLfloat x, GLfloat y, GLfloat z);

Vertices must be grouped together to form a collection of points (or lines, or polygons, etc.).
The beginning and end of each group is denoted by glBegin and glEnd , and the parameter
passed to glBegin tells OpenGL how to interpret the collection of vertices that follows (here
the doc). For example, the following specifies a collection of individual points (which happen to
form the corners of a box)1:

1 glBegin(GL_POINTS);
2 glVertex3f(1,1,1);
3 glVertex3f(1,2,1);
4 glVertex3f(2,2,1);
5 glVertex3f(2,1,1);
6 glEnd();

Since GL_POINTS is specified, this is drawn as four individual points. Changing glBegin’s
parameter changes the interpretation. For example, if GL_LINES is passed, two lines are drawn,
the first having the first two points as start and end points, respectively, the second having the
other two as start and end points. You can see in Figure 1 other types of primitives that are
supported by OpenGL and how the list of vertices is interpreted to generate the corresponding
primitive.

Finally you can specify the current drawing color for each vertex (or primitive):

1 glBegin(GL_POINTS);
2 glColor3f(1,0,0);
3 glVertex3f(1,1,1); // a red vertex
4 glVertex3f(1,2,1); // another red vertex
5 glColor3f(0,0,1);
6 glVertex3f(2,2,1); // a blue vertex
7 glColor3f(1,0,1);
8 glVertex3f(2,1,1); // a magenta vertex
9 glEnd();

This piece of code draws the first two points in red, the third in blue, and the last in magenta.
OpenGL also provides some functions to specify the size or the width of each primitive. For
example, glLineWidth(GLfloat w); set the current width of the line to draw. For a point
you can use glPointSize(GLfloat w); . Again, since OpenGL is a state machine the current
value for the size or the width will remain in place until it is further changed.

3 Exercise 1 - The Robotic Arm
We want to implement an interactive program that allows the user to move a robotic arm. The
robotic arm is composed of 3 connected joints (see Figure 2), and each of them can rotate along
one axis. Each joint is sketched using a wire-frame of a parallelepiped. Moreover, to help you
out with the rotation, a (local) reference system is also drawn at the base of the joint. We

1The indentation after glBegin is not necessary, but improves the readability of the code.

2

http://www.opengl.org/sdk/docs/man2/xhtml/glBegin.xml
http://www.opengl.org/sdk/docs/man2/xhtml/glBegin.xml

[git] • Branch: master @ 90489b2 • Release: v2024.1.0-rc1 (2024-04-24)

Head tags: v2024.1.0-rc1

Modélisation et rendu

Figure 1: OpenGL geometric primitive types: the picture shows how a sequence of vertices
{V0, . . . , Vn} defined between glBegin and glEnd is interpreted by OpenGL, according to the
type of primitive (GL_POINTS, . . .) passed to glBegin.

can assume that each joint can rotate about its x-axis (the red one in Figure 2). The user can
control the movement of each joint using the keyboard. In particular

• A and Z control the movement (rotation about its x-axis) of the second joint

• E and R control the movement (rotation about its x-axis) of the third joint

• the arrow keys ← , → and ↑ , ↓ control the rotation of the whole arm (or, equiva-
lently, the first joint) about its x-axis and y-axis, respectively.

3.1 The code
In order to implement the program you can fill and complete the file robot.c . It comes with
its makefile. The code is composed as usual by a main routine that initializes the OpenGL’s
pipeline and some other functions that you should be now familiar with:

• init function that initializes the camera type and its position; there is nothing you have
to do here, but if you want you can change the glLookAt function in order to move the
camera in case you want a different point of view.

• reshape callback function to set the viewport; you don’t need to modify it.

• usage function is used to print a simple help on the screen; you don’t need to modify it.

• arrows and keyboard, the callback functions to manage the user input from the keyboard;
you have to complete them.

3

[git] • Branch: master @ 90489b2 • Release: v2024.1.0-rc1 (2024-04-24)

Head tags: v2024.1.0-rc1

Modélisation et rendu

Figure 2: Example of the robotic arm.

• display, the display callback function; you have to complete it.

• DrawReferenceSystem, DrawJoint and DrawRobot are the functions you have to imple-
ment to draw the robotic arm.

You also have 4 global variables, Angle1, Angle2, RobotAngleX, and RobotAngleY, which
will be used to control the robot movements.

3.2 Let’s implement it
The program is conceived to be highly modular so that you can implement the program incre-
mentally and have always some visual feedback that may help you to verify and debug your
code.

The whole robotic arm is composed of three joints and each joint is composed by the paral-
lelepiped and the reference system (see Figure 3). Therefore, we will start by developing the func-
tion DrawReferenceSystem that draws the reference system, then the function DrawJoint that
draws the joint as a parallelepiped and a reference system, and finally the function DrawRobot
that draws the whole arm as a system of 3 joints. If you implement the functions correctly at
each step you should have a visual feedback of what you have coded. Finally, you will implement
the part of the code that manages the input from the user and allows to move the robot.

These are the main steps you can follow:

1. implement DrawReferenceSystem : the function should draw 3 perpendicular lines corre-
sponding to the 3 directions x, y, z (see Figure 3). Follow the comments in the code and
remember that you can draw lines using the OpenGL function that has been introduced at
the beginning in Section 2.

2. implement DrawJoint : the function should draw a parallelepiped and a reference system
placed at the origin of its local reference system. In order to draw the parallelepiped

4

[git] • Branch: master @ 90489b2 • Release: v2024.1.0-rc1 (2024-04-24)

Head tags: v2024.1.0-rc1

Modélisation et rendu

(a) (b)

Figure 3: The visual output after you correctly finish to implement DrawReferenceSystem (a)
and DrawJoint (b). Note that the views has been zoomed in.

you can use the function glutWireCube and use glScalef to stretch it along, e.g., its y-
axis. Another option is to draw the parallelepiped defining its vertices using the GL_QUAD
primitive.

• glutWireCube draws the cube so that it is centered in the origin of the reference
system. Hence you have to move it in order to have the reference system drawn on
its bottom face (here the doc).

• Be careful when using glScalef (think in terms of the current modelview matrix. . .),
you might want that it only affects the local coordinate system of the parallelepiped.

3. implement DrawRobot : it must draw three joints, one on top of the other (on the y-axis).
You can add the rotation of each joint now or later when you implement the user control.

4. Now we have the robotic arm. Complete the display function.

5. Complete the keyboard function that updates the values of the rotation angles of each
joint. A reasonable update value for the angle value is ±5◦, but you are free to experiment
with other values. If you didn’t do before, add the relevant rotations in DrawRobot .

6. Complete the arrows function that updates the values of the rotation angles of the first
joint using the arrows. If you didn’t do before, add the relevant rotations in display .

7. Finally complete the main in order to register the callback for keyboard and arrows;

8. Add a pair of pincers (« pinces ») at the end of the last joint. A simple way to do it is to
add two “vertical” rectangles that slide over another “horizontal” rectangle (c.f . Figure 4).
Add two other keys to control the pincers (e.g. O and L), and manage the movement
of the pincers so that they stop whenever they reach the limits of the opening and closing
positions.

5

https://www.opengl.org/resources/libraries/glut/spec3/node82.html

[git] • Branch: master @ 90489b2 • Release: v2024.1.0-rc1 (2024-04-24)

Head tags: v2024.1.0-rc1

Modélisation et rendu

Figure 4: The last joint of the robot with a pair of pincers attached to its end.

6

	Objective
	Drawing primitives in OpenGL
	Exercise 1 - The Robotic Arm
	The code
	Let's implement it

