
[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)
Head tags: v2024.1.0-rc2

Modélisation et rendu

TP4 - Lights
Defining lights in OpenGL.

Modélisation et rendu
2nd year, Multimedia track

Session 4

Version: v2024.1.0-rc2
(master @ 641f9d3 2024-05-03)

Contents
1 Objective 1

1.1 OpenGL references . 1

2 Preamble 2
2.1 The normal vectors . 2
2.2 Hidden Surface Removal . 2

3 Lighting 3
3.1 Lighting model in OpenGL . 4

3.1.1 Defining Lights in OpenGL . 5
3.2 Materials . 6

3.2.1 Defining Materials in OpenGL . 6
3.3 Shading . 7
3.4 Exercise . 7

1 Objective
In the previous TP sessions, you saw how to model an OpenGL scene: how to draw and place
3D objects, and how to define and place the camera. So far we neglected the rendering aspects
and all the 3D objects have been rendered as wire-frames using points and lines or as colored
faces. In this TP we will see how to improve the rendering of 3D objects to achieve a more
photo-realistic effect. In particular, we will see how we can define and place lights inside a
scene.

1.1 OpenGL references
Some useful resources about OpenGL in general and the topics we will cover in this TP:

• Chapter 5 of the OpenGL Programming Guide, covers lighting. You can find the online version at this
address http://www.glprogramming.com/red/chapter05.html

1

http://www.glprogramming.com/red/chapter05.html

[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)

Head tags: v2024.1.0-rc2

Modélisation et rendu

• Chapter 9 of the OpenGL Programming Guide, covers texture mapping. You can find the online version
at this address http://www.glprogramming.com/red/chapter09.html

• OpenGL et GLUT: Une Introduction, by Edmond Boyer (INRIA Grenoble-Rhône–Alpes), in French. http:
//www.ann.jussieu.fr/hecht/ftp/DEA/OpenGL.pdf

• OpenGL function documentation http://www.opengl.org/sdk/docs/man4/

• GLUT function documentation http://www.opengl.org/resources/libraries/glut/spec3/spec3.html

• Google it!. . . The easiest way to find the documentation of a function (or help) is to google the name of the
function.

2 Preamble
In the next subsection, we briefly introduce some aspects that we will need to better understand
lights in OpenGL.

2.1 The normal vectors
The lighting model computes the color associated with each vertex of a 3D object according to
the normal vector associated with the vertex. When we define an object as a sequence of ver-
tex, we can also specify the normal to associate to each vertex using the function glNormal3f() :

1 glBegin(GL_TRIANGLES);
2 // first face of the triangle
3 glNormal3f(0,0,1);
4 glVertex3f(1,1,1);
5 glVertex3f(1,2,1);
6 glVertex3f(2,2,1);
7 // second face of the triangle
8 glNormal3f(0,1,0);
9 ...

10 glEnd();

The three vertices of the first face of the triangle share the same normal vector [0, 0, 1]. In
general, all the vertices declared between two calls of the function glNormal3f() have the same
normal (OpenGL is a state machine).

Most of the high-level functions to generate 3D objects that we have seen so far (cones,
spheres, cubes, teapots etc.) create the vertices and the relevant normal vectors.

2.2 Hidden Surface Removal
When you draw a scene composed of 3D objects, some of them might obscure all or parts of
others. Changing your viewpoint can change the occluding relationship. For example, if you
view the scene from the opposite direction, any object that was previously in front of another
is now behind it. To draw a realistic scene, these occluding relationships must be maintained.

When we draw the scene we project each object on the image plane and we set the color for
the relevant pixels. Therefore the order with which we render the objects is important because
an object may overwrite some or all the pixels we already draw for another object that maybe
was actually in front of him (e.g. see Figure 1.(a)).

One possible solution to this problem is to sort all the objects according to their distance
from the camera and render them starting from the farthest to the closest. This method is

2

http://www.glprogramming.com/red/chapter09.html
http://www.ann.jussieu.fr/hecht/ftp/DEA/OpenGL.pdf
http://www.ann.jussieu.fr/hecht/ftp/DEA/OpenGL.pdf
http://www.opengl.org/sdk/docs/man4/
http://www.opengl.org/resources/libraries/glut/spec3/spec3.html

[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)

Head tags: v2024.1.0-rc2

Modélisation et rendu

A
B

C

Image plane

(a) (b)

Figure 1: The hidden surface problem: in order to get the correct rendering of the scene, object
C must be rendered before object B, which, in turn, must be rendered before object A. On the
other hand, rendering the objects from the farthest to the closest cannot solve all the ambiguities
(b).

computationally expensive and its complexity depends on the number of polygons. Moreover, it
cannot deal with surfaces that are mutually hiding each other, such as the one in Figure 1.(b)

OpenGL provides two other methods for dealing with the hidden surface problem: the back-
face culling and the z-buffering. Back-face culling is a method that eliminates all the faces not
visible from the camera’s point of view. The simplest way to verify whether a face (a triangle, a
polygon etc.) has to be eliminated is to check the normal associated with the face: if the normal
is directed “towards” the camera then the face could be visible (but, yet, it could be still hidden
by another one), otherwise it can be safely removed from the rendering because it is not visible
from the camera. We can activate this algorithm with glEnable(GL_CULL_FACE) .

The z-buffer is instead a matrix of the same size as the image to render: each element of
the matrix contains information about the depth of the corresponding pixel in the image. Every
time a point is projected into a pixel, the distance of the point from the camera is tested against
the value stored in the z-buffer: if the distance of the point is lower then the point is drawn on
the image, and the corresponding value in the z-buffer is updated with the distance of current
point. Otherwise, the point is not drawn. The ambiguities of Figure 1.(b) can be resolved using
this method. To activate the z-buffer:

• we need to properly set up the glut window glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH); ,
where “|” means that we want both the RGB display and the z-buffer;

• glEnable(GL_DEPTH_TEST) to enable the test (it is enough to call it once);

• Every time we draw a new scene we need to clear the buffer with glClear(GL_DEPTH_BUFFER_BIT)
(typically in the display function).

3 Lighting
When you look at a physical surface, your perception of the color depends on the distribution
of photon energies reaching your eye. These photons come from a light source (or combination
of light sources), some are absorbed and some are reflected by the surface. In addition, different

3

[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)
Head tags: v2024.1.0-rc2

Modélisation et rendu

Figure 2: The three components of the Phong lighting model [image from Wikipedia].

surfaces may have very different properties - some are shiny and preferentially reflect light in
certain directions, while others scatter incoming light equally in all directions.

3.1 Lighting model in OpenGL
In the OpenGL lighting model, the light in a scene comes from several light sources that can
be individually turned on and off. Some light comes from a specific direction or position, and
some light is generally scattered throughout the scene. For example, when you turn on a light
bulb in a room, most of the light comes from the bulb, but some light comes after bouncing off
one, two, three, or more walls. This bounced light (called ambient light) is assumed to be so
scattered that there is no way to tell its original direction, but it disappears when a particular
light source is turned off.

OpenGL adopts the Phong lighting model. The Phong reflection is an empirical model of local
illumination. It describes the way a surface reflects light as a combination of the diffuse reflection
of rough surfaces with the specular reflection of shiny surfaces. In particular, it assumes that the
light is composed of three components: ambient light, diffuse reflection, and specular reflection.
All three components are computed independently and then added together (see Figure 2).

• ambient light: it is a background light that accounts for the small amount of light
scattered about the entire scene, i.e. that has been reflected multiple times in the scene.

• specular reflection: it describes the reflection of the light hitting a surface according to
the classical reflection law. That is, the direction of incoming light and the direction of
outgoing reflected light are at the same angle to the surface normal, and the incoming light,
the reflected light, and the surface normal lie in the same plane. Thus, the contribution
of specular reflection to the vertex color depends on the viewpoint.

• diffuse reflection: It is the light coming from one direction. Therefore, it is brighter
when it hits a surface perpendicularly than when it hits the surface at a lower angle.

• Once it hits a surface, however, it is scattered equally in all directions, so it appears equally
bright, no matter where the eye is located.

OpenGL approximates light and lighting as if light can be broken into red, green, and blue
components. Thus, the color of light sources is characterized by the amount of red, green,
and blue light they emit, and the material of surfaces is characterized by the percentage of the
incoming red, green, and blue components reflected in various directions.

4

[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)

Head tags: v2024.1.0-rc2

Modélisation et rendu

3.1.1 Defining Lights in OpenGL

Let’s see how to set up the lights with this sample code:

1 GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 }; // the ambient component
2 GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; // the diffuse component
3 GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 }; // the specular component
4 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; // the light position
5

6 // set the components to the first light
7 glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
8 glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
9 glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);

10 glLightfv(GL_LIGHT0, GL_POSITION, light_position);
11

12 // activate lighting effects
13 glEnable(GL_LIGHTING);
14 // turn on the first light
15 glEnable(GL_LIGHT0);

• The first 3 vectors specify the color for each of the components of the light (ambient,
diffuse, and specular). Each vector specifies the RGBA values for the color

• the forth vector light_position contains the position of the light expressed in (homo-
geneous) Cartesian coordinates. As you can see, in this case, the forth coordinate is set
to zero: this means that the light is placed at the infinity and the other three coordi-
nates indicate the light direction (directional light). Remember: lights are subject to the
ModelView matrix, just like the other objects in the scene. So it’s very important where
you put the light position in the code!

• the next bunch of calls to glLightfv assigns the previously declared lights components to
GL_LIGHT0: OpenGL allows to declare up to 8 different lights using GL_LIGHT0, GL_LIGHT1,
. . . , GL_LIGHT7. glLightfv always takes as parameters the light to modify, the component
we are setting, and the relevant data (here the doc). Once again, lights are part of the
OpenGL’s state machine, hence once the value is set it will hold until it is further changed.

• glEnable(GL_LIGHTING) enable the light management. To disable the lightings we can
use glDisable(GL_LIGHTING)

• glEnable(GL_LIGHT0) turns the GL_LIGHT0 on. glDisable(GL_LIGHT0) turns it off

Try it! You can try to add the lights to your helloteapot2.cpp (the one in which the viewpoint was changed
and the teapot is drawn as solid):

• just copy-paste the above piece of code in the main just before the glutMainLoop()

• we need the z-buffer so remember to change the code accordingly (c.f . Section ??):

– glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH); in main

– glEnable(GL_DEPTH_TEST); in main

– glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); in display

5

http://www.khronos.org/opengles/sdk/1.1/docs/man/glLight.xml

[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)

Head tags: v2024.1.0-rc2

Modélisation et rendu

3.2 Materials
In the OpenGL model, the light sources have an effect only when there are surfaces that absorb
and reflect light. Each surface is assumed to be composed of a material with various properties.
A material can emit its light (like the headlights on a car), it can scatter some of the incoming
light in all directions, and it can reflect some of the incoming light in a preferred direction, like
a mirror or other shiny surface.

The OpenGL light model makes the approximation that the color of a material is a function
of the percentages of incoming red, green, and blue light that it reflects. For example, a perfectly
red ball reflects all the incoming red light and absorbs all the green and blue light that strikes
it. If you view such a ball in white light (composed of equal amounts of red, green, and blue
light), all the red is reflected, and you see a red ball. If the ball is viewed in pure red light, it
also appears as red. If, however, the red ball is viewed in pure green light, it appears black (all
the green is absorbed, and there’s no incoming red, so no light is reflected).

Like lights, materials have different ambient, diffuse, and specular colors. These colors
determine the ambient, diffuse, and specular reflectance of the material. A material’s ambient
reflectance is combined with the ambient component of each incoming light source, the diffuse
reflectance with the light’s diffuse component, and similarly for the specular reflectance and
component. Ambient and diffuse reflectances define the color of the material and are typically
similar if not identical. Specular reflectance is usually white or gray so that specular highlights
end up being the color of the light source’s specular intensity. If you think of a white light
shining on a shiny red plastic sphere, most of the sphere appears red, but the shiny highlight is
white. 1

3.2.1 Defining Materials in OpenGL

The materials are defined in a similar way as the lights with the function glMaterialfv (here
the doc). Let’s see a simple example:

1 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; // define the specular component
2 GLfloat mat_shininess[] = { 50.0 }; // define the shininess
3 // assign the material property
4 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
5 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
6 // draw the teapot
7 glutSolidTeapot(.5);

glMaterialfv takes the same parameters as glLightfv, except for the first one that indi-
cates which face of the object the material property is to apply. It can be set to the front face
(GL_FRONT), the back face (GL_BACK), or both of them(GL_FRONT_AND_BACK). Once more again,
the material is part of the OpenGL’s state machine, once the values are set they hold until they
are further changed. This means that if we add a second teapot to the code above it will be
drawn with the same property of the current one, unless we first call again glLightfv to set
new properties.

1In addition to ambient, diffuse, and specular colors, materials have an emissive color, which simulates light
originating from an object. In the OpenGL lighting model, the emissive color of a surface adds intensity to the
object but is unaffected by any light sources. Also, the emissive color does not introduce any additional light into
the overall scene.

6

http://www.khronos.org/opengles/sdk/1.1/docs/man/glMaterial.xml
http://www.khronos.org/opengles/sdk/1.1/docs/man/glMaterial.xml

[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)

Head tags: v2024.1.0-rc2

Modélisation et rendu

3.3 Shading
Once the color it’s determined for each vertex of a face (a triangle, a polygon etc.), the color
of the face is computed by linear interpolation of the color of the relevant vertex. This allows
to have a smooth shading which is called Gouraud shading. In OpenGL we can activate the
smooth shading calling glShadeModel(GL_SMOOTH) . A simpler shading model can be used by
passing GL_FLAT. This will draw the face with a single color chosen from one of the vertices that
compose the face.

3.4 Exercise

(a) (b)

Figure 3: The same scene rendered without light (a) and with light and materials defined for
each object (b).

For this exercise, we will work with the program in lumiere.cpp . If you compile the
program and run it, you should see something like in Figure 3.(a): a white room with a red
sphere and a green cube. The objects are drawn using the glColor function. This is a simplified
version of the Cornell box, a famous scene used to test the rendering algorithms.

The goal of the exercise is to introduce the light in the scene and the materials for the objects
so that we can have a more photo-realistic rendering such as the one depicted in Figure 3.(b).
The controls on the menu will help you select the values for each component of the light and
material once you have activated the light in the scene and defined the material for each object.

Here are the steps to follow:

1. You can move around the scene using the arrow keys and zoom in/out using the page
up/down keys.

2. To better understand how to define the normal vector for each vertex look at the code of
the function glRoom() .

3. Look at the beginning of the file, some global variables define the light and the material
for the objects. These are meant to group the properties of each object. You can see the
definition of the relevant data structure in lumiere.hpp :

7

https://www.graphics.cornell.edu/online/box/

[git] • Branch: master @ 641f9d3 • Release: v2024.1.0-rc2 (2024-05-03)

Head tags: v2024.1.0-rc2

Modélisation et rendu

• Material groups all the properties of the material of an object: the ambient, diffuse,
and specular colors, and the shininess.

• Light groups all the properties of the light: the ambient, diffuse, and specular colors,
and the position.

Both of them rely on the vec4f structure that is simply an array of 4 floats.

4. Activate the lighting and place a light in one of the corners of the room: complete the
function place_light(Light& light) that is used to define an OpenGL light based on
the properties of light.

• To visualize the position of the light (just for debugging) in the scene you can draw
a yellow point in the position of the light.

• What do you need to do if you want to use glColor to draw the yellow point? Think
about the state machine of OpenGL . . .

5. Where are the colors??? Since the light has been enabled we need to define the colors of
the objects with the materials. Take a look at the function
define_material(const Material& mat) .
Replace each call to glColor before the objects with a proper call to define_material()
using the associated global material variable.

• complete the init function to enable the Gouraud shading, the back-face culling,
and the depth test.

6. Everything is gray now. With the help of the controls in the menu, play with the different
values of the light and the materials to understand how they work. You can have a look
here to see some examples of real materials and their values for the different components.

7. Once you find the proper values for each object, hardcode them in the definition of
the global variables.

8. Remember how can we define a directional light? You can use the boolean field directional
of the Light structure to properly set up the light. The checkbox in the menu sets its
value. You can also set the key D (see the keyboard() function) to change the light
property so that it becomes a directional light.

Advanced The location of the viewpoint affects the calculations for highlights produced by spec-
ular reflectance. The intensity of the highlight at a particular vertex depends on the
normal at that vertex, the direction from the vertex to the light source, and the di-
rection from the vertex to the viewpoint. A local viewpoint tends to give more real-
istic results, but since the direction from the vertex to the viewpoint has to be calcu-
lated for each vertex, the overall performance is degraded with a local viewpoint. By
default, OpenGL assumes an infinite viewpoint, so for each vertex, the direction viewpoint-
vertex is constant and the same for all vertices. You can change this settings with
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, [GL_TRUE|GL_FALSE]); . Use a key
of the keyboard to switch from true to false and vice-versa, and compare the effect.

8

http://www.it.hiof.no/~borres/j3d/explain/light/p-materials.html

	Objective
	OpenGL references

	Preamble
	The normal vectors
	Hidden Surface Removal

	Lighting
	Lighting model in OpenGL
	Defining Lights in OpenGL

	Materials
	Defining Materials in OpenGL

	Shading
	Exercise

