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Abstract

This paper presents an unsupervised texture segmentation method, which uses distributions of local binary patterns
and pattern contrasts for measuring the similarity of adjacent image regions during the segmentation process. Non-
parametric log-likelihood test, the G statistic, is engaged as a pseudo-metric for comparing feature distributions.
A region-based algorithm is developed for coarse image segmentation and a pixelwise classification scheme for improving
localization of region boundaries. The performance of the method is evaluated with various types of test images. © 1999
Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Segmentation of an image into differently textured
regions is a difficult problem. Usually, one does not know
a priori what types of textures exist in an image, how
many textures there are, and what regions have which
textures [1]. In order to distinguish reliably between two
textures relatively large samples of them must be exam-
ined, i.e. relatively large blocks of the image. But a large
block is unlikely to be entirely contained in a homogene-
ously textured region and it becomes difficult to correctly
determine the boundaries between regions.

Many different approaches to image and texture seg-
mentation have been proposed [2-4]. Segmentation
methods are usually classified as region-based, bound-
ary-based or as a hybrid of the two. The segmentation
can be supervised or unsupervised. In unsupervised seg-
mentation no a priori information about the textures
present in the image is available. This makes it is a very
challenging research problem in which only limited suc-
cess has been achieved so far. Early methods proposed
for unsupervised region-based texture segmentation

include approaches based on split-and-merge methods
[5], pyramid node linking [6], selective feature smooth-
ing with clustering [7], and a quadtree method combin-
ing statistical and spatial information [8]. Examples of
more recent approaches are methods based on local
linear transforms and multiresolution feature extraction
[9], feature smoothing and probabilistic relaxation [10],
autoregressive models [11,12], Markov random field
models [13-16], multichannel filtering [17-19], neural
network-based generalization of the multichannel ap-
proach [20], wavelets [21,22], fractal dimension [23],
and hidden Markov models [24]. A method for unsuper-
vised segmentation of color textures using Markov ran-
dom fields and a split-and-merge type algorithm was
proposed by Panjwani and Healey [25].

Some of the existing methods perform reasonably well
for a small set of fine-grained texture mosaics, but they
usually need some prior knowledge of the image contents
to achieve satisfactory results, like the number of textures
or regions. The choice of proper parameters for different
types of images may also be difficult and the methods
typically perform poorly for natural images containing
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nonuniform textures. Unsupervised segmentation of im-
ages containing texture primitives at very different scales
may even be unrealistic, because it is hard to discriminate
small image regions from large texture primitives without
any prior knowledge.

The choice of highly discriminating texture features is
the most important factor for a success in texture seg-
mentation, but this has been neglected in most earlier
approaches. The features should easily discriminate vari-
ous types of textures and the window size used for com-
puting textural features should be small enough to be
useful for small image regions and to provide small error
rates at region boundaries.

Our recent studies show that excellent texture dis-
crimination can be obtained with local texture operators
and nonparametric statistical discrimination of sample
and prototype distributions. Texture classification re-
sults obtained by using distributions of local binary
patterns (LBP) or gray-scale differences have been
better than those obtained with the existing methods
[26-29]. Our method can be easily generalized to utilize
multiple texture features, multiscale information, color
features and combinations of multiple features using
the new multichannel approach to texture descrip-
tion [29].

This paper presents an efficient method for unsuper-
vised texture segmentation based on texture description
with feature distributions. A region-based algorithm is
developed for coarse image segmentation and a pixelwise
classification scheme for improving the localization of
region boundaries.

2. Texture description

The texture contents of an image region are character-
ized by the joint distribution of local binary pattern
(LBP) and contrast (C) features [27]. The original 3 x 3
neighborhood (Fig. 1a) is thresholded by the value of the
center pixel. The values of the pixels in the thresholded
neighborhood (Fig. 1b) are multiplied by the binomial
weights given to the corresponding pixels (Fig. 1c) and
obtained values (Fig. 1d) are summed for the LBP num-
ber (169) of this texture unit. By definition LBP is invari-
ant to any monotonic gray-scale transformation. LBP
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describes the spatial structure of the local texture, but it
does not address the contrast of the texture. For this
purpose we combine LBP with a simple contrast measure
C, which is the difference between the average gray-level
of those pixels which have value 1 and those which have
value 0 (Fig. 1b).

The LBP/C distribution is approximated by a discrete
two-dimensional histogram of size 256 x b, where b is the
number of bins for C. Choosing b is a trade-off between
the discriminative power and the stability of the texture
transform. If b is too small, the histogram will lack
resolution and feature C will add very little dis-
criminative information to the process. However, since
the image region contains a finite number of pixels, it
does not make sense to go to the other extreme, for then
the histogram becomes sparse and unstable. Based on the
results of our past texture classification experiments with
the LBP/C transform, we chose to use 8§ bins, although
we expect to achieve comparable results with 4 or 16 bins
as well. See Ref. [27] for a detailed description of the
mapping from the continuous C space to the discrete bin
index.

A log-likelihood-ratio, the G statistic [30], is used as
a pseudo-metric for comparing LBP/C distributions. The
value of the G statistic indicates the probability that the
two sample distributions come from the same popula-
tion: the higher the value, the lower the probability that
the two samples are from the same population. We mea-
sured the similarity of two histograms with a two-way
test of interaction or heterogeneity:
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where s, m are the two sample histograms, n is the
number of bins and f; is the frequency at bin i. The more
alike the histograms s and m are, the smaller is the value
of G.
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Fig. 1. Computation of local binary pattern (LBP) and contrast measure C.
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3. Segmentation algorithm

The segmentation method consists of three phases:
hierarchical splitting, agglomerative merging and pixel-
wise classification. First, hierarchical splitting is used to
divide the image into regions of roughly uniform texture.
Then, agglomerative merging procedure merges similar
adjacent regions until a stopping criterion is met. At this
point we have obtained rough estimates of the different
textured regions present in the image and complete the
analysis by a pixelwise classification to improve the local-
ization. Fig. 2 illustrates the progress of the segmentation
algorithm on a 512 x 512 mosaic containing five different
Brodatz [31] textures.

3.1. Hierarchical splitting

A necessary prerequisite for the agglomerative merging
to be successful is that the individual image regions are
uniform in texture. For this purpose we apply the hier-
archical splitting algorithm, which recursively splits the
original image into square blocks of varying size. The
decision whether a block is split to four subblocks is
based on a uniformity test. We measure the six pairwise
G distances between the LBP/C histograms of the four
subblocks. If we denote the largest of the six G values by
Gpax and the smallest by G,;,, the block is found to be
nonuniform and is thus split further into four subblocks,
if a measure of relative dissimilarity within region is
greater than a threshold

R = Gmax > X. (2)
Gmin

Regarding the proper choice of X, one should rather
choose a too small value for X instead of a too large one. It
is better to split too much than too little, for the following
agglomerative merging procedure is able to correct errors,
where an uniform block of a single texture has been
needlessly split. But error recovery is not possible, if

segments containing several textures are assumed to be
uniform. Threshold X was experimentally set to value
1.2. We computed G,y and G, [Eq. (2)] for numerous
blocks with varying texture contents, and a 20% differ-
ence generally indicated a deviation in the local texture.

To begin with, we divide the image into rectangular
blocks of size Sy If we applied the uniformity test on
arbitrarily large image segments, we could fail to detect
small texture patches and end up treating regions con-
taining several textures as uniform. The next step is to use
the uniformity test. If a block does not satisfy the test, it is
divided into four subblocks. This procedure is repeated
recursively on each subblock until a predetermined min-
imum block size S,,;, is reached. It is necessary to set
a minimum limit for the block size, for the block has to
contain a sufficient number of pixels for the LBP/C
histogram to be reliable. Since it is fundamental to make
reliable merges in the early stages of the merging process,
we decided to use the relatively large value of 16 for S,,;,.
Comparable results were obtained with value 8, whereas
histograms of 4 x 4 blocks turned out to be too noisy in
some cases. The choice of S, is less crucial, and we
chose to use 64. Fig. 2b illustrates the result of the
hierarchical splitting algorithm. As expected, the splitting
goes deepest around the texture boundaries.

Note that the hierarchical splitting phase is not man-
datory, but we could skip it by dividing the input image
directly to blocks of size S, and the successive agglom-
erative merging phase would still succeed. This is parti-
cularly true for easier problems of homogeneous and
clearly distinct textures. However, our experiments have
shown that finding larger areas of uniform texture with
the hierarchical splitting method improves the conver-
gence of the agglomerative merging algorithm.

3.2. Agglomerative merging

Once the image has been split into blocks of roughly
uniform texture, we apply an agglomerative merging

(b)

hierarchical
splitting

agglomerative
merging

pixelwise
classification

Fig. 2. Texture mosaic # 1; the main sequence of the proposed segmentation algorithm.
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procedure, which merges similar adjacent regions until
a stopping criterion is satisfied. At a particular stage of
the merging, we merge that pair of adjacent segments,
which has the smallest merger importance (MI) value.
M1 is defined as

MI =pxG, 3)

where p is the number of pixels in the smaller of the two
regions and G is the distance measure defined in Eq. (1).
In other words, at each step the procedure chooses that
merger of all possible mergers, which introduces the
smallest change in the segmented image. Once the pair of
adjacent segments with the smallest M value has been
found, the regions are merged and the two respective
LBP/C histograms are summed to be the histogram of
the new image region. Before moving to the next merger
we compute the G distances between the new region and
all adjacent regions to it. Merging is allowed to proceed
until the stopping rule

Ml
MIR =

>Y )

max

triggers. Merging is halted if MIR, the ratio of MI,,,
merger importance for the current best merge, and
MI,,,.,, the largest merger importance of all preceding
mergers, exceeds a preset threshold Y. In theory, it is
possible that the very first merges have a zero M1 value
(i.e. there are adjacent regions with identical LBP/C
histograms), which would lead to a premature termina-
tion of the agglomerative merging phase. To prevent this
the stopping rule is not evaluated for the first 10% of all
possible merges.

The value of threshold Y was determined experi-
mentally. We applied the algorithm to numerous texture
images and examined the values of MIR during the
merging process. The conclusion was that for well-de-
fined homogeneous textures MIR values up to 1.5 or 1.6
were still acceptable, while values over 2.0 generally were
due to a perceivable difference in the texture contents of
the adjacent regions of the current best merge. Based on
this observation we chose value 2.0 for Y. In more gen-
eral terms, threshold Y can be interpreted as the scale of
texture differences we want to discriminate, and thus the
value of Y may be a very subjective decision. This is
particularly the case with outdoor scenes and irregular
textures, where the number of distinct regions in the
segmentation result strongly correlates with the thre-
shold.

Fig. 2c shows the result of the agglomerative merging
phase after 174 merges. The MIR of the 175th merge
(MIRy,,p) is 9.5 and the merging is halted. The highest
MIR value up to that point (MIRy;) had been 1.2 (Fig. 3).
The relationship between MIR,,, MIRy; and threshold
Y reflects the reliability of the result of the agglomerative
merging phase. The very large value of MIR,, and very
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Fig. 3. Plot of MIR.

small value of MIR,; underline the easiness with which
the rough estimate of the texture regions is obtained for
mosaic # 1. Note that the segmentation error of 1.4%
after the agglomerative clustering phase (ERR,) is some-
what biased in this problem, for the horizontal and verti-
cal texture boundaries are accidentally aligned with the
initial blocks.

3.3. Pixelwise classification

To improve the localization of the boundaries a simple
pixelwise classification algorithm is used. If the hierarchi-
cal splitting and agglomerative merging phases have suc-
ceeded, we have obtained quite reliable estimates of the
different textured regions present in the image. Treating
the LBP/C histograms of the image segments as our
texture models we switch into a texture classification
mode. If an image pixel is on the boundary of at least two
distinct textures (i.e. the pixel is 4-connected to at least
one pixel with a different label), we place a discrete disc
with radius » on the pixel and compute the LBP/C
histogram over the disc. We compute the G distances
between the histogram of the disc and the models of those
regions, which are 4-connected to the pixel in question.
We relabel the pixel, if the label of the nearest model is
different from the current label of the pixel and there is at
least one 4-connected adjacent pixel with the tentative
new label. The latter condition improves smooth adap-
tion of texture boundaries and decreases the probability
of small holes occurring inside the regions. If the pixel is
relabeled, i.e. it is moved from an image segment to the
adjacent segment, we update the corresponding texture
models accordingly, hence the texture models become
more accurate during the process. Only those pixels at
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which the disc is entirely inside the image are examined,
hence the final segmentation result will contain a border
of r pixels wide.

In the next scan over the image we only check the
neighborhoods of those pixels, which were relabeled in
the previous sweep. The process of pixelwise classifica-
tion continues until no pixels are relabeled or maximum
number of sweeps is reached. This is set to be two times
Smin» based on the reasoning that the boundary estimate
of the agglomerative merging phase can be at most this
far away from the “true” texture boundary. Setting an
upper limit for the number of iterations ensures that the
process will not wander around endlessly, if the disc is
not able to capture enough information of the local
texture to be stable. According to our experiments the
algorithm generally converges quickly with homogene-
ous textures, whereas with locally stochastic natural
scenes maximum number of sweeps may be consumed.
We did not apply any postprocessing method to improve
the final segmentation result, e.g. by smoothing the tex-
ture boundaries or removing small regions as many exist-
ing algorithms do.

The relationship between the radius r of the disc and
the final segmentation result is obvious. A very small disc
is unstable, producing ragged texture boundaries and
holes inside regions, whereas a very large disc is stable
and produces smooth boundaries, but may fail in locat-
ing the boundaries accurately. We used the final segmen-
tation error as a guide-line in choosing the value of r.
Mosaics #4 (Fig. 7) and #5 (Fig. 8) were processed with
the pixelwise classification algorithm, with r ranging
from 1 to 20. The segmentation errors are plotted as
a function of r in Fig. 4. As expected, the error first
decreases with increasing disc size, reaches the minimum
and then slowly increases as the disc becomes too large to
locate the boundaries accurately. Based on this result we
chose value 11 for radius r.

Fig. 2d shows the final segmentation result after the
pixelwise classification phase, where 16 sweeps were
needed. The final segmentation error (ERR,), computed
over the area processed by the disc which excludes the
border of r pixels, is 1.7%.

4. Experimental results

The segmentation results for four additional texture
mosaics and two natural scenes are presented. The same
set of parameter values was used for all texture mosaics
to demonstrate the robustness of the approach: b = §,
Smax = 04, Spin=16, X =12, Y =20, and r=11. In
each case we provide the original image, the rough
segmentation result after the agglomerative merging
phase and the final segmentation result after the pixel-
wise classification phase. The segmentation results are
superpositioned on the original image. Parameters de-

8'1 T T T 3

4
R O

Fig. 4. Final segmentation error as a function of the radius r of
the disc. The solid line corresponds to mosaic #5 and the
dashed line corresponds to mosaic #6.

Table 1
Parameters describing segmentation of mosaics #1 to #5

Mosaic  MIRy,, MIRy, ERR,(%) ERR,(%) Sweeps

#1 9.5 1.2 14 1.7 16
#2 5.2 1.6 42 1.2 23
#3 8.1 1.2 4.6 1.9 13
#4 4.1 1.3 2.0 1.4 9
#5 2.8 1.2 7.8 2.1 24

scribing segmentation of texture mosaics are given in
Table 1.

Mosaic #2 (Fig. 5a) is a 512 x 512 image containing
four textures made by a GMRF process and a circle of
painted surface in the middle [32]. The more difficult
nature of this problem shows in the values of MIR,,
(5.2) and MIRy; (1.6), which are clearly closer to thre-
shold Y than what was the case with mosaic # 1. Never-
theless, the rough segmentation result (Fig. 5b) with
segmentation error of 4.2% is quite decent. The final
segmentation result (Fig. 5c) after 23 sweeps with seg-
mentation error of 1.2% is excellent.

Mosaic # 3 (Fig. 6a)is a 512 x 512 image with a back-
ground made by a GMRF process and four distinct
regions; the square and the circle are painted surfaces
with different surface roughnesses and the ellipse and the
triangle are made by a fractal process [32]. As we can see
from the values of MIRg,, (8.1) and MIRy; (1.2), the
rough estimate (Fig. 6b) of the texture regions is obtained
relatively easily. The final segmentation result (Fig. 6c)
after 13 sweeps contains only 1.9% misclassified pixels.
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Fig. 5. Texture mosaic #?2.
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Fig. 6. Texture mosaic # 3.

Fig. 7. Texture mosaic #4.

Mosaics #4 (Fig. 7a) and #5 (Fig. 8a) are composed
of textures taken from outdoor scenes [20]. In their
study, Jain and Karu tackled the problem of texture
segmentation with a neural network generalization of the
traditional multichannel filtering method, using various
filter banks for feature extraction. For mosaic # 4, which
is 256 x 256 pixels in size, they obtained a segmentation
error of 3.3% with learned masks in unsupervised mode.
Their method was not strictly unsupervised, though, be-
cause the number of clusters was manually set to five.

Our method achieves a smaller misclassification error of
1.4% (Fig. 7c). The difference between MIR,, (4.1) and
MIRy; (1.3) is considerable, which reflects the reliability
of the analysis.

For mosaic #5, which is 384 x 384 pixels in size, Jain
and Karu reported a labeling error of 6% with Laws’
filters in supervised mode. Our unsupervised method
gives a clearly better segmentation result of 2.1%. Note
that the pixelwise classification clearly improves the re-
sult of the agglomerative merging phase (7.8%). The
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Fig. 8. Texture mosaic #35.

®)

Fig. 9. Segmentation of a mosaic which contains two different orientations of a directional texture.

difference between MIR,, (2.8) and MIRy; (1.2) is still
noticeable, but by far the smallest in the three cases,
reflecting the inherent difficulty of this problem.
LBP/C transform is by definition rotation-variant.
Fig. 9 demonstrates how the segmentation algorithm
works in the case of an edge between two different ori-
entations of a directional texture. The original texture
(D21 from the Brodatz album) was rotated 30° in both
clockwise and counterclockwise direction using cubic in-
terpolation, and the rotated textures were merged into the
200 x 200 mosaic shown in Fig. 9a. This size guarantees
that the edge between the two orientations is not acciden-
tally aligned with the initial blocks which could bias the
result. The same set of parameter values was used as with
texture mosaics # 1 to #5. The final segmentation result
in Fig. 9b contains 66 mislabelled pixels along the edge.
We also applied the texture segmentation method to
natural scenes. The scenes were originally in RGB format
[25], but we converted them to gray-level intensity im-
ages. As an example, scene # 1 (Fig. 10a) is a 384 x 384
image of rocks in the sea and scene #2 (Fig. 11a) is
a 192 x 192 image of a beach, water and foliage. As we

can observe from the image, the textures of natural scenes
are generally more nonuniform than the homogeneous
textures of the test mosaics. Also, in natural scenes adjac-
ent textured regions are not necessarily separated by
well-defined boundaries, but the spatial pattern smoothly
changes from one texture to another. Further, we have to
observe the infinite scale of texture differences present in
natural scenes; choosing the right scale is a very subjec-
tive matter. For these reasons there is often no ‘correct’
segmentation for a natural scene, as is the case with
texture mosaics.

The parameters X and Y primarily control the scale of
texture differences that will be detected. With values
X = 1.1 and Y = 1.5 the rough segmentation results after
the agglomerative merging phase are presented in Figs.
10b and 11b, and the final segmentation results are
shown in Figs. 10c and 11c, respectively. If we decreased
Y further, the segmentation result would contain an
increasing number of regions. The invariance of the
LBP/C transform to average gray-level shows in the
bottom part of the image, where the sea is interpreted as
a single region despite the shadows.
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10. Natural scene # 1.

©

Fig. 11. Natural scene #2.

The results obtained for these natural scenes are very
satisfactory, considering that important color or gray
scale information is not utilized in the segmentation.

5. Discussion

In the presented method texture is described by joint
occurrences of LBP and C. Obvious generalizations are
to use other texture features or feature domains (e.g.
color) and scale. Although LBP/C is a very powerful
texture transform, we expect to achieve better results by
combining a larger number of features in the analysis.
Other powerful texture measures, like distributions based
on gray-level difference histograms or co-occurrence ma-
trices, can be easily incorporated into our algorithm. In
Pietikdinen, Nieminen, Marszalec and Ojala [33] we
demonstrated that a method based on comparison of
feature distributions can be used for high-accuracy color
measurements. This suggests that distributions of color
features could be easily used to find small color differ-
ences between neighboring regions in segmentation.
Color features should make our method efficient for
segmenting images containing color textures, like the
original color images used in the experiments [25]. Fur-

ther, we could consider a particular feature at multiple
scales, by straightforwardly computing the desired fea-
ture for suitably symmetrical discrete neighborhoods of
any size, such as disks or boxes of odd or even size.
A simple way to define a “multiresolution” LBP would
be to choose the eight neighbors of the center pixel from
the corresponding positions in different neighborhoods
(3x3,5x%x5,7x%x17,etc.).

The remaining question is how to combine the mul-
tiple feature channels obtained with several features
and/or scales. We can hardly expect to reliably estimate
joint distributions for a large number of features. Also,
multidimensional histograms with large numbers of bins
are very computationally intensive and consume very
much memory. An alternative is to use an approximation
with marginal distributions and to employ each indepen-
dent feature separately, as a 1-D histogram, to compute
a similarity score such as G for each feature, and then
integrate individual scores into an aggregate similarity
score. This approach has given very promising results in
our texture classification experiments [29] and more
recently in color classification as well [33]. Combining it
with a carefully chosen set of non-redundant com-
plementary features we expect to improve the perfor-
mance of our segmentation method considerably. In
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a similar way, joint pairs of features, like LBP/C, can be
combined with other single features or feature pairs. It
would also be possible to use single features or joint
features one by one, by e.g. first comparing the uniform-
ity of regions with respect to texture and then with
respect to color.

The histogram comparison approach based on the
G test could be replaced with some other related method,
like histogram intersection [34] or a statistical chi-square
test. According to our experience the choice of proper
texture measures is usually a much more important fac-
tor in texture discrimination than the particular method
used for histogram comparison [29]. However, it would
be interesting to study the performances of different types
of approaches in the case of very small image windows.

In recent texture classification studies [35], we have
compared the performance of LBP and other operators
to that of GMRF and Gabor energy features. The image
data included both Brodatz textures and the many differ-
ent texture images available at MeasTex [36] which is an
independent texture classification algorithm evaluation
site accessible in WWW. LBP did well in these classifica-
tion experiments, hence it should be suitable for texture
segmentation as well.

6. Conclusion

We proposed a solution to unsupervised texture seg-
mentation, in which a method based on comparison of
feature distributions is used to find homogeneously tex-
tured image regions and to localize boundaries between
regions. Texture information is measured with a method
based on local binary patterns and contrast (LBP/C) that
we have recently developed. A region-based algorithm is
developed for coarse image segmentation and a pixelwise
classification scheme for improving the localization of
region boundaries.

The method performed very well in experiments. It is
not sensitive to the selection of parameter values, does
not require any prior knowledge about the number of
textures or regions in the image, and seems to provide
significantly better results than existing unsupervised tex-
ture segmentation approaches. The method can be easily
generalized, e.g. to utilize other texture features, multi-
scale information, color features, and combinations of
multiple features.
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