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When you inflate the tires of your bicycle in a warm basement in winter, they tend 
to look a bit flat when you take the bike outside. The same thing happens to a 
 basketball—you need to pump it up before playing outside on a cold day. An empty 
plastic bottle left in a car looks crushed on a chilly morning. What do all those 
 phenomena have in common, and how do we explain them?

BE SURE YOU KNOW HOW TO:
 ● Draw force diagrams (Section 3.1).

 ● Use Newton’s second and third laws  
to analyze interactions of objects  
(Section 3.7 and 3.8).

 ● Use the impulse-momentum principle 
(Section 6.3).

 ● Why does a plastic bottle left in a car 
overnight look crushed on a chilly 
morning?

 ● How hard is air pushing on your body?
 ● How long can the Sun shine?

IN CHAPTER 11, we learned that sound propagates due to the compression and 
decompression of air. But what exactly is being compressed? To answer this 
question and the ones above, we need to investigate what makes up a gas and 
how certain properties of gases can change.

12

Gases
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12.1 Structure of matter  353

12.1 Structure of matter
When we look at objects that surround us, we do not see their internal struc-
ture—water in a cup looks homogeneous, and the cup itself looks like one piece 
of material. However, they must be made up of something. What are the building 
blocks of matter? To begin to answer this question, consider a simple observational 
experiment.

Imagine that you dip a cotton ball in rubbing alcohol and wipe it across a piece of 
paper (Figure 12.1). The wet alcohol strip disappears gradually, with the edges of the 
strip disappearing first. You observe the same behavior when you wipe water or ace-
tone on the paper, except that the water strip disappears more slowly and the acetone 
strip disappears more quickly. This phenomenon is the same one we observe with wet 
clothes and puddles as they dry.

Since the alcohol disappeared gradually, it is reasonable to suggest that it is 
made of “pieces” too small to be seen. If the alcohol were composed of one piece, it 
would be gone all at once. However, the model of small pieces does not explain how 
the disappearance occurs. Let’s try to construct some possible mechanisms that ex-
plain how the alcohol disappears (these mechanisms would also be applicable to the 
drying of water or acetone). Three of the many possible mechanisms are described 
below:

Mechanism 1.  The little pieces of liquid move to the inside of the paper and are still 
there, even though the paper looks dry.

Mechanism 2.  The air surrounding the paper somehow pulls the liquid pieces out of 
the paper.

Mechanism 3.  The pieces of liquid are moving—they bump into each other and 
slowly bump each other out of the paper one by one.

All of these mechanisms seem viable. Testing Experiment Table 12.1 will help us 
decide if we can rule out any of them. To make predictions based on these three mecha-
nisms, we will assume that the pieces comprising the alcohol have mass.

t1 t2 t3 t4

FIGURE 12.1 A disappearing moist strip on a 
piece of paper.

Testing experiment 1 Prediction Outcome

Weigh a dry strip of paper on a sensitive scale. 
Record its mass. Then moisten the paper with alcohol 
and record the mass of the wet paper. What happens 
to the mass of the strip when it dries?

Moist
paper strip

Mechanism 1. If the alcohol pieces go “inside” the 
paper, then the mass of the paper after it dries should 
be greater than it was before it was made wet and 
exactly the same as it was just after it was made wet.

Mechanism 2. If the air is somehow responsible for 
removing the alcohol pieces, then after the paper dries, 
it should have the same mass as it had before it was 
made wet.

Mechanism 3. If the moving alcohol pieces bump 
each other out of the paper, then after the paper dries 
it should have the same mass as it had before it was 
made wet.

After the paper dries, its 
mass is the same as before 
it was made wet.

Conclusion 1

The alcohol pieces left the paper. Mechanism 1 is disproved by this experiment, but Mechanisms 2 and 3 are consistent with it. This leaves us with 
only two possible mechanisms.

TESTING  
EXPERIMENT TABLE 12.1 Testing various mechanisms for the drying of wet objects 

(continued)

VIDEO
TET 12.1
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354  CHAPTER 12 Gases

Based on these experiments, it is reasonable to assume that alcohol and other liq-
uids are composed of smaller objects, called particles, which move randomly in all 
directions. These particles need empty space between them so that particles of other 
materials can move between them, as happened in Experiment 3 in Table 12.1. This 
model of the internal structure of alcohol can be used to explain many other phenomena 
that we encounter—the way some liquids mix or smells spread. In fact, experiments 
such as those described in Table 12.1 could have led the Greek philosopher Democritus 
(460–370 b.c.) to the atomistic model. Atomos in Greek means indivisible. According to 
Democritus, matter was composed of small, indivisible pieces with different shapes and 
properties. Democritus also suggested that the pieces were separated by tiny  regions 
of completely empty space, which is a crucial idea as we understand now. Democritus 
proclaimed, “There is nothing in the world but atoms and empty space.”

In 1827, Scottish botanist Robert Brown was observing pollen in a droplet of water 
through a microscope. To his surprise, the pollen granules were moving randomly, 
stopping, and then continuing in a different direction after each stop. To explain his 
observations, Brown used Mechanism 3—that water itself is composed of particles 
smaller than the granules and these particles move randomly between frequent col-
lisions (Figure 12.2a). The water particles randomly hit the pollen granules from all 
directions and caused random changes in the position of a granule (Figure 12.2b). This 
experiment supported the model of water composed of invisible particles that were in 
continual random motion.

Testing experiment 2 Prediction Outcome

Moisten two strips of paper. Place one inside a sealed 
glass jar attached to a vacuum pump. Place the other 
strip outside the jar. Pump the air from the jar.

Moist
paper

Vacuum

Mechanism 2. If the air is somehow responsible for 
removing the alcohol pieces out of the strip, then the 
strip inside the vacuum jar with little air should dry 
more slowly than the strip outside the jar.

Mechanism 3. If the moving alcohol pieces bump 
each other out of the paper, then the strip inside the 
vacuum jar should not dry more slowly than the strip 
outside the jar.

The paper inside the evacu-
ated jar dries faster.

Conclusion 2

Mechanism 2 is disproved by this experiment. Mechanism 3 is not disproved by it.1 Now we have only one mechanism that has not been disproved.

Testing experiment 3 Prediction Outcome

Add a droplet of  
colored alcohol to a  
glass of clear alcohol.  
What happens to the  
colored droplet?

Mechanism 3. If the small pieces of clear alcohol 
are moving and bumping each other, then they should 
bump the colored pieces and cause them to spread.

The color slowly spreads 
throughout the clear 
alcohol.

Conclusion 3

Mechanism 3 is supported by this experiment.

1Note that while Mechanism 3 was not disproved in Experiment 2, the mechanism does not explain why the strip in the vacuum jar actually dried faster.

Granule

Granule

Granule

The shaded water particle moves randomly
due to collisions with other water particles.

Water molecules collide with the pollen granule
and cause it to move in random directions.

t1

t2

t3

(a)

(b)

FIGURE 12.2 Random motion of water 
 particles and pollen granules.
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In 1905, Albert Einstein constructed a quantitative model to describe the phenom-
enon observed by Brown, called Brownian motion. He predicted the average distance 
that a granule of a certain size would move in a given time interval under specific con-
ditions. Later, Jean Perrin conducted experiments whose outcomes matched Einstein’s 
predictions. Physicists consider Perrin’s experiments strong support for the particle 
structure of matter.

We now know that atoms are the smallest objects that still retain the chemical 
properties of a particular element (hydrogen, oxygen, carbon, iron, gold, etc.). Atoms 
of these various elements combine to build solids, liquids, and gases. A molecule is a 
certain combination of atoms that bond together in a particular arrangement.  Molecules 
may consist of two atoms (such as oxygen, O2, and nitrogen, N2), three atoms (such 
as water—two hydrogen atoms and one oxygen atom, H2O), or many atoms. Protein 
molecules can consist of thousands of atoms. Atoms are composed of  fundamental 
 particles—protons, neutrons, and electrons. We will discuss these fundamental  particles 
later in the book (Chapters 28 and 29). For now, we will use the word particle to  indicate 
an object approximately the size of a molecule or smaller. Our  investigations and the 
history of physics bring us to a particle model of the internal structure of  matter. In this 
model the matter is made of small particles that move randomly. The space between 
the particles is completely empty. We will learn later what conditions affect particle 
motion. We will also learn how these particles interact with each other.

The particle model explains how we can smell things even when we are not near them. 
Suppose we open a bottle of perfume while standing in the middle of a room. Several min-
utes later, people all over the room can smell the perfume. According to the particle model, 
the little particles of perfume leave the bottle and gradually disperse, eventually arriving at 
our nostrils. Since everyone in the room eventually smells the perfume, the perfume par-
ticles must move in all directions. However, it takes time to smell the perfume if you are 
far away from the bottle. Why is that? Perfume particles leaving the bottle move quickly 
but collide with air particles along the way and reach your nose only after many collisions.

If air is composed of tiny particles, and those particles have mass, then air must have 
mass. We can test this hypothesis with another simple experiment. Take two identical 
rigid metal cylinders—one that has had the air evacuated with a vacuum pump, and the 
other filled with air. Then weigh them. If the hypothesis that air has mass is correct, 
the evacuated cylinder should weigh less than the unevacuated cylinder. The cylinder 
filled with air is indeed heavier than the evacuated cylinder (Figure 12.3). However, 
the difference in masses is small, about 7 g for cylinders of about 6 * 10-3 m3 (1.5 gal-
lons). Air particle composition can also help us explain the propagation of sound. The 
propagating disturbances are the regions of air particles closer together or farther apart.

Gases, liquids, and solids
We know from experience that gases are easy to compress, while liquids and solids are 
almost incompressible (Figure 12.4). The particle model helps us explain this differ-
ence: we assume that matter in all states is composed of small particles, but the amount 
of empty space between the particles is different in solids, liquids, and gases. In solids 
and liquids, the particles are closely packed (almost no empty space between them), 
while in gases the particles are packed more loosely (lots of empty space).

Gases tend to occupy whatever volume is available. If you take the air that fills a 
small cylinder and move it to a much larger cylinder, the air also fills the large cylinder 
(Figure 12.5a). In contrast, if we move the liquid filling a small container to a much 
larger container, the liquid volume remains the same independent of the container’s 
shape (Figure 12.5b). Solids maintain not only their volume but also their shape. To dis-
tinguish them from solids, gases and liquids are sometimes called fluids. We will learn 
more about fluid behavior in Chapters 13 and 14.

In order for particles to form a substance, the particles must somehow be attracted 
to each other. We will learn later (in Chapters 17 and 28) that although the nature of 
this attractive force between particles is different from their gravitational attraction for 
each other, there are some similarities between the two types of attraction. For instance, 

The cylinder with air has more
mass than the evacuated cylinder.

Evacuated
cylinder

Cylinder
with air

FIGURE 12.3 Air has mass.

Gas

Gas is
compressed.

Liquid is not
compressible.

FIGURE 12.4 A gas can be compressed, but a 
liquid cannot.

(a)

(b)

The same gas completely fills a
different volume.

The liquid volume remains the 
same regardless of the container.

FIGURE 12.5 Although gases and liquids are 
both fluids, they do not share all the same 
properties.
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in both cases the particles are attracted to each other at a distance, without any direct 
 contact. The behavior of gases indicates that particles in gases must be so far from each 
other that such attractive forces are very small or even negligible. In liquids, the particles 
are closer together, and these new attractive forces between them are strong. In solids 
they are even stronger.

Ideal gas model
From the observed behavior of gases and our explanations based on the particle nature 
of matter, we can conclude that gases will be the easiest to study, as we can neglect the 
interactions of the particles at a distance. We start by constructing a simplified model of 
a gas as a system.

In this model, we assume that the average distance between the particles (molecules 
or atoms) is much larger than the size of the particles. We assume that the gas particles 
are point-like objects that only interact with each other and with any surfaces in their 
containers during collisions (Figure 12.6), similar to the impulsive interactions of a bil-
liard ball with a side of a pool table. In our model the particles do not attract each other 
at a distance the way they do in solids and liquids. We also assume that the motions 
of these particles obey Newton’s laws. Thus, between collisions the particles move in 
straight lines at constant velocity and only change their velocities during collisions. 
 Altogether, these simplifying assumptions make up the ideal gas model.

FIGURE 12.6 Ideal gas model.

Ideal gas model A model of a system in which gas particles are considered 
point-like and only interact with each other and the walls of their container 
through collisions. This model also assumes that the particles and their interac-
tions are accurately described using Newton’s laws.

Ideal in this context does not mean perfect; it means simplified. This is a simplified 
model with certain assumptions. Whether or not this model can be used to represent a 
real gas remains to be seen. Only testing experiments can resolve that issue.

How useful is this new model of a gas? As with our previous models of objects 
(point-like objects, rigid bodies), we will use it to describe and explain known phe-
nomena and then to predict new phenomena. However, so far our model is only qual-
itative. We need to devise physical quantities to represent the features and behavior of 
the model. This process will then allow us to construct a mathematical description of an 
ideal gas and predict its behavior.

REVIEW QUESTION 12.1 Use the particle model to explain how moist objects dry out.

12.2  Pressure, density, and  
the mass of particles

In this section we will identify several new physical quantities that are useful for de-
scribing the properties of the model of an ideal gas. These quantities are also applicable 
to the properties of real gases, liquids, and solids.

Gas pressure
Imagine you are holding an air-filled balloon. Try to crush it a little bit. You feel the bal-
loon resisting the crushing, as if something inside it pushes back on your fingers. You 
might think it is the rubber resisting your squeeze, but what makes the rubber bulge out 
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in the same way in all directions? The balloon is filled with air. As we will learn later 
in this section, the particles of matter (atoms and molecules) are rather small. As air 
particles move randomly in space, they eventually collide with the solid surfaces of any 
objects in that space. In each of these collisions, the particle exerts an impulsive force 
on the object—like a tennis ball hitting a practice wall (see Figure 12.7a). However, 
when a huge number of particles bombard a solid surface at a constant rate, these col-
lisions collectively exert an approximately constant force on the object (Figure 12.7b). 
This impulsive force must be what we feel when we are trying to squeeze the balloon. 
Notice that we have now constructed a model of a process that explains how the motion 
of the particles of gas inside the balloon accounts for the observational evidence—the 
apparent resistance of the balloon to squeezing. This ideal process that we imagined 
serves as a mechanism for what we observe.

We can test this process model with a simple experiment. When we blow up a 
 balloon, filling it with air, we should not forget that there is also air outside the balloon. 
It is this outside air that will help us do the testing experiment described in Testing 
 Experiment Table 12.2.

(a)

(b)

Each ball or particle
exerts an impulsive force
on the wall during a
collision.

Many particles hitting
the wall cause a near-
constant force.

vi
S

vf
S

FIGURE 12.7 Impulsive forces during colli-
sions cause an approximately constant force 
against a wall.

TESTING  
EXPERIMENT TABLE 12.2 Testing the model of moving gas particles pushing on the surface 

Testing experiment Prediction Outcome

Place a partially inflated  
balloon inside a vacuum  
jar. Seal the jar.

What happens to the balloon’s shape when you start 
pumping air out of the jar?

As we remove air particles from outside 
the balloon, the collisions of particles  
on the outside of the balloon are less  
frequent and exert less force on each 
part of the balloon’s outer surface. The 
collision rate of the particles inside the 
balloon does not decrease. Therefore, the 
balloon should expand.

As air outside of the balloon is removed, 
the balloon expands.

Balloon

Vacuum

Air pumped
out

Conclusion

The model of air consisting of moving particles colliding with objects exposed to the air has not been disproved.

Balloon

Air

In normal situations, an extremely large number of gas particles collide each second 
with the surface that is in contact with the gas. For example, about 1023 particles of air 
collide each second with each square centimeter of your skin. Making a force diagram 
for the skin by including these individual particle collision forces is not practical. A 
different approach is needed.

As we have discussed, although each particle collision is impulsive, the forces are 
so small and so frequent that the force exerted by the gas on the walls of the con-
tainer can be modeled as a single constant force. The force also depends on the area 
of that surface—the bigger the area, the more particles push on it during collisions. 
Thus, instead of using force to describe gas processes, we use the physical quantity of 
pressure, which we learned about in Chapter 11.

Pressure P Pressure is a physical quantity equal to the magnitude of the perpen-
dicular component of the force, F# , that a gas, liquid, or solid exerts on a surface 
divided by the contact area A over which that force is exerted (see Figure 12.8):

 P =
F#

A
 (12.1)

A
(area)S

F'

FIGURE 12.8 The quantity pressure.

VIDEO
TET 12.2
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The SI unit of pressure is the pascal (Pa), where 1 Pa = 1 N>m2. In British units, pres-
sure is measured in pounds per square inch (psi). Table 12.3 gives common pressure 
unit conversions.

Pressure is easy to visualize when you think about two solid surfaces that contact 
each other. Compare the magnitude of force you exert on soft snow when wearing 
street shoes versus the magnitude of force that you exert on the snow when wearing 
snowshoes. The magnitude of force that you exert on the snow is the same, but the cor-
responding pressure is not. The snowshoes decrease the pressure you exert on the snow, 
since the force is spread over a much larger area. Similarly, when you decrease the area 
over which the force is spread, the pressure increases. Scissors and knives increase 
pressure on a surface because they decrease the area over which they exert a force.

Does a gas exert pressure inside itself, or does it only press on the walls of its container? 
Let us think about the air in a room. The air particles hitting one wall in the room collec-
tively exert an average force on the wall, and therefore a pressure. However, the air particles 
in the center of the room are not interacting with the wall at all, at least not for the moment. 
Yet the air there has a pressure as well. If a table were placed in the center of the room, the 
air particles would exert an average force, and therefore a pressure, on the top, bottom, and 
sides of the table. Thus, air has a pressure whether or not a solid object is present.

Measuring pressure
Many instruments are used to measure pressure. An aneroid barometer is used to meas-
ure gas pressure directly. The barometer contains a small aneroid cell (Figure 12.8). 
Inside, the cell has almost no air. A lever is attached to the cell’s moveable wall. As 
the outside air pressure on this wall changes, the cell thickness changes, and the lever 
causes a pointer needle on the aneroid barometer to turn, indicating the outside air pres-
sure. Measurements show that the pressure of the atmospheric air at sea level is on 
average 105 N>m2, or 105 Pa. This atmospheric pressure defines yet another unit of 
pressure, called an atmosphere: 1.0 atm = 1.0 * 105 Pa = 1.0 * 105 N>m2.

Another way to measure gas pressure is to compare the pressure of a gas in contact 
with a gauge to the atmospheric pressure, as we did in Chapter 11 when studying sound 
waves. For example, when you use a tire gauge to measure the air pressure in a car tire, 
you are comparing the air pressure inside the tire to that of the atmosphere outside the 
tire. The pressure in the tire is called gauge pressure. If the pressure in a container is 
1.0 atm, its gauge pressure is zero, because there is no difference between the pressure 
inside the container and outside of it.

TABLE 12.3 Pressure units

 1 atm = 1.01 * 105 N>m2 = 14.7 lb>in.2

 = 760 mm Hg

 1 Pa = 1 N>m2 = 1.45 * 10-4 psi

Levers

Pointer

An evacuated aneroid cell gets 
thicker or thinner depending 
on the outside air pressure.

FIGURE 12.9 An aneroid barometer.

Gauge pressure Pgauge Gauge pressure is the difference between the pressure in 
some container and the atmospheric pressure outside the container:

 Pgauge = P - Patm (12.2)

where Patm = 1.0 atm = 1.0 * 105 N>m2.

We are continually immersed in a fluid—the gaseous atmosphere. What is the mag-
nitude of the force that the air exerts on one side of your body?

Represent mathematically To calculate the total force exerted 
by air on the front of your body, multiply your front surface area by 
105 N>m2, the atmospheric air pressure. To estimate the surface area 
of the front of your body, model your body as a rectangular box—your 
height times your width. Assume a height of 1.8 m and a width of 0.3 
m. Use Eq. (12.1) to estimate the force:

FA on F = P # A

QUANTITATIVE EXERCISE 12.1 The force that air exerts on your body

Estimate the total force that air exerts  
on the front side of your body,  
assuming that the pressure of the  
atmosphere is constant.

Air particles
colliding with 
the front of the 
body cause a 
net force on it.
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Density
The quantity mass helps describe solid objects that have discrete real boundaries—a 
person, a car, or a ball. However, air is all around us. We can’t see it, and it doesn’t 
have well-defined boundaries. If we used the quantity mass to describe air, would it be 
the mass of one molecule of air, the mass of the air in a room, the mass of air over the 
street to a certain height, or something else? It’s difficult to visualize air as a macro-
scopic object. For gases, a much more useful physical quantity is the mass of one unit 
of volume—volumetric mass density, or simply density.

Density measures the mass of one cubic meter of a substance. For example, at sea 
level and  0 8C, the mass of  1.0 m3 of air is 1.3 kg. We say that the density of air is 
1.3 kg>m3. If we had 2.0 m3 of air at sea level, its mass would be 2.6 kg. Its density is 
still 1.3 kg>m3, since

2.6 kg

2.0 m3 = 1.3 kg>m3

Density R The density r (lowercase Greek letter “rho”) of a substance or of an 
object equals the ratio of the mass m of a volume V of the substance (for example, 
air or water) divided by that volume V:

 r =
m
V

 (12.3)

The unit of density is kg>m3.

TIP Density is different from mass. Air 
in a room has a particular mass 

and density. If you divide the room into two 
equal parts using a screen, the mass of air in 
each part will be half the total mass, but the 
density in each part will remain the same.

This is the correct unit for density. In Chapter 13, you will learn how to 
decide whether this is a reasonable estimate.

Try it yourself An iron ball with radius 5.0 cm has a mass of 
2.0 kg. Determine the ball’s average density. Explain your answer.

The density of the ball is 3800 kg>m3, much less than the 7860@kg>m3 
density of iron. The ball must be hollow.Answer

QUANTITATIVE EXERCISE 12.2 The density of a person

Estimate the average density of a person.

Represent mathematically Assume the following about the person: 
mass is 80 kg; dimensions are 1.8 m tall, 0.3 m wide, and 0.1 m thick; 
and volume is V < 1.8 m * 0.3 m * 0.1 m = 0.054 m3.

The person’s average density is

r =
m
V

 

Solve and evaluate Substitute the person’s mass and volume into the 
above to get

r =
80 kg

0.054 m3 = 1500 kg>m3

Solve and evaluate FA on F = P # A = 1105 N>m22311.8 m210.3 m24
< 5 * 104 N. That’s 5 * 104 N * 0.22 lb>N = 1.1 * 104 lb,  
or 10,000 lb. So why aren’t you immediately thrown backward?  

(Hint: Think about the force that the air behind you is exerting on you 
as well.)

FY on S=1P#A2+mg=1105 N>m22310.10 m210.20 m24+
10.10 kg219.8 N>kg2=2000 N, or about 450 lb. Since it is not really 
this difficult (although it is not easy!) to lift a rubber sheet off the  
table, under real circumstances there must be a small amount  
of air trapped between the rubber sheet and the table,  
exerting an additional upward force on the sheet.

AnswerTry it yourself What is the minimum force that you must exert  
to lift a 10 cm * 20 cm 0.10-kg rubber sheet that is stuck flat to a  
tabletop? Assume that there is no air below the sheet.
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Mass and size of particles
In 1811, an Italian scientist named Amedeo Avogadro proposed that equal volumes of 
different types of gas, when at the same temperature and pressure, contain the same 
number of gas particles. Using Avogadro’s hypothesis, scientists could determine the 
relative masses of different types of particles by comparing the masses of equal vol-
umes of the gases. Presently, scientists use Avogadro’s number NA to indicate the num-
ber of atoms or molecules present in 22.4 L 122.4 *  103 cm32 of any gas at  08 C and 
standard atmospheric pressure.

The mass in grams of any substance that has exactly Avogadro’s number of parti-
cles is equal to the atomic mass listed in the periodic table of chemical elements. For 
example, the atomic mass of molecular hydrogen is 2, that of molecular oxygen is 32, 
and that of lead is 207; therefore, 2 g of molecular hydrogen, 32 g of molecular oxygen, 
and 207 g of lead all have the same number of particles—exactly NA = 6.02 * 1023. 
This number of particles is called a mole (Figure 12.10).

FIGURE 12.10 A mole (6 * 1023 particles) of 
helium (4 g of helium in the balloon), water  
(18 g), and salt (58 g).

Avogadro’s number and the mole Avogadro’s number NA = 6.02 * 1023 
particles is called a mole. The number of particles in a mole is the same for all 
substances and is the number of particles whose total mass in grams is equal in 
magnitude to the molecular mass as measured in atomic mass units.

The mass of one mole of particles of any substance is called molar mass. One 
mole of hydrogen 1H22 has a mass of 2.0 g, one mole of oxygen 1O22 has a mass of  
32 g, and one mole of lead has a mass of 207 g.

We can now easily determine the mass of a single gas particle of any substance by 
dividing the molar mass of the substance by 6.02 *  1023, the number of particles in 
one mole of the substance:

mparticle =
mmole

NA

We find that air (typically 70% N2 with mN2
= 28 g, 29% O2 with mO2

= 32 g, and 
small percentages of other gases) has a molar mass of about 29 g. Thus, the mass per air 
particle is approximately

mair particle =
29 * 10-3 kg

6.02 * 1023 air particles
= 4.8 * 10-26 kg>air particle

In addition to a particle’s mass, its size is also important. The size of particles was 
estimated much later than the mass—in the 1860s by Josef Loschmidt. Loschmidt 
found the linear size of the particles that made up gases, liquids, and solids to be about 
d < 10-9 m = 10-7 cm = 1 nm. Contemporary methods indicate that the size of 
 nitrogen and oxygen particles is about 0.3 nm.

EXAMPLE 12.3 The average distance between air particles

What is the average separation between nearby gas particles in the air, 
and how does it compare to the size of the particles themselves?

Sketch and translate Sketch the situation as a mole of air divided 
into equal-sized cubes as shown at the right, with one particle located at 
the center of each cube. The diameter of an individual particle is d; the 
average distance between them is D.
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REVIEW QUESTION 12.2 The distance between air particles is very small—about 
3 * 10-7 cm. How can we say that there is considerable empty space in air?

12.3 Quantitative analysis of an ideal gas
We can use the quantities pressure, density, and the mole to construct a mathematical 
description of an ideal gas that will allow us to make predictions about new phenomena.

To start, we make a few more simplifying assumptions. First, in addition to modeling the 
particles (atoms or molecules) as point-like objects whose motion is governed by Newton’s 
laws, assume that the particles do not collide with each other—they only collide with the 
walls of the container, exerting pressure on the walls (in other words, they move like the 
model depicted in Figure 12.6 but with no particle collisions). This is a reasonable assump-
tion for a gas of low density. Second, assume that the collisions of particles with the walls are 
elastic. This makes sense, as the pressure of the gas in a closed container remains constant, 
which would not happen if the particles’ kinetic energy decreased during inelastic collisions.

Now, let’s construct a mathematical description of an ideal gas. Imagine the gas 
 inside a cubic container with sides of length L (see Figure 12.11). A particle moves at 
velocity v

>
 with respect to a vertical wall. When it hits the wall, the wall exerts a force 

on the particle that causes it to reverse direction. Since the kinetic energy of the  particle 
is the same before and after the collision, the same is true for its speed. The wall exerts 
a force on the particle, and the particle in turn exerts an equal-magnitude and  oppositely 
directed force on the wall (Newton’s third law).

Let’s use impulse-momentum ideas to analyze the particle–wall collision. During 
the collision with the right wall, it exerts a normal force on the particle in the negative  
x-direction. Before the collision, the particle has a positive x-component of velocity 
vxi. After the collision, the particle has a negative x-component of velocity vxf. The  
impulse-momentum equation gives

mvxi + FW on P x Dtc = mvxf

3.34 *  10-7 cm
3 * 10-8 cm

< 10 times the size of the particles 1D>d = 102. 
This is a lot of empty space. A macroscopic analogy would be two apples 
separated by about four feet. The empty space between the apples com-
pared to the apple size is similar to the empty space between the particles 
of air compared to their size.

Try it yourself Estimate the distance between water molecules 
in liquid water and compare this distance to their dimensions. The 
density of water is 1.0 * 103 kg>m3. The molar mass of water is 
18 * 10-3 kg>mole.

Simplify and diagram Assume standard conditions, with one  
mole of gas particles occupying a volume of 22.4 *  103 cm3. Now, 
imagine this volume divided equally between the particles (the cubes 
in the figure) and each particle being contained in a cube whose  
volume is D3.

Represent mathematically We determine the volume of the cube 
corresponding to each particle and then take the cube root of that vol-
ume to estimate the average distance between them.

 Vper particle =
Vone mole

Nparticles in a mole

 D = 23 Vper particle = A3 Vone mole

Nparticles in a mole

Solve and evaluate

 D = A3 Vone mole

Nparticles in a mole
= A3  22.4 *  103 cm3

6.02 * 1023 particles

 = 23 3.72 * 10-20 cm3>particle = 23 37.2 * 10-21 cm3>particle

 = 3.34 * 10-7 cm

Recall that the average diameter of a single particle of air is 3 * 10-8 cm. 
Thus, the approximate distance between the particles of air is on average 

The volume occupied by one mole of water is about

Vone mole<118 g2110-3 kg>g2 1000 kg>m3=18*10-6 m3

The volume occupied by one molecule is

Vone molecule<
18*10-6 m3

6*1023=3*10-29 m3

The distance between particles is D<3*10-8 cm. This is just a little 
larger than the size of the molecules, which means there is very little 
space between the water molecules.Answer

Particle speed is the same before
and after these elastic collisions.

v L

L

L x

z

y

FIGURE 12.11 A gas particle bouncing back 
and forth between the walls of a container.
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Because the particle’s speed is the same before and after the collision, vxf = -vxi. In 
addition, because of Newton’s third law, FW on P x = -FP on W x. Thus,

 mvxi + 1-FP on W x Dt2 = -mvxi

 2mvxi = FP on W x Dtc

In the above equation, FP on W x is the impulsive force that the particle exerts on the 
wall during the very short time interval Dt that the particle is actually touching and col-
liding with the wall. How can we determine an average effect of these impulsive colli-
sions in order to determine the pressure of the gas on the wall? We rewrite the right side 
of the equation as the product of the average force exerted by the particle on the wall 
from one collision to the next, multiplied by the time that passes between collisions. 
Note that this average force is much smaller than the impulsive force, since most of 
the time the particle is flying through the container and is not in contact with the wall 
(Figure 12.12). However, the time interval between collisions is longer than the impul-
sive time interval. The product of the big impulsive force and short time interval equals 
the product of the small average force and the long time interval between collisions.

Looking at the x-component of the motion of the particle, we see that the time interval 
between collisions with the wall is Dtbc = 12L>vxi2 since the particle must travel a distance 
2L in the x-direction before colliding with the same wall again. So our equation becomes

2mvxi = FP on W x Dtc = FP on W x Dtbc = FP on W x 
2L
vxi

The bar above the force in the last two expressions indicates that it is the average force ex-
erted over the time interval between collisions. Multiplying by vxi and dividing by 2 gives

mv2
xi = FP on W x L

To relate this microscopic relationship to macroscopic quantities, such as the pres-
sure of the gas and its volume, multiply both sides of the equation by N, the number of 
particles of gas in the container:

Nmv xi
2 = NFP on W x L

Because the particles do not all move with the same speed, we also replace the quantity 
v2

xi (the square of the x-component of the velocity of an individual particle) with its av-
erage value for all the particles:

Nmv2
x = NFP on W x L

and then multiply both sides of the equation by L2>L2:

Nmv2
x = aN 

FP on W x

L2 bL3

The term in parentheses is the pressure exerted by the gas on the wall (the force exerted 
by all N particles divided by the wall area L2.) The L3 outside the bracket is the volume 
occupied by the gas. Thus, the above equation becomes

Nmv2
x = PV

Note that this equation refers only to the motion of the particles along the x-direction. 
The particles also move in the y- and z-directions. Those equations are

 Nmv2
y = PV

 Nmv2
z = PV

To make an equation that simultaneously takes into account the motion of the particles 
in all three directions, we just add these three equations:

Nm1v2
x + v2

y + v2
z2 = 3PV

How does the sum vx
2 + vy

2 + vz
2 relate to v2, the average of the squared speed of a 

 particle? We can think of the square of the speed of any particle at any time as the 
sum of components of velocity along the three axes: v2 = vx

2 + vy
2 + vz

2 (using the 

Impulsive
force

The impulsive force exerted by a particle on
the wall during the short contact time interval
equals the average force exerted by the particle
against the wall during the long time interval
between collisions:  FDtc 5 FDtbc.

Contact
time

Time 
between
collisions

Average
force

L

FDtc

2 L
vxi

FDtbc

Dt 5 

FIGURE 12.12 A method to find the average 
force of particles colliding with the container 
wall.
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 geometrical argument in Figure 12.13). These components are independent of each 
other; this means that the average of the right side of the above v2 equation over time is 
simply the sum of the averages: v2 = vx

2 + vy
2 + vz

2. Because all directions are equiva-
lent, the average of the square of a particle’s velocity in the x-direction is the same as in 
any other direction: vx

2 = vy
2 = vz

2. Therefore, vx
2 = 1

3 v2. Using this new average of the 
squared speed, we can write

Nmv2 = 3PV

The left side of the equation is the average kinetic energy of the particles if we multiply 
by 12. After multiplying by 12 and rearranging the equation, we get

PV =
2
3

 N a 1
2

 mv2b =
2
3

 N K

Dividing by V, we get

 P =
2
3

 aN
V
b a 1

2
 mv2b  (12.4)

v2  5 vx
2  1 vy

2  1 vz
2

vxvz

vy

x

z

y

TIP Every time you derive a new 
equation, ask yourself whether it 

makes sense. In Eq. (12.4), the pressure is 
proportional to the average squared speed 
of the particles. This means that doubling 
the speed of all the particles quadruples the 
pressure. Try to explain this dependence 
before you read on.

When the particles have high speed, they (1) hit the walls of the container more 
 frequently and (2) exert a greater force during the collisions. Both factors lead to a 
greater pressure. Thus, it is the speed squared and not just the speed of the particles that 
affects the pressure.

Suppose the number of particles N and the average of the squared speed of a par-
ticle v2 remain the same, but the volume of the box decreases. Then the pressure must 
increase. This seems reasonable. The smaller the container, the more frequently par-
ticles collide with the walls, and the greater the pressure. A unit analysis with a little 
manipulation indicates that both sides of Eq. (12.4) have the units kg>1m # s22, so the 
equation checks out from the point of view of dimensional analysis.

FIGURE 12.13 Using the Pythagorean theorem, 
we can relate the square of the speed of an 
individual particle at an arbitrary time to the 
squares of the x-, y-, and z-components of 
velocity.

This number seems very high. We know that it takes several minutes for 
the smell of perfume to propagate across a room. How could it take so 
long if the perfume molecules move at hundreds of meters per second 
(about 1000 mph)? We will find out in the next section.

Try it yourself The pressure in a diver’s full oxygen tank is about 
4 * 107 N>m2. What happens to the average speed of the particles 
when some of the oxygen is used up and the pressure in the tank 
drops to half this value? What assumptions did you make?

QUANTITATIVE EXERCISE 12.4 How fast do they move?

Estimate the average speed of air particles at standard conditions, 
when the air is at atmospheric pressure 11.0 * 105 N>m22, and one 
mole of the air particles (6.02 * 1023 molecules) occupies 22.4 L 
or 22.4 * 10-3 m3. Although air is composed of many types of par-
ticles, we will assume that the air particles have an average mass 
mair = 4.8 * 10-26 kg>particle.

Represent mathematically We can estimate the average speed 
using Eq. (12.4):

P =
2
3

 aN
V
b a1

2
 mpv

2b
Solve and evaluate Multiply both sides by 3V, divide by Nmp, and 
take the square root to get

v = A 3PV
Nmp

Inserting the appropriate values gives

 v = A 3PV
Nmp

= B 311.0 * 105 N>m22122.4 * 10-3 m3216.02 * 1023214.8 * 10-26 kg2
 = 480 m>s

If we assume that the only change is in the number of particles in the 
tank, then their average speed should stay the same. However, when a 
gas expands (as this one does when the valve to the tank is opened), the 
gas inside the tank has to push outward against the environment in order 
to leave the tank. This requires energy, which lowers the average kinetic 
energy (and therefore the speed) of the particles inside.Answer

We will learn later that the speed we calculated in Exercise 12.4 has a special 
name—it is called the root mean square speed, or rms speed.
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Time interval between collisions
We estimated that the average speed of air particles is v = 480 m>s, or about 1000 mph. 
Then why does it take 5 to 10 minutes for the smell of perfume to travel across a 
room? Remember that we estimated that the average distance between particles in a 
gas at  normal conditions is about D = 3.3 * 10-7 cm. While deriving our mathematical 
 descriptions of the ideal gas model, we assumed that the particles do not collide with 
each other. Perhaps the gas particles actually do collide with neighboring particles and 
change direction due to each collision, thus making little progress in crossing the room. 
More detailed estimates show that particles collide about 109 times a second under typ-
ical atmospheric conditions. They change direction at each collision, and even though 
they are moving very fast, their migration from one place to another is very slow.

REVIEW QUESTION 12.3 In the expression PV = 1
3 N1mpv

22, pressure is proportional 
to the particle mass times the average squared speed of the particles. Thus, doubling 
the average speed of particles leads to quadrupling the pressure. Explain why this 
makes sense.

12.4 Temperature
So far, we have said nothing about the temperature of the gas. Could there be a connec-
tion between the temperature of a gas and the average kinetic energy of its particles? 
We now consider this idea.

As with other physical quantities, temperature can be measured. A common way 
to measure temperature is with a liquid thermometer. A liquid thermometer consists of 
a narrow tube connected to a bulb at the bottom (Figure 12.14). The bulb and part of 
the tube are filled with a liquid that expands predictably when heated and shrinks when 
cooled. To calibrate a thermometer, one marks the height of the liquid at the freezing 
and boiling conditions of water and then divides this interval by a set number of de-
grees. On the Celsius scale, 100 8C separates the boiling point and freezing point of 
water. On the Fahrenheit scale, 180 8F separates these same points (212 8F for boiling 
and 32 8F for freezing). We’ll discuss the Kelvin scale shortly.

What does temperature really quantify?
We measure the temperature of an object indirectly by measuring the changing volume 
of a liquid that contacts the object. But what is actually different about an object at 
higher temperature compared to an object at lower temperature? Consider the follow-
ing experiments.

Imagine you have kept your inflated beach ball in a cold garage in the winter. When 
you pick it up, it feels soft and looks a little wrinkly. You then bring it into your warm 
house, and it suddenly becomes firmer and bouncier. If you take it back to the garage, 
it becomes soft and wrinkly again. Assuming that the air pressure inside the house and 
garage is the same, the particles of air inside the ball must exert a higher pressure when 
the gas inside the ball gets warmer and a lower pressure when the gas inside the ball 
gets colder. Changing the temperature of the gas therefore seems to change its pressure.

How can we explain that a warmer gas seems to exert a greater pressure on its 
container? We can hypothesize that the particles in the warm gas exert a greater impul-
sive force on the container because they are moving faster, and therefore in addition to 
exerting a greater force during every collision, they collide more frequently with the 
container walls. Conversely, the particles in a cooler gas exert a smaller force on their 
container’s walls because they are moving more slowly and colliding less frequently. 
Based on this reasoning, we can hypothesize that the temperature of a gas is related to 

100
37
0

Water boils
Body temperature

Water freezes

2273

Celsius
(°C)

212
98.6
32

2460

Fahrenheit
(°F)

373
310
273

0Absolute zero

Kelvin
(K)

FIGURE 12.14 Thermometers calibrated for  
(a) Celsius scale, (b) Fahrenheit scale, and  
(c) absolute (Kelvin) scale.

M12_ETKI1823_02_SE_C12.indd   364 23/09/17   10:51 AM



12.4 Temperature  365

the speed of the random motion of its particles. Is the temperature of the gas related to 
any other properties of the gas (the pressure or volume of the gas, or perhaps how many 
particles comprise the gas and how massive they are)?

Let’s do more formal observational experiments. We place three different gases in 
three containers of different but known volumes. A pressure gauge measures the pres-
sure inside each container. The number N of particles (atoms or molecules) in each 
container is determined by measuring the mass of the gas mgas in each container and 
then calculating

N =
mgas

mmolar mass
NA

where NA is Avogadro’s number. Each container, with known V, P, and N for each gas, 
is placed first in an ice water bath and then in boiling water, as depicted in Figure 12.15. 
Notice that the volume, pressure, and the number of particles in each container are dif-
ferent, but the temperature of the matter in the three containers is the same. Collected 
data show the following pattern: independently of the type of gas in a container, the 
ratio PV>N is identical for all of the gases in the containers when they are at the same 
temperature:

PNVN

NN
=

POVO

NO
=

PHeVHe

NHe

The ratio for the gases in the containers at T1 = 0 8C is smaller than that for the gases 
in the containers at T2 = 100 8C.

From these experiments we can conclude that if you have any amount of a particu-
lar type of gas and know its pressure, volume, and the number of particles, then the 
ratio PV>N only depends on the temperature of the gas. Maybe it equals the tempera-
ture? Consider the units of this quantity:1N>m22m3

particle
=

N # m
particle

= J>particle

The joule is a unit of energy, not temperature! Perhaps gas particles at the same temper-
ature have the same average energy per particle. Remember that in the ideal gas model, 
the particles do not have any potential energy between them. This suggests that temper-
ature is related to the average kinetic energy per particle of the gas.

Can we mathematically relate the energy per particle of the gas molecules to the 
temperature of the gas? The simplest relationship is a direct proportionality to the 
temperature:

 
PV
N

= kBT  (12.5)

where kB is a proportionality constant whose value we need to determine (you’ll see 
shortly why we are using the subscript B). Notice that this relationship immediately 
leads to a difficulty. The kinetic energy per particle is always a positive number. But in 
the Celsius and Fahrenheit scales, temperatures can have negative values. So the  particle 
energy cannot be proportional to temperature if measured using either of those scales.

Absolute (Kelvin) temperature scale  
and the ideal gas law
We need a scale in which the zero point is the lowest possible temperature. That way, 
all temperatures will be positive. This lowest possible temperature can be found by 
applying Eq. (12.5) to measurements with a container of gas at two different reference 
temperatures—the freezing and boiling temperatures of water. The data in Table 12.4 
on the next page were collected when a constant volume metal container with 1 mol 

Boiling water 100 °C

Ice water 0 °C

N2 (NN, VN, PN)

O2 (NO, VO, PO)

He(NHe, VHe, PHe)

Pressure
gauge

The ratio of         is the same for different gases 
if in the same temperature bath.

PV
N

FIGURE 12.15 The ratio PV>N seems to 
depend only on the gas temperature.
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We now have two equations with two unknowns: the constant kB and the water 
 temperature T on the new scale.

 3.773 * 10-21 J = kBT

 5.154 * 10-21 J = kB1T + 1002
We subtract the first equation from the second to get kB = 1.38 * 10-23 J>degree. The 
freezing temperature T  of the water is then

T =
3.773 * 10-21 J

kB
=

3.773 * 10-21 J
1.381 * 10-23 J>degree

= 273.2 degrees

On this new scale, water freezes at T = 273.2 degrees above the lowest possible 
temperature. The lowest possible temperature on the new scale is 0 and on the Cel-
sius scale should be -273.2 8C. Considerable modern research has refined this value 
to -273.15 8C. This temperature scale is called the absolute temperature scale or the 
Kelvin scale (because it was invented by William Thomson (Lord Kelvin) in 1848). 
Temperatures are described in kelvin (see the right scale in Figure 12.14). Temperature 
intervals on the Kelvin scale are the same as on the Celsius scale: a change in temper-
ature of 1 C8 is equivalent to a change in temperature of 1 K. Celsius temperatures are 
related to kelvin as follows:

 TK = TC + 273.15 (12.6)

In other words, a temperature of 273.15 K is equivalent to 0 8C.
The constant kB that we determined using the data in Table 12.4 is called 

Boltzmann’s constant after the German physicist Ludwig Boltzmann (1844–1906):

kB = 1.38 * 10-23 J>K

TABLE 12.4 PV ,N for one mole of gas in a 22.4-L container at two different temperatures

Conditions in the bath Pressure Volume
PV
N

5 kBT

Ice water 1T2 1.013 * 105 N>m2 22.42 * 10-3 m3 3.773 * 10-21 J

Boiling water 1T + 1002 1.384 * 105 N>m2 22.42 * 10-3 m3 5.154 * 10-21 J

Temperature conversions

TF = 19>52TC + 328

TC = 15>921TF - 3282
TK = TC + 273.158

TIP Note that Eq. (12.7) implies that 
when the absolute temperature  

of the ideal gas is zero, its pressure must  
be zero.

We can now rewrite Eq. (12.5) using the absolute temperature T  and the value of 
the constant kB:

 PV = NkBT  (12.7)

Equation (12.7) is called the ideal gas law. It is also commonly used in a slightly 
different form. Rather than referring to the number of particles that comprise the gas 
(typically an extremely large number), we refer to the number n of moles of the gas. 
Since one mole has Avogadro’s number of particles, N = nNA. Substituting this into 
Eq. (12.7), we get

PV = nNAkBT

The product of the two constants NAkB is another constant called the universal gas 
constant R. Equation (12.7) then becomes

 PV = nRT  (12.8)

where R = NAkB = a6.02 * 1023 
particles

mole
b a1.38 * 10-23 

J
K
b = 8.3 

J
K # mole

This is the more common form of the ideal gas law.

of  nitrogen (N = NA = 6.02 * 1023 particles) was placed in baths at two different 
 temperatures. If we assume that the ratio PV>N is proportional to the absolute tempera-
ture of the gas, we can find the coefficient of proportionality.
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Temperature and particle motion
Let us look back at what we have done so far. First, we found the relation between 
the pressure and volume of an ideal gas and the average kinetic energy of the par-
ticles that comprise it, PV = 2

3 NK [Eq. (12.4)]. This was a reasonable finding: the 
faster the particles move inside the gas, the more often and the harder they hit the 
walls. The particle mass and the number of them per unit volume N>V  also affect 
the pressure.

Next, we found that the product of the pressure and volume of a gas is related to 
the temperature of the gas, PV = NkBT  [Eq. (12.7)]. We can now connect the average 
kinetic energy of the gas particles to the absolute temperature of the gas. Rearrange Eqs. 
(12.4) and (12.5) so they each have PV>N on the left side. Insert the average kinetic 
energy K = 1

2 mv2 in the right side of Eq. (12.4) and then set the right sides of the two 
equations equal to each other to get

 K = 3
2 kBT  (12.9)

The temperature of a gas is an indication of the average random translational kinetic 
energy of the particles in the ideal gas. Note that temperature is an indication of not 
only the particle’s speed but also its kinetic energy—the mass of the particle also mat-
ters. One implication of this discovery is that when you have a mixture of particles of 
different gases in one container (for example, in air there are nitrogen molecules, oxy-
gen molecules, carbon dioxide molecules, etc.), the lighter molecules move faster than 
the heavier ones, though each species of particles has the same average kinetic energy 
(since each species will have the same temperature once the gas has mixed together 
thoroughly).

Before we move to an example, let’s think more about temperature. Imagine that 
you have two metal containers with identical gases that have been sitting in the same 
room for a long time. One container is large and the other one is small. Which one 
has the higher temperature? Since the average kinetic energy per particle is the same 
in each container, the temperatures of the two gases are the same. However, the total 
kinetic energy of the particles in the large container is larger because it contains more 
particles.

Imagine another scenario: you have two containers with the same type of gas. 
In one container the gas is hot, and in the other it is cold. What will happen if you 
mix those two gases together? The faster moving particles of the hot gas will collide 
with the slower moving particles of the cold gas. If we use the laws of momentum 
and kinetic energy conservation (assuming that collisions are elastic), we find that 
following a collision, the faster moving particle on average is moving slower than 
before the collision, and the slower particle is on average moving faster than be-
fore. Eventually, the particles of the two gases have the same average kinetic energy 
and therefore the same temperature. Physicists say that the gases are in thermal 
equilibrium.

Ideal gas law For an ideal gas, the quantities pressure P, volume V, 
number of particles N, temperature T  (in kelvins), and Boltzmann’s constant 
kB = 1.38 * 10-23 J>K are related in the following way:

 PV = NkBT  (12.7)

The law can also be written in terms of the number of moles n, and the universal 

gas constant R = 8.3 
J

K # mole
 :

 PV = nRT  (12.8)

TIP Only when temperature is measured 
in kelvins can Eq. (12.9) be used to 

calculate the average kinetic energy of the 
particles.
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Using Eq. (12.9) we can determine the square root of the average speed squared of 

gas particles 2v2, called the root-mean-square speed, or rms speed:

 K = 1
2 mv2 = 3

2 kBT  

 1 2v2 = A3kBT
m

 (12.10)

Calculating rms speeds of particles allows us to estimate quantities involved in gas processes.

Solve and evaluate For gas 1, 2v1
2 = A3kBT

m1
; for gas 2, 2v2

2 = A3kBT
m2

. The ratio of the rms speeds is2v1
22v2
2
=

2m22m1

The ratio of the rms speeds is the inverse ratio of the square roots of 
their masses. Therefore, the molecules of smaller mass move faster at 
the same temperature.

QUANTITATIVE EXERCISE 12.5 Comparing speeds for the same temperature

Two different gases (gas 1 has particles of mass m1, and gas 2 has less 
massive particles, of mass m2) are at the same temperature. How do the 
rms speeds of their particles compare?

Represent mathematically Because the gases are at the same tem-
perature, their particles have the same average kinetic energy (Eq. 12.9):

K = 3
2 kBT

Therefore, their rms speeds are 2v2 = A3kBT
m

.

REVIEW QUESTION 12.4 Ken says that the temperature of a gas measured in kelvins 
is the average kinetic energy of the gas particles. Do you agree with him? Support your 
answer with an explanation.

12.5 Testing the ideal gas law
In order to determine if the ideal gas law describes the behavior of real gases, we 
will use the law to predict the outcomes of some testing experiments. If the predic-
tions match the outcomes, we gain confidence in the ideal gas law. In the experiments 
below we will keep one of the variables (T, V, or P) constant and predict the relation 
between the two other variables. Processes in which T, V, or P are constant are called 
isoprocesses. The three types of isoprocesses we will investigate are isothermal 1T = constant2, isochoric 1V = constant2, and isobaric 1P = constant2.

TESTING  
EXPERIMENT TABLE 12.5 Does the ideal gas law apply to real gases? 

Testing experiment Prediction Outcome

Experiment 1: Isothermal 
process. n moles of gas are in a 
variable volume V  container that 
is held in an ice bath at constant 
0 8C (273 K) temperature T. 
How does the pressure of the 
gas change as we change the 
volume of the container? We 
push the piston slowly so that the 
temperature of the gas is always 
the same as the ice bath.

According to the ideal gas law 
PV = nRT, during a constant 
temperature process, the product of PV 
should remain constant. We predict that 
as the volume decreases, the pressure 
will increase so that the product remains 
constant.

Data collected:

  V 1m32    P 1N>m22
3.0 * 10-4   2.0 * 105

6.0 * 10-4   1.0 * 105

9.0 * 10-4   0.67 * 105

The product of volume and 
pressure remains constant in all 
experiments.

V Gas

Liquid 
ice bath

P
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The outcomes of the experiments in Testing Experiment Table 12.5 were consistent 
with predictions based on the ideal gas law, giving us increased confidence that the law 
applies to real gases in the range of temperatures and pressures used in the experiments 
(however, we cannot say that we proved it). A summary of gas processes (some of 
which are not isoprocesses) is provided in Table 12.6, on the next page.

Reflection on the process of  
construction of knowledge
Let’s pause here and reflect on the process through which we arrived at the mathemat-
ical version of the ideal gas law. The first step was to construct a simplified model of 
a system that could represent a real gas—the ideal gas model. This involved making 
assumptions about the internal structure of gases. This model was based on some ob-
servations and also on the knowledge of particle motion and interactions developed 
earlier—Newton’s laws of motion. We used this model to devise a mathematical de-
scription of the behavior of gases, the ideal gas law. We then tested its applicability to 
real gases by using it to predict how macroscopic quantities describing the gas (temper-
ature, pressure, volume, and the amount of gas) would change during specific processes 
(isothermal, isobaric, and isochoric) and used the ideal gas law to construct equations 
that described those processes. These predictions were consistent with the outcomes of 
the new testing experiments.

Testing experiment Prediction Outcome

Experiment 2: Isochoric 
process. n moles of gas and the 
gas volume V are kept constant. 
The container is placed in 
different-temperature baths. 
How does the gas pressure 
change as the temperature 
changes?

According to the ideal gas law 
PV = nRT, during a constant volume 

process, the ratio 
P
T
=

nR
V

 should remain 

constant. We predict that the pressure 
should increase in proportion to the 
temperature.

Data collected:

 T 1K2   P 1N>m22
   300   1.00 * 105

   350   1.17 * 105

   400   1.33 * 105

The ratio of pressure and 
temperature is constant in all 
experiments.

Experiment 3: Isobaric 
process. n moles of gas and 
the gas pressure P are held 
constant, as a frictionless piston 
in the gas container can move 
freely up and down keeping 
the pressure constant. The 
pressure inside the container 
is the sum of the constant 
atmospheric pressure and the 
pressure exerted by the object 
on top of the piston. How does 
the gas volume change as the 
temperature changes?

According to the ideal gas law 
PV = nRT, during a constant pressure 

process, the ratio 
V
T
=

nR
P

 should remain 

constant. We predict that the volume 
should increase in proportion to the 
temperature.

Data collected:

  T 1K2    V 1m32
    300   3.0 * 10-4

    350   3.5 * 10-4

    400   4.0 * 10-4

The ratio of volume and 
temperature remains constant in 
all experiments.

Conclusion

The outcomes of all three experiments are consistent with the predictions.
 ● In the first experiment, the product of pressure and volume remains constant, as predicted.
 ● In the second experiment, the pressure increases in direct proportion to the temperature, as predicted.
 ● In the third experiment, the volume increases in direct proportion to the temperature, as predicted.

T

P

T

V

Friction-
less
piston
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The process of constructing the knowledge described above looks relatively 
smooth and straightforward—observe, simplify, explain, test. However, in real phys-
ics, knowledge construction is not that simple and straightforward. For example, the 
isoprocesses mentioned above were known in physics long before the ideal gas model 
was constructed. They were discovered in the 17th and 18th centuries and carried the 
names of the people who discovered them through patterns found in observational ex-
periments. The relation PV = constant for constant temperature processes is called 
Boyle’s law and was discovered experimentally by Robert Boyle in 1662. The rela-
tion V>T = constant for constant pressure processes is called Charles’s law and was 
discovered by Jacques Charles in 1787, though the work was published by Joseph 
Gay-Lussac only in 1802. Gay-Lussac also discovered the relation P>T = constant, 
now called Gay-Lussac’s law. When these relations were discovered empirically, there 
was no explanation for why gases behaved in these ways. The explanations arrived 
much later via the ideal gas model. The real process of knowledge construction is often 
more complicated and nonlinear than how it is presented in a textbook. The skills you 
are learning by constructing knowledge through experimentation will prepare you for 
those more complicated situations.

Applications of the ideal gas law
The ideal gas law has numerous everyday applications. Try to explain the following 
phenomena using the ideal gas law. Clearly state your assumptions.

 ● A sealed, half-full plastic bottle of water shrinks when placed in the refrigerator.
 ● A refrigerator’s door is difficult to open again right after you opened and closed it 
the first time.

 ● A bubble of gas expands as it rises from the bottom of a lake.
 ● Air rushes into your lungs when your diaphragm, a dome-shaped membrane, 
contracts.

TABLE 12.6 A summary of ideal gas law processes

 
Name

Constant  
quantities

Changing  
quantities

 
Equation

Graphical  
representations

Isothermal N or n, T P, V  PV = constant
 P1V1 = P2V2

 T

2

1

P

 V

2

1

P

 T

1

2

V

Isochoric N or n, V P, T
 
P
T
= constant

 
P1

T1
=

P2

T2
 T

2

1

P

 

2

1
V

P

 T

1 2

V

Isobaric N or n, P V, T
 
V
T
= constant

 
V1

T1
=

V2

T2  T

P

2 1

 

2 1

V

P

 

1

2
T

V

[No name] N or n P, V, T
 
PV
T

= constant

 
P1V1

T1
=

P2V2

T2

[No name] P, V, T, 
N or n  

PV
NT

= kB

 
PV
nT

= R 
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Below we consider in greater detail two of these phenomena.

Breathing During inhalation, our lungs absorb oxygen from the air, and during exha-
lation, they release carbon dioxide, a metabolic waste product. Yet the lungs have no 
muscle to push air in or out. The muscle that makes inhaling and exhaling possible, the 
diaphragm, is not part of the lungs. The diaphragm is a large, dome-shaped muscle that 
separates the rib cage from the abdominal cavity (see Figure 12.16).

The diaphragm works like a bellows. As the diaphragm contracts and moves down 
from the base of the ribs, the volume of the chest cavity and lungs increases. If we 
assume that for a brief instant both the temperature and the number of particles are 
constant (an isothermal process),

P =
nRT
V

then the pressure in the cavity and in the lungs will decrease. The pressure of the out-
side air is greater than that of the inside. Because of this, the outside air at normal 
atmospheric pressure enters the mouth or nostrils and fills the lungs with fresh new air 
(an increase Dn 7 0 of the amount of air). During exhalation, the opposite occurs. The 
diaphragm relaxes and rises, decreasing the volume of the chest cavity and the lungs, 
thus increasing the pressure inside (again assuming that for a brief instant both the tem-
perature and the number of particles are constant),

P =
nRT
V

Because the inside pressure is higher than the outside pressure, air is then forced out of 
the lungs.

Your water bottle on an airplane The behavior of an empty plastic water bottle on 
an airplane is another example of an isothermal process.

Inhaling Exhaling

Diaphragm
contracting

Diaphragm
relaxing

Diaphragm contraction and relaxation cause air
to enter and leave the lungs.

FIGURE 12.16 The diaphragm is a large,  
dome-shaped muscle that separates the rib 
cage from the abdominal cavity. Relaxing  
or contracting the diaphragm changes the  
volume of the lungs and chest cavity.

CONCEPTUAL EXERCISE 12.6 

were hitting the outside walls of the empty bottle than were hitting the 
inside. The higher pressure from outside partially crushed the bottle. If 
you open the cap after landing, the bottle will pop back to its original 
shape.

Try it yourself A different process  
is represented on a graph at right.  
Describe the process in words.  
Assume the mass to be constant.

T

P

i

f

A shrunk bottle

On a flight from New York to Los Angeles you drink all of a bottle of 
water, close the cap, and then store it in your seat pocket. You take it out 
right after landing. The bottle has changed shape; it looks like someone 
crushed it. How can we explain this shape change?

Sketch and translate The bottle’s volume decreased, though the 
temperature in the cabin didn’t change much during the flight.

Simplify and diagram If we assume the bottle was perfectly sealed, 
and the temperature of the gas inside the bottle remained constant,  
then we can model the process as an isothermal process, represented 
graphically in the figure below.  
Although the cabin is pressurized,  
at higher elevations air pressure  
and air density inside the cabin  
are less than at lower elevations.  
You closed the bottle when it  
was filled with low-density air  
at high elevation. As the plane  
descended, the air density and  
pressure inside the cabin  
increased. More air particles  

The graph represents an isochoric process. The graph line, if extended, 
passes through the origin; thus the pressure is directly proportional to 
temperature. The gas was in a sealed container. The gas container was 
first placed in a water bath at low temperature and then transferred to a 
water bath at high temperature. The volume of the gas is constant. The 
pressure increases as the particles move faster and collide with the walls 
of the container more often.Answer
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Comparing different gases
How does the type of gas that is in a container affect the pressure of the gas? Consider 
the next Conceptual Exercise.

CONCEPTUAL EXERCISE 12.7 

must also be the same. Since the surface areas of the two pistons are the 
same, the  pressure of the gas inside each container must be the same, 
PN2

= PHe.

The downward forces on each piston are the
same, so the upward force is also the same.

(b) Since the temperature of a gas depends only on the average kinetic 
energy of the particles, and the temperature of the two gases is the same, 
the average kinetic energy of each particle is the same:

3
2

 kBT =
1
2

 mN2 in 1vN2 in 1
2 =

1
2

 mHe in 2vHe in 2
2

(c) and (d) Since the N2 particles in gas 1 have a higher molar mass than 
the He particles in gas 2, the N2 molecular mass m = M1>NA is also the 
higher mass 1mN2 in 1 7 mHe in 22. Using this result and that from (b), we 
find that vN2 in 1

2 6 vHe in 2
2 . The more massive particles move slower.

(e) The pressure, volume, and temperature are the same for both gases. 
Thus, according to the ideal gas law, both gases have the same number 
of particles and the same number of moles of gas in their containers 1PV>kBT = N; PV>RT = n2.

(f) and (g) Since the mass of a nitrogen molecule is greater than the 
mass of a helium atom, and there are equal numbers of particles in 
each container, the total mass of the gas in the nitrogen container 
must be greater than the total mass of the gas in the helium container 1MN2 in 1 7 MHe in 22. Since the volumes of the containers are equal, the 
density r = M>V of the gas in the nitrogen container must be greater 
than that in the helium container 1rN2 in 1 7 rHe in 22.

Try it yourself Why are the gases at the same temperature?

Both containers sit in the same room temperature  
environment.Answer

Analyzing two types of gas

You have two containers, both with pistons of equal mass that can 
move up and down depending on the pressure of the gas below. Each 
container has a nozzle that allows you to add gases to the containers. 
Container 1 holds nitrogen (molar mass M1); we label its volume V1. 
Container 2 1V22 holds helium (molar mass M2 6 M1). The volumes 
are the same 1V1 = V22, and the containers sit in the same room. What 
physical quantities describing the gases inside the two containers can 
we compare?

Sketch and translate We sketch the situation in the figure below. 
Quantities that we can try to compare between the two containers are 
the following:

(a) the pressure inside the containers
(b) the average kinetic energy of a particle of each type of gas
(c) the mass of individual gas particles
(d) the rms speed of the particles in each container
(e) the number of particles in each container
(f) the mass of the gas in each container
(g) the density of the gas in the containers

Simplify and diagram Assume that the ideal gas model accurately 
describes the gases.

(a) Consider the pressures inside the containers by analyzing the 
 identical movable pistons above the gases. Force diagrams for both 
pistons are shown at above right. Earth exerts a downward force 

u
FE on P 

on the piston, the atmospheric gas above a piston pushes down on the 
piston 

u
FAtm on P, and the gases inside the containers push up on their 

pistons 
u
FN2 on P or 

u
FHe on P. As the pistons are not accelerating, the net 

force exerted on each is zero. Because the downward forces exerted by 
Earth and by the outside atmospheric air on each piston are the same, 
the upward forces exerted by the gases in each container on the piston 

REVIEW QUESTION 12.5 What is the difference between the following two equa-
tions: PV = 1

3 Nmv2 and PV = nRT?
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12.6 Speed distribution of particles
In our previous analysis, we defined the rms speed of gas atoms or molecules:

 vrms = 2v2 = A3kBT
m

 (12.10)

We found that for air molecules at room temperature, the rms speed was about 
500 m>s. When we derived relationships such as these, we assumed for simplicity that 
gas particles do not collide with each other, just with the walls of a container. However, 
we know that if gas particles did not collide, the smells of food and perfume would 
spread at hundreds of meters per second—almost instantly. The smells spread slowly, 
so the particles must be colliding. What happens if we no longer ignore collisions of 
particles with each other?

Maxwell speed distribution
In 1860 James Clerk Maxwell included the collisions of the particles in his calculations 
involving an ideal gas. This inclusion led to the following prediction: at a particular tem-
perature, the collisions of gas particles with each other cause a very specific distribution of 
speeds. When we were deriving Eq. (12.4) we assumed that the speeds of the particles were 
different, but we did not have any idea of why they were different. Maxwell’s work ex-
plained this variability of speeds by the collisions of the particles with each other. Consider 
the red H2 line (hydrogen atoms) in Figure 12.17. On the vertical axis, we plot the per-
centage of particles that have a particular speed. According to Maxwell, a certain percent-
age of the particles should have speeds around 1000 m>s, but the most around 1500 m>s,  
and fewer at higher speeds. Very few particles have extremely low or extremely high 
speeds. Most should have intermediate speeds. The most probable speed is at the highest 
point on the curve in Figure 12.17. Surprisingly, the rms speed of the particles at a particu-
lar temperature is the same as that predicted by the model with no collisions—Eq. (12.10).

Maxwell’s distribution of molecular speeds allows us to explain some very inter-
esting observational evidence. You know that our atmosphere contains molecules of 
oxygen, nitrogen, carbon dioxide, water, and so forth, but it has almost no hydrogen 
molecules. Why is there so little free hydrogen in the Earth’s atmosphere? Recall from 
Chapter 7 that every planet has a specific value of escape speed—the speed that an object 
needs to have to escape the gravitational pull of that planet. For Earth, this speed is about 
 11 km>s = 11,000 m>s. In Quantitative Exercise 12.4 we estimated the rms speed of 
an air molecule to be about 480 m>s. The most probable molecular speed according to 
Maxwell’s distribution is a little smaller. We also know that the lighter the molecules, 
the faster they move at the same temperature. Assuming that a hydrogen molecule is 
about 15 times less massive than an average air molecule, we can say that its rms speed 
at the same temperature should be about 4 times higher (see the reasoning in Quanti-
tative Exercise 12.5), but it is still much smaller than the escape speed. Based on this 
estimate, we should have an atmosphere full of hydrogen molecules. What is wrong with 
our reasoning?

We did not take into account the shape of Maxwell’s distribution of molecular 
speeds (Figure 12.17). The tail of the distribution shows that there are molecules with a 
speed that is much faster than the most probable speed. These molecules might escape. 
As soon as the fastest molecules leave, more molecules, colliding with other molecules, 
might acquire the speeds in the tail of the distribution and leave, too. This process will 
repeat until almost all light molecules are gone. Is this reasoning correct? Surely there 
are some oxygen or nitrogen molecules that have very high speeds—why don’t they 
eventually escape? It turns out that the answer lies in the word probability. The like-
lihood (or probability) of the escape of a hydrogen molecule at 10 8C (50 8F) is 300 
orders of magnitude higher than that for the molecules of oxygen or nitrogen. It is the 
interplay between escape speed (gravitational interaction) and the Maxwell distribu-
tion of molecular speeds (gas processes) during the 4.6-billion-year history of our solar 
 system that determines what kind of atmosphere a particular planet has.
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FIGURE 12.17 The Maxwell particle speed 
distributions at a particular temperature for 
two gases.
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Limitations of the ideal gas law
Isoprocesses were discovered empirically with experiments long before the model of 
an ideal gas was constructed. However, the fact that the ideal gas law predicts those 
 empirical results is evidence that the law itself and the ideal gas model on which the 
law is based can be applied to real gases in certain conditions (although real gases 
are made of molecules that have internal structure and the ideal gas model assumes 
 point-like particles). Nevertheless, the ideal gas law has limitations.

For real gases such as air, the measurements of pressure and volume at the condi-
tions of normal pressure 11.0 * 105 N>m2, as elsewhere2 and temperature (room tem-
perature) are consistent with predictions of the ideal gas law. But at very high pressures 
or very low temperatures, real measurements differ from those predictions (for exam-
ple, the ideal gas law does not predict that one can turn a gas into a liquid). The ideal 
gas law describes gases accurately only over certain temperature and pressure ranges.

REVIEW QUESTION 12.6 Why do we need the term “probability” when we explain the 
absence of free hydrogen in Earth’s atmosphere?

12.7  Skills for analyzing processes 
using the ideal gas law

In this section, we adapt our problem-solving strategy to analyze gas processes. A gen-
eral strategy for analyzing such processes is described on the left side of the table in 
Example 12.8 and illustrated on the right side for a specific process.

Applying the ideal gas lawPROBLEM-SOLVING  
STRATEGY 12.1 

Scuba diver returns to the surfaceEXAMPLE 12.8 

The pressure of the air in a scuba diver’s lungs when she is 15 m under the water surface 
is 2.5 * 105 N>m2 (equal to the pressure of the water at that depth), and the air occupies 
a volume of 4.8 L. Determine the volume of the air in the diver’s lungs when she reaches 
the surface, where the pressure is 1.0 * 105 N>m2.

The gas inside the diver’s lungs is the system. The initial state of the system is when the 
diver is underwater; the final state is when she is at the surface. As the diver swims upward, 
the pressure of the system decreases and its volume increases.

Sketch and translate
 ● Sketch the process. Choose a system 
and describe the initial and final 
states of the system.

 ● Label the knowns and the unknowns 
on the sketch.

 ● Describe the process (a word 
description of the changes in the 
system between the initial and final 
states) in terms of macroscopic 
quantities (pressure, volume, 
temperature, moles of gas).
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Represent mathematically

Use your sketch or the graphs to help 
construct a mathematical description—
some version of the ideal gas law.

Solve and evaluate
 ● Solve for the unknowns.
 ● Evaluate the answer: is it reasonable? 
(For example, evaluate the 
magnitude of the answer, its units, 
and how the solution behaves in 
limiting cases.)

Assume that the gas inside the lungs can be modeled as 
an ideal gas. Assume that the diver does not exhale, which 
means that the moles of gas remain constant. Assume the 
temperature of the gas is constant at body temperature. A 
pressure-versus-volume graph for the process is shown at 
right.

PiVi = PfVf 1  Vf =
PiVi

Pf

Vf =
PiVi

Pf
=

12.5 * 105 N>m2214.8 * 10-3 m3211.0 * 105 N>m22 = 12 * 10-3 m3

We found the lung volume to be 12 L, much larger than seems possible. Is the answer 
 realistic? Remember that we assumed that the mass of the gas inside remains constant—
the diver does not exhale. As we see from the solution, it is important for divers to exhale 
as they are ascending and the gas expands. If not, they can suffer severe internal damage.

Try it yourself How many moles of gas are in the diver’s lungs and how many should 
she exhale so the final volume is only 6 L instead of 12? Assume that the gas tempera-
ture is 37 8C.

Answer

Simplify and diagram
 ● Decide if the system can be modeled 
as an ideal gas.

 ● Decide which macroscopic quantities 
remain constant and which do not.

 ● If helpful, draw P vs. V, P vs. T, 
and/or V vs. T  graphs to represent 
the process.

0.47 moles; 0.23 moles.

TIP Notice that the graph lines for isobaric processes (constant pressure) pass 
through the origin in V-versus-T graphs and those for isochoric (constant 

volume) processes pass through the origin in P-versus-T graphs.

the closed bottle home, turn it upside down into a bowl of water (Figure 
c), and open it. The bottle expands to its normal size, letting 150 mL 
of water into the bottle (Figure d). You measure the total volume of the 
bottle to be 550 mL. Use this information to estimate the pressure in the 
airplane cabin.

EXAMPLE 12.9 Further investigation of an airplane bottle

In Conceptual Exercise 12.6 you qualitatively investigated the behavior 
of a plastic bottle on a long flight. On your next long flight, you decide 
to investigate the shrinking bottle phenomenon quantitatively. In the 
middle of the flight you open a bottle (Figure a) and then close it again. 
When you land, you observe that the bottle shrinks (Figure b). You take 

(a) (b) (c) (d)

(continued)
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REVIEW QUESTION 12.7 Why is it helpful to know whether the mass of the gas is 
constant during a particular process?

12.8  Thermal energy, the Sun,  
and diffusion

We’ve seen that the ideal gas model can be applied to many real-world situations as long the 
gas particles do not interact with each other (they are far apart and/or the pressure and tem-
perature are not extreme). In this section we will look at two more everyday phenomena: 
the Sun shining and gas diffusion. In order to get started, we need to quantify something for 
gases that we’ve only discussed qualitatively in the textbook so far: thermal energy.

We learned in Chapter 7 that thermal energy is the component of the internal energy 
of a system that is associated with temperature. We know from Eq. (12.9) that the tem-
perature of an ideal gas is determined by the average kinetic energy K of its randomly 
moving particles. We can now therefore define the gas’s internal thermal energy or 
just thermal energy, Uth, as the sum of all the individual particles’ kinetic energies. 
This is equal to NK, where N is the number of particles. Using Eq. (12.9), this gives

Uth = N 13
2 kBT2

How long can the Sun shine?
The thermal energy of gases can be used to help analyze many kinds of systems, such 
as automobile engines, Earth’s atmosphere, and the Sun. The mass of the Sun is about 
2 * 1030 kg, its radius is about 7 * 108 m, and the temperature of the Sun’s surface is 

0.75*105 N>m2.Answer

Sketch and translate The air inside the bottle is the system. The 
initial state is when you open the bottle on the cruising airplane. The air 
fills the whole bottle (V1 = 550 mL) at the pressure inside the airplane 
(P1). When the plane lands, the volume decreases to VL (the bottle is 
crushed) and the pressure inside the bottle increases to PL. The L state is 
an intermediate state in the process. The final state is when you open the 
bottle at home and water is let in. The volume of air in the bottle is now 
V2 = 550 mL - 150 mL = 400 mL. The pressure inside is P2. We need 
to determine the pressure P1. We already know why the bottle shrinks when 
the plane lands. But why does the water enter the bottle? Even though the 
atmospheric air crushes the bottle, the pressure inside is probably still less 
than atmospheric due to the semiflexible walls of the bottle that tend to 
return the bottle to the original shape. When the bottle is opened under the 
water, the pressure difference pushes water into the bottle. In addition, the 
bottle expands, returning to its original shape, which helps let water into the 
bottle. This process stops when the pressure of the air in the bottle is equal 
to the atmospheric pressure outside the bottle. Thus P2 = Patm.

Simplify and diagram We 
assume that the temperature in the 
airplane was the same as at your 
home (T1 = T2). Thus the process 
is isothermal. We can represent the 
process that the gas in the bottle 
went through with the P-versus-V 
graph at right.

Represent mathematically We can now express the graphical 
representation with an equation for an isothermal process: P1V1 = P2V2. 

Dividing both sides by V1 we get P1 = P2 
V2

V1
. Now we see that we do 

not need to convert ml of volume into m3 because the units for volume 
cancel.

Solve and evaluate

P1 = P2 
V2

V1
= 11.0 * 105 N>m22 

400 mL
550 mL

= 0.73 * 105 N>m2

The result seems reasonable: the pressure during flight is lower than the 
atmospheric pressure at the ground.

Try it yourself Your sister happens to measure the temperature 
while you are performing the experiments on the airplane and at 
home. Her data are Tflight = 80 8F and Thome = 67 8F. Use her data 
to improve your previous estimation of the pressure during the flight.
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about 6 * 103 K. Its core temperature is about 107 K. Every second, the Sun radiates 
about 4 * 1026 J as visible light and other forms of radiation. How long can our Sun 
shine if its particles possess only thermal energy?

We first need to determine how much thermal energy the Sun possesses. Then we 
can divide this amount of energy by the amount it loses every second from the emission 
of visible light and other forms of radiation to find the number of seconds the Sun can 
shine if its thermal energy is the only source of this radiative energy. Although in reality 
there are some complications with modeling the material of the Sun as an ideal gas, we 
will do so in this case for simplicity.

To estimate the thermal energy of the Sun, we need to know the number of particles 
and the average temperature of these particles. The Sun consists mostly of hydrogen 
atoms. To find the number of hydrogen atoms in the Sun, we estimate the number of 
moles of hydrogen gas and then multiply by the number of particles in one mole (note 
that 1 mole of hydrogen has a mass of 1 g = 10-3 kg):

 N =
mSun

mhydrogen atom
=

mSun

Mmolar mass hydrogen>NA

 =
12 * 1030 kg2

 110-3 kg>mole2>16 * 1023 particles>mole2
 =

12 * 1030 kg2
 11.7 * 10-27 kg>particle2 = 12 * 1056 particles

At the very high temperatures within the Sun, each hydrogen atom separates into two 
smaller particles called an electron and a proton—subjects of later study. This separa-
tion of hydrogen atoms doubles the number of particles to 24 * 1056. We can show that 
the average distance between these particles is much greater than their dimensions, and 
thus we can apply the ideal gas model to the Sun’s material.

These particles do not spread out into space or collapse in toward the center of 
the Sun because two competing forces remain in balance. All parts of the Sun exert 
a gravitational force on all other parts. If we select a small volume inside the Sun as 
the system of interest and add the forces that all other particles of the Sun exert on the 
 system (see Figure 12.18), the net gravitational force points toward the center of the 
Sun. The second force exerted on the system is the pressure force exerted by other 
 particles on the system. This force points outward and balances the gravitational force. 
As long as these forces balance each other, the Sun is in equilibrium and does not 
 expand or collapse.

Now consider the total thermal energy of the Sun’s particles for two extreme cases. 
A lower bound for the Sun’s thermal energy assumes its temperature throughout equals 
its surface temperature. An upper bound for the Sun’s thermal energy assumes its tem-
perature throughout equals its core temperature.

 Uth min = 3
2 NkBTmin

 = 3
2 124 * 1056 particles211.38 * 10-23 J>K216 * 103 K2 = 3 * 1038 J

 Uth max = 3
2 NkBTmax

 = 3
2 124 * 1056 particles211.38 * 10-23 J>K21107 K2 = 5 * 1041 J

Both numbers are so large that they imply that the Sun will shine for a long time. 
The life expectancy of the Sun in seconds (based on the thermal energy alone) equals 
the total thermal energy divided by the energy radiated per second, L = 4 * 1026 J>s. 
We can convert our result to years, noting that there are about 3 * 107 s in 1 year.

System

This small volume of gas (the system) is kept in
equilibrium by the gravitational force and pressure
force exerted on it by other particles in the Sun.

S
FPressure

S
FGravitational

FIGURE 12.18 Gas in the Sun is in equilibrium 
due to two forces.
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Dtmin =
Emin

L
=

3 * 1038 J
4 * 1026 J>s

= 7.5 * 1011 s =
7.5 * 1011 s

3 * 107 s>year
= 2 * 104 years

Dtmax =
Emax

L
=

5 * 1041 J
4 * 1026 J>s

= 1.2 * 1015 s =
1.2 * 1015 s

3 * 107 s>year
= 4 * 107 years

The maximum possible lifetime for the Sun if it simply converts its thermal energy into 
light and other forms of radiation is 4 * 107 years, or 40 million years. Yet according 
to astronomical knowledge of stars and our solar system, the Sun has been shining in 
the same way for over 4 billion years. Thus this simple estimate suggests that either the 
Sun’s material cannot be modeled as an ideal gas or some source of energy other than 
the thermal energy of the Sun’s particles has been supporting its existence for a time 
interval equal to the age of Earth. As the ideal gas model explains many phenomena 
occurring on the Sun, it means that there must be another energy source within the Sun 
that far exceeds the thermal energy present. (We will learn about it in Chapter 29.)

Diffusion
Imagine that you fill a balloon with air and leave it for one hour. The balloon looks the 
same; it did not change. You fill another balloon with carbon dioxide (CO2); after one 
hour the balloon is significantly smaller. Why do the balloons look different?

One possible explanation is that the balloon rubber interacts differently with dif-
ferent molecules. If we hypothesize that CO2 molecules can easily pass through it, but 
other molecules in air cannot, then we can create a simple model of the process. To 
indicate that CO2 molecules interact differently with the balloon than other air mole-
cules, we will represent CO2 molecules with red dots and other air molecules (mostly 
nitrogen and oxygen) with blue dots (Figure 12.19). Blue dots cannot pass through the 
wall. They bounce off the wall either immediately or after some time. This happens to 
air molecules inside the first balloon (Experiment 1) and outside both balloons. Red 
dots inside the balloon in Experiment 2 move randomly inside the balloon and slowly 
migrate through the wall to the outer surface, where their concentration is smaller. They 
then leave the surface, traveling randomly in all directions.

In our model, CO2 molecules outside the balloon can as easily get into the balloon 
as get out of it, so why does CO2 leak out? Remember that the concentration of CO2 
molecules inside the balloon is much higher than that outside. Many more CO2 mole-
cules leave the balloon than come back in (Experiment 2), while the air molecules from 
outside cannot get into the balloon at all. This imbalance in the behavior of different 
molecules explains why the balloon deflates.

We can test this explanation with another simple experiment. Place an air-filled 
balloon into a container filled with CO2. If our explanation is correct, then the CO2 
molecules from outside the balloon should pass through the rubber into the balloon. Air 
molecules cannot get out of the balloon (Experiment 3). The balloon should therefore 
expand and eventually burst. This is exactly what happens!

The process of molecules moving, due to their random motion, from a region 
of higher concentration to a region of lower concentration is called diffusion. The 
 explanation of diffusion follows from the ideal gas model. Diffusion plays an important 
role in biological processes. Oxygen is carried by hemoglobin in the blood from the 
heart to the tiny capillary vessels spread throughout the body. Oxygen diffuses from the 
 oxygen-rich blood inside the capillaries to the oxygen-poor cells near the capillaries. 
Some of these cells may be muscle fibers. Since a muscle fiber needs oxygen to twitch, 
the action of muscles may be limited by the rate of oxygen diffusion into the fiber. 
Thus, diffusion limits the rate of some processes in our bodies.

REVIEW QUESTION 12.8 How do we know that the Sun’s thermal energy is not the 
main source of the light energy it produces?

Experiment 1: Air balloon in air

Initially After
1 hour

Experiment 2: CO2 balloon in air

Experiment 3: Air balloon in CO2

FIGURE 12.19 Testing the model of air 
 molecule movement through semipermeable 
balloons.
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Pressure P The perpendicular component of the 
force F that another solid object or a gas or liquid 
exerts perpendicular to a  surface of area A divided 
by that area. (Section 12.2)

A
(area)S

F

 P =
F#

A
 Eq. (12.1)

Density r The mass m of a substance divided  
by the volume V that the substance occupies.  
(Section 12.2)

m

m
V

V

m9 5 8 m
V9 5 8 V

r 5 8 m
8 V

r9 5  5 r

 r =
m
V

 Eq. (12.3)

Moles n and Avogadro’s number NA A mole of 
any type of particle equals  Avogadro’s number of 
that type of particle. Molar mass is the mass of one 
mole. (Section 12.2)

< 56 g iron
(1 mole)

 NA = 6.02 * 1023 particles>mole

Temperature T and temperature scales  
Temperature measures how hot or cool a substance 
is. When measured in kelvins, the temperature  
is directly proportional to the average random  
kinetic energy of a particle in that substance.  
(Section 12.4)

The average kinetic energy per atom or molecule  
in a gas is

  K =
3
2

 kBT

  TF = 19>52TC + 328
  TC = 15>921TF - 3282
  TK = TC + 273.158   Eq. (12.6)

Thermal energy of an ideal gas Uth The sum of 
average  kinetic energies of the particles of the ideal 
gas. (Section 12.8)

N particles in the system

 Uth = Na 3
2

  kBTb
Ideal gas model and ideal gas law The ideal  
gas model is a simplified model of gas in which 
atoms/molecules are considered to be point-like 
objects that obey Newton’s laws. They only  
interact with each other and with the walls of  
the container during collisions exerting pressure. 
The ideal gas law relates the macroscopic  
quantities of such a gas. (Sections 12.1, 12.3, 12.4, 
and 12.5)

  P =
2
3

 aN
V
b a 1

2
 mv2b   Eq. (12.4)

  PV = NkBT   Eq. (12.7)

  PV = nRT   Eq. (12.8)

Assume that N, n, and P are constant. Then

 
V1

T1
=

V2

T2
 (Isobaric)

Assume that N, n, and V are constant. Then

 
P1

T1
=

P2

T2
 (Isochoric)

Assume that N, n, and T are constant. Then

 P1V1 = P2V2 (Isothermal)

Summary
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Questions
11. A cylindrical container is filled with a gas. On the top of the container sits a 

heavy piston that is free to move. In a certain process, you observe that with 
constant external pressure pushing down on the piston, the piston moves 
up, causing the volume of the gas to increase. Which graph below best 
 represents this process (Figure Q12.11)?

Multiple Choice Questions
1. What experimental evidence rejects the explanation that wet clothes be-

come dry because the air absorbs the water?
(a) The clothes dry faster if you blow air across them.
(b) They do not dry if you put the wet clothes in a plastic bag.
(c) The clothes dry faster under a vacuum jar with the air pumped out.

2. What is the difference between the words particle, molecule, and atom?
(a) A particle is bigger than a molecule or an atom.
(b) Particles can be microscopic and macroscopic, while atoms and mole-

cules are only microscopic.
(c) Molecules are made of atoms; both can be called particles.
(d) All are correct.
(e) Both b and c are correct.

3. You have a basketball filled with gas. Which method below changes its vol-
ume because of a mass change of the gas inside?
(a) Put it into a refrigerator. (b) Squeeze it.
(c) Pump more gas into it. (d) Hold it under water.
(e) Leave it in the sunshine.

4. Choose the quantities describing the air inside a bike tire that do not change 
when you pump the tire.
(a) Mass (b) Volume
(c) Density (d) Pressure
(e) Particle mass (f) Particle concentration

5. Which answer below does not explain the decrease in size of a basketball 
after you take it outside on a cold day?
(a) The pressure inside the ball decreases.
(b) The temperature of the gas inside the ball decreases.
(c) The volume of the ball decreases.
(d) The number of gas particles inside the ball decreases.

6. What causes balloons filled with helium to deflate as time passes?
(a) The elasticity of the rubber decreases.
(b) The temperature inside decreases.
(c) The pressure outside the balloon increases.
(d) The gas from inside diffuses into the atmosphere.

7. From the list below, choose the assumption that we did not use in deriving 
the ideal gas law.
(a) Gas particles can be treated as objects with zero size.
(b) The particles do not collide with each other inside the container.
(c) The particles collide partially inelastically with the walls of the 

 container.
(d) The particles obey Newton’s laws.

8. You have a mole of oranges. The mass of each orange is m. Imagine that 
you split each orange in half. What will be the molar mass of this pile of 
half oranges in kilograms?
(a) m>2 (b) m>16.02 * 10232
(c) 2m>16.02 * 10232 (d) 1m>22>16.02 * 10232

9. How might physicists have come to know that at a constant temperature 
and constant mass, the pressure of an ideal gas is inversely proportional to 
its volume?
(a) They could have conducted an experiment maintaining the gas as 

 described above and made a pressure-versus-volume graph.
(b) They could have derived this relationship using the equations describ-

ing the ideal gas model and the relationship between the speed of the 
particles and the gas temperature.

(c) Both a and b are correct.
10. A cylindrical container is filled with a gas. On the top of the container sits a 

heavy piston that is free to move (see the experimental setup in Table 12.5, 
Experiment 3). When the gas is heated, the piston moves up, causing the vol-
ume of the gas to increase. Which equation below best describes this process?
(a) Vinitial>Tinitial = Vfinal>Tfinal 
(b) PinitialVinitial = PfinalVfinal

(c) PinitialVinitial = nRTfinal

(d) PinitialVinitial = NkBTfinal

(c)

i
i

i

fff

P

V

(b)

T

V

(a)

T

V

FIGURE Q12.11

12. A completely closed rigid container of gas is taken from the oven and 
placed in ice water. Which graph below does not represent this process 
(Figure Q12.12)?

if

(a)

T

V
i

f

(b)

T

P
i

f

(c)

V

P

i

f

(d)

V

P

FIGURE Q12.12

(e) None of them do.
13. Which graph below does not represent a process described by the equation 

Vinitial>Tinitial = Vfinal>Tfinal (Figure Q12.13)?

(a)

T

V V V

(b)

T

(c) (d)

P

T T

FIGURE Q12.13

(e) a and b
14. What does contracting and relaxing the diaphragm allow?

(a) Greater O2 absorption by humans and mammals compared to other 
species

(b) Greater pressure difference between air in the lungs and outside air
(c) The only way to facilitate air intake into and out of the lungs
(d) a and b
(e) a, b, and c

15. When is air inhaled into the lungs?
(a) When lung muscles cause them to expand
(b) When the diaphragm contracts
(c) When the chest expands
(d) b and c
(e) a, b, and c
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16. Which of the following conditions are crucial for performing an  
isothermal compression of a gas (see the experimental setup in Table 12.5, 
Experiment 1)?
(a) The piston should be moved very slowly.
(b) There should be no friction between the piston and the gas container.
(c) The gas container should be kept in a vertical position.
(d) The volume of the gas container should be much smaller than the 

 volume of the ice bath.

Conceptual Questions
17. (a) How do we know if a real gas can be described as an ideal gas? (b) How 

can you decide if air in the physics classroom can be described using the 
ideal gas model?

18. Why does it hurt to walk barefoot on gravel?
19. In the magic trick in which a person lies on a bed of nails, why doesn’t the 

person get hurt by the nails?

20. What does it mean if the density of a gas is 1.29 kg>m3?
21. How many oranges would you have if you had two moles of oranges?
22. Imagine that you have an unknown gas. What experiments do you need 

to do and what real equipment do you need to determine the mass of one 
molecule of this gas?

23. Describe how temperature and one degree are defined on the Celsius scale.
24. Describe how temperature and one degree are defined on the Kelvin scale.
25. Why does sugar dissolve faster in hot tea than in cold water?
26. (a) Describe experiments that were used to test the predictions of the 

 molecular kinetic theory. (b) What experiments revealed its limitations?
27. Give three examples of diffusion that are important for human life.
28. Why do very light gases such as hydrogen not exist in Earth’s atmos-

phere but do exist in the atmospheres of giant planets such as Uranus 
and  Saturn?

29. Why does the Moon have no atmosphere? Explain.
30. Explain why Earth has almost no free hydrogen in its atmosphere.

Below,  indicates a problem with a biological or medical focus. Problems 
labeled  ask you to estimate the answer to a quantitative problem rather 
than derive a specific answer. Asterisks indicate the level of difficulty of the prob-
lem. Problems with no * are considered to be the least difficult. A single * marks 
moderately difficult problems. Two ** indicate more difficult problems.

12.2 Pressure, density, and the mass of particles
1. What are the molar masses of molecular and atomic hydrogen, helium, 

 oxygen, and nitrogen? What are their molecular masses?
2.  Estimate the number of hydrogen atoms in the Sun. The mass of the 

Sun is 2 * 1030 kg. About 70% of it by mass is hydrogen, 30% is helium, 
and there is a negligible amount of other elements.

3. The average particle density in the Milky Way galaxy is about one particle 
per cubic centimeter. Express this number in SI units 1kg>m32. Indicate any 
assumptions you made.

4. * (a) What is the concentration (number per cubic meter) of the molecules 
in air at normal conditions? (b) What is the average distance between mol-
ecules compared to the dimensions of the molecules? (c) Can you consider 
air to be an ideal gas? Explain your answer.

5. * What is the mass of a water molecule in kilograms? What is the mass of 
an average air molecule in kilograms?

6. You find that the average gauge pressure in your car tires is about 35 psi. 
(a) How many newtons per square meter is it? What is gauge pressure?  
(b) Determine the absolute pressure in the tires.

7.  Forced vital capacity Physicians use a machine called a spirometer 
to measure the maximum amount of air a person can exhale (called the 
forced vital capacity). Suppose you can exhale 4.8 L. How many kilograms 
of air do you exhale? What assumptions did you make to answer the ques-
tion? How do these assumptions affect the result?

8. A container is at rest with respect to a desk. Inside the container a particle 
is moving horizontally at a speed v with respect to the desk. It collides with 
a vertical wall of the container elastically and rebounds. Compare the di-
rection and the speed of the particle if the wall is (a) at rest with respect to 
the desk; (b) moving in the same direction as the particle at a speed smaller 
than the particle’s; and (c) moving in the direction opposite to the motion of 
the particle at a smaller speed.

12.3 Quantitative analysis of ideal gas
9. Oxygen tank for mountains Consider an oxygen tank for a mountain 

climbing trip. The mass of one molecule of oxygen is 5.3 * 10-26 kg. 
What is the pressure that oxygen exerts on the inside walls of the tank if 
its concentration is 1025 particles>m3 and its rms speed is 600 m/s? What 
assumptions did you make?

10. You have five molecules with the following speeds: 300 m>s, 400 m>s, 
500 m>s, 450 m>s, and 550 m>s. (a) What is their average speed?  
(b) What is their rms speed? Compare it with the average speed.

11. Two gases in different containers have the same concentration and same rms 
speed. The mass of a molecule of the first gas is twice the mass of a mole-
cule of the second gas. What can you say about their pressures? Explain.

12. Four molecules are moving with the following velocities: 300 m>s south, 
300 m>s north, 400 m>s east, and 400 m>s west. (a) What is their average 
velocity? (b) What is their rms speed?

13. * Hitting tennis balls against a wall A 0.058-kg tennis ball, traveling at 
25 m>s, hits a wall, rebounds with the same speed in the opposite direction, 
and is hit again by another player, causing the ball to return to the wall at 
the same speed. The collision of the ball with the wall lasts 1 ms. The ball 
returns to the wall once every 0.60 s. (a) Determine the average force ex-
erted on the ball during a single collision and the force that the ball exerts 
on the wall averaged over the time between collisions. State the assump-
tions that you made. (b) If 10 people are practicing against a wall with an 
area of 30 m2, what is the average pressure of the 10 tennis balls against  
the wall?

14. * Friends throw snowballs at the wall of a 3.0 m * 6.0 m barn. The 
 snowballs have mass 0.10 kg and hit the wall moving at an average speed 
of 6.0 m>s. They do not rebound. Determine the average pressure exerted 
by the snowballs on the wall if 40 snowballs hit the wall each second. 
Which problem, this or the previous problem, resembles the actions of the 
molecules of an ideal gas hitting the walls of their container?

15. * A ball moving at a speed of 3.0 m>s with respect to the ground hits 
a stationary wall at a 308 angle with respect to the surface of the wall. 
 Determine the direction and the magnitude of the velocity of the ball after 
it rebounds. Explain carefully what physics principles you used to find the 
answer. What assumptions did you make? How will the answer change if 
one or more of them are not valid?

16. * Oxygen tank for mountain climbing An oxygen container used by 
mountain climbers has a 90-min oxygen supply at a rate of 6 L>min (with 
the volume measured at atmospheric pressure). Determine everything you 
can about the gas in the container. Make reasonable assumptions.

12.4 Temperature
17. Your temperature, when taken orally, is 98.6 8F. When taken under your 

arm, it’s 36.6 8C. Are these results consistent? Explain.
18. Air consists of many different molecules, for example, N2, O2, H2O, and 

CO2. Which molecules are the fastest on average? The slowest on average? 
Explain.

19. What is the average kinetic energy of a particle of air at standard condi-
tions?

20. Air is a mixture of molecules of different types. Compare the rms speeds 
of the molecules of N2, O2, and CO2 at standard conditions. What assump-
tions did you make?

21. * How many moles of air are in a regular 1-L water bottle when you 
 finish drinking the water? What assumptions did you make? How do these 
 assumptions affect your result?

Problems
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22. * At approximately what temperature does the average translational kinetic 
energy of a N2 molecule in an ideal gas equal the macroscopic translational 
kinetic energy of a copper atom in a penny that is dropped from the height 
of 1.0 m?

23. ** A molecule moving at speed v1 collides head-on with a molecule of the 
same mass moving at speed v2. Compute the speeds of the molecules after 
the collision. What assumptions did you make? How does the answer to this 
problem explain why the mixing of hot and cold gases causes the cold gas 
to become warmer and the hot gas to become cooler?

24. * Balloon flight For a balloon ride, the balloon must be inflated with 
helium to a volume of 1500 m3 at sea level. The balloon will rise to an 
altitude of about 12 km, where the temperature is about -52 8C and the 
pressure is about 20 kPa. How many kg of helium should be put into the 
balloon? What assumptions did you make?

25.  Ears pop The middle ear has a volume of about 6.0 cm3 when at a 
pressure of 1.0 * 105 N>m2. Determine the volume of that same air when 
the air pressure is 0.83 * 105 N>m2, as it is at an elevation of 1500 m 
above sea level (assume the air temperature remains constant). If the vol-
ume of the middle ear remains constant, some air will have to leave as the 
elevation increases. That is why ears “pop.”

26. * Even the best vacuum pumps cannot lower the pressure in a container 
below 10-15 atm. How many molecules of air are left in each cubic centim-
eter in such a “vacuum”? Assume that the temperature is 273 K.

27. Pressure in interstellar space The concentration of particles (assume 
 neutral hydrogen atoms) in interstellar gas is 1 particle>cm3, and the 
 average temperature is about 3 K. What is the pressure of the interstellar 
gas? How does it compare to the best vacuum that can be achieved on Earth 
(see the previous problem)?

12.5, 12.6, and 12.7 Testing the ideal gas law, Speed 
 distribution of particles, and Skills for analyzing 
 processes using the ideal gas law

28. * Describe experiments to determine if each of the three gas isoprocess laws 
works. The experiments should be ones that you could actually carry out.

29. * The following data were collected for the temperature and volume of a gas. 
Can this gas be described by the ideal gas model? Explain how you know.

Temperature  
(°C)

Volume (mL)

 11  95.0

 25 100.0

 47 107.5

 73 116.0

159 145.1

233 170.0

258 177.9

30. * Explain the microscopic mechanisms for the relation of macroscopic 
variables for an isothermal process, an isobaric process, and an isochoric 
process occurring in an ideal gas.

31. ** Scuba diving The pressure of the air in a diver’s lungs when he is 20 m 
under the water surface is 3.0 * 105 N>m2, and the air occupies a volume 
of 4.8 L. How many moles of air should he exhale while moving to the sur-
face, where the pressure is 1.0 * 105 N>m2?

32. * When surrounded by air at a pressure of 1.0 * 105 N>m2, a basketball 
has a radius of 0.12 m. Compare its volume at this condition with the vol-
ume that it would have if you took it 15 m below the water surface, where 
the pressure is 2.5 * 105 N>m2. What assumptions did you make?

33. * Some students are given the following problem: “A 5000-cm3 cylinder is 
filled with nitrogen gas at 1.0 * 105 Pa and 300 K and closed with a mov-
able piston. The gas is slowly compressed at constant temperature to a final 
volume of 5 cm3. Determine the final pressure of the gas.” (a) Explain why 
the ideal gas law cannot be applied to solve this problem. Present quanti-
tative arguments. (b) Modify the problem so that it can be solved using the 
ideal gas law and give your solution.

34. ** You have gas in a container with a movable piston. The walls of the 
container are thin enough so that its temperature stays the same as the tem-
perature of the surrounding medium. You have baths of water of different 
temperatures, different objects that you can place on top of the piston, etc. 
(a) Describe how you could make the gas undergo an isothermal process 
so that the pressure inside increases by 10%, then undergo an isobaric 
process so that the new volume decreases by 20%, and finally undergo an 
isochoric process so that the temperature increases by 15%. (b) Represent 
this three-step process in P-versus-T, V-versus-T, and P-versus-V graphs. 
(c) Express the new pressure, volume, and temperature in terms of their 
initial values.

35. * You want to determine the temperature in a freezer using the following 
equipment: an empty plastic bottle with a cap, a graduated measuring  
cylinder, and a bowl of water. You also know your room temperature TR.  
(a) Which of the procedures described below will give data from which  
you can determine the temperature in the freezer? (b) For the procedure  
that you have chosen in part (a), derive the expression for the temperature 
in the freezer as a function of relevant physical quantities. Indicate any  
assumptions that you made.
I. Put the open plastic bottle into the freezer for half an hour. Take the 

bottle out, turn it upside down into the water, and measure the volume 
of the water sucked into the bottle.

II. Put the open plastic bottle in the freezer for half an hour. Take the bot-
tle out and close it tightly with a cap. Wait until the bottle’s shape stops 
changing. Turn the bottle upside down into the water, open the cap, 
and measure the volume of the water that entered the bottle.

III. Put the closed plastic bottle in the freezer for half an hour. Take the 
bottle out, turn it upside down into the water, and then open the cap. 
Measure the volume of the water sucked into the bottle.

IV. Put the closed plastic bottle in the freezer for half an hour. Take the 
bottle out, open the cap, and turn the bottle upside down into the water. 
Measure the volume of the water sucked into the bottle.

36. * Bubbles While snorkeling, you see air bubbles leaving a crevice at the 
bottom of a reef. One of the bubbles has a radius of 0.060 m. As the bubble 
rises, the pressure inside it decreases by 50%. Now what is the bubble’s 
radius? What assumptions did you make to solve the problem?

37. ** Diving bell A cylindrical diving bell, open at the bottom and closed 
at the top, is 4 m tall. Scientists fill the bell with air at the pressure of 
1.0 * 105 N>m2. The pressure increases naturally by 1.0 * 105 N>m2 for 
each 10 m that the bell is lowered below the surface of the water. If the bell 
is lowered 30 m below the ocean surface, how many meters of air space are 
left inside the bell? Why doesn’t water enter the entire bell as it goes under 
water? Draw several sketches for this problem. Assume the temperature 
remains constant.

38. * Mount Everest (a) Determine the number of molecules per unit vol-
ume in the atmosphere at the top of Mount Everest. The pressure is 
0.31 * 105 N>m2, and the temperature is -30 8C. (b) Determine the 
number of molecules per unit volume at sea level, where the pressure is 
1.0 * 105 N>m2 and the temperature is 20 8C.

39. *  Breathing on Mount Everest Using the information from Prob-
lem 12.38, estimate how frequently you need to breathe on top of Mount 
Everest to inhale the same amount of oxygen as you do at sea level. The 
pressure is about one-third the pressure at sea level.

40. * Capping beer You would like to make homemade beer, but you are con-
cerned about storing it. Your beer is capped into a bottle at a temperature 
of 27 8C and a pressure of 1.2 * 105 N>m2. The cap will pop off if the 
pressure inside the bottle exceeds 1.5 * 105 N>m2. At what maximum tem-
perature can you store the beer so the gas inside the bottle does not pop the 
cap? List the assumptions that you made.

41. Car tire With a tire gauge, you measure the pressure in a car tire as 
2.1 * 105 N>m2. How can this be if you know that absolute pressure in  
the tire is three times higher than atmospheric? The tire looks okay. What’s 
the deal?

42. * Car tire dilemma Imagine a car tire that contains 5.1 moles of air when 
at a gauge pressure of 2.1 * 105 N>m2 (the pressure above atmospheric 
 pressure) and a temperature of 27 8C. The temperature increases to 37 8C, the 
volume decreases to 0.8 times the original volume, and the gauge pressure 
decreases to 1.6 * 105 N>m2. Can these measurements be correct if the tire 
did not leak? If it did leak, then how many moles of air are left in the tire?
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43. * There is a limit to how much gas can pass through a pipeline, because 
the pipes can only tolerate so much pressure on the walls. To increase the 
amount of gas going through the pipeline, engineers decide to cool the gas 
(to reduce its pressure). Suggest how much they should lower the tempera-
ture of the gas if they want to increase the mass per unit time by 1.5 times.

44. Explain how you know that the volume of one mole of gas at standard 
 conditions is 22.4 L.

45. * At what pressure is the density of -50 8C nitrogen gas 1N22 equal to  
0.01 times the density of water?

46. * In the morning, the gauge pressure in your car tires is 35 psi. During  
the day, the air temperature increases from 20 8C to 30 8C and the pressure 
increases to 36.5 psi. By how much did the volume of one of the tires  
increase? What assumptions did you make?

47. Equation Jeopardy 1 The equation below describes a process. Construct a 
word problem for a process that is consistent with the equations (there are 
many possibilities). Provide as much detailed information as possible about 
your proposed process.

1.2 * 105 N>m2

293 K
=

2.0 * 105 N>m2

T

48. * Equation Jeopardy 2 The equation below describes a process. Construct 
a word problem for a process that is consistent with the equations (there are 
many possibilities). Provide as much detailed information as possible about 
your proposed process.

Dn =
10.67 * 105 N>m2210.60 * 10-6 m3218.3 J>mole # K21303 K2

-
11.00 * 105 N>m2210.60 * 10-6 m3218.3 J>mole # K21310 K2

49. ** The P-versus-T  graph in Figure P12.49 
describes a cyclic process comprising four 
hypothetical parts. (a) What happens to the 
pressure of the gas in each part? (b) What 
happens to the temperature of the gas in each 
part? (c) What happens to the volume of the 
gas in each part? (d) Explain each part  
microscopically. (e) Use the information 
from (a)–(c) to represent the same parts in  
P-versus-V and V-versus-Tgraphs. (Hint: It 
helps to align the P-versus-V graph beside 
the P-versus-T  graph using the same P  
values on the ordinate (vertical axis) and to place the V-versus-Tgraph 
below the P-versus-T  graph using the same T  values on the abscissa  
(horizontal axis). This helps keep the same scale for the variables.)

50. ** The V-versus-T  graph in Figure P12.50 
describes a cyclic process comprising four 
hypothetical parts. (a) What happens to  
the pressure of the gas in each part?  
(b) What happens to the temperature of  
the gas in each part? (c) What happens  
to the volume of the gas in each part?  
(d) Explain each part microscopically.  
(e) Use the information from (a)–(c) to 
represent the same process in a P-versus-T  
graph (below the V-versus-T  graph) and a  
P-versus-V  graph (beside the P-versus-T  
graph). See the hint in the previous problem about the graph alignments.

51. *  Breathing You are breathing heavily while hiking up the mountain. 
To inhale, you expand your diaphragm and lungs. Explain, using your knowl-
edge of gas pressure, why this mechanical movement leads to the air flowing 
into your nose or mouth. Support your reasoning with diagrams if necessary.

12.8 Thermal energy, the Sun, and diffusion
52. * The temperature of the Sun’s atmosphere near the surface is about 

6000 K, and the concentration of atoms is about 1015 particles>m3. What 
are the average pressure and density of its atmosphere? What assumptions 
did you make to solve the problem?

53. *   Breathing and metabolism We need about 0.7 L  of  
oxygen per minute to maintain our resting metabolism and about 2 L  
when standing and walking. Estimate the number of breaths per minute  
for a person to  satisfy this need when resting and when standing and  
walking. What assumptions did you make? Remember that oxygen is  
about 21% of the air.

54. *  Sun’s life expectancy (a) Estimate the average kinetic energy of 
the particles in the Sun. Assume that it is made of atomic hydrogen and that 
its average temperature is 100,000 K. The mass of the Sun is 2 * 1030 kg. 
(b) For how long would the Sun shine using this energy if it radiates 
4 * 1026 W>s? Is your answer reasonable? Explain.

55. ** A gas that can be described by the ideal gas model is contained in a  
cylinder of volume V. The temperature of the gas is T. The mass of the gas  
is m, and the molar mass is M. Write an expression for the total thermal  
energy of the gas. Now, imagine that the exact same gas has been placed in 
a container of volume 2V. What happens to its pressure? What happens to 
its temperature? What happens to its thermal energy?

56. * Equation Jeopardy 3 The three equations below describe a physical  
situation. Construct a word problem for a situation that is consistent with 
the equations (there are many possibilities). Provide as much detailed  
information as possible about the situation.

 m = 11.3 kg>m3213.0 m *  5.0 m *  2.0 m2
 N = m> 3129 * 10-3 kg2>16.0 * 1023 particles2]

 Uth = N13>2211.38 * 10-23 J>K21273 K2
General Problems
57. *  A simple experimental setup for performing 

isobaric processes can be made with a thin glass 
tube filled with a gas and closed with a drop of water 
(Figure P12.57). If the pressure of the gas changes, 
the drop moves until the sum of the forces exerted 
on the drop is zero (there is no friction between 
the drop and the tube). The inner diameter of the 
glass tube is 3.0 mm and the length of the tube is 
200.0 mm. At normal room temperature, a 5.0-mm-
long water drop is 30.0 mm from the open end of 

the tube. Estimate the temperature range 
in which this setup can be used to show 
 isobaric processes. (Hint: What happens to 
water at low temperature?)

58. * See the previous problem. Explain how the force exerted by Earth on  
the water drop and the orientation of the tube affects the performance  
of the setup.

59. * Jeff and Natalie notice that a rubber balloon, which is first in a warm 
room, shrinks when they take it into the garden on a cold winter day. They 
propose two different explanations for the observed phenomenon: (a) the 
balloon is slowly leaking; (b) the balloon shrinks due to decreased temper-
ature while the pressure in the balloon remains constant (isobaric compres-
sion). In order to test their proposed explanations, Jeff and Natalie perform 
three consecutive experiments: they measure the volume of the balloon 
and the temperature of the air near the balloon (1) in the room, (2) in the 
garden, and (3) again in the room. Their measurements, including uncer-
tainties, are presented in the table below.

Exp. # Location Temperature Volume of the balloon

1 Room   26.2 8C { 0.1 8C 7500 cm3 { 400 cm3

2 Garden -15.3 8C { 0.1 8C 6400 cm3 { 400 cm3

3 Room   26.2 8C { 0.1 8C 7300 cm3 { 400 cm3

Based on the data, can Jeff and Natalie reject any of their hypotheses? 
 Explain. Make sure you include uncertainties in your answer.
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60. * Different planet compositions Explain why planets closer to the Sun have 
low concentrations of light elements, but light elements are relatively abundant 
in giant planets such as Jupiter, Uranus, and Saturn, which are far from the Sun.

61. **  Density of our galaxy Estimate the average density of particles in 
our galaxy, assuming that the most abundant element is atomic hydrogen. 
There are about 1011 stars in the galaxy and the size of the galaxy is about 
105 light-years. A light-year is the distance light travels in 1 year moving 
at a speed of 3 * 108 m>s. What do you need to assume about the stars in 
order to answer this question?

62. *  Breathing During each breath you probably inhale about 0.50 L of 
air. How many oxygen molecules do you inhale if you are at sea level?

63. * Car engine During a compression stroke of a cylinder in a diesel engine,  
the air pressure in the cylinder increases from 1.0 * 105 N>m2 to 
50 * 105 N>m2, and the temperature increases from 26 8C to 517 8C. A 
 typical compression ratio (the ratio of the largest and the smallest volume 
of a cylinder) for a diesel engine is 20:1. Using this information, how 
would you convince your friends that knowledge about ideal gases can help 
explain how hot gases burned in the car engine affect the motion of the car?

64. *  How can the pressure of air in your house stay constant during the 
day if the temperature rises? Estimate the volume of your house and the 
number of moles of air that leave the house during the daytime. Assume 
that nighttime temperature and daytime temperature differ by about 10 8C. 
List all other assumptions that are necessary to answer the question.

65. * Tell-all problem Tell everything you can about a process that was 
 performed with 2 * 10-3 moles of a gas and that is described by the 
 pressure-versus-volume graph shown in Figure P12.65.

Reading Passage Problems
 Vascular wall tension and aortic blowout The walls of blood vessels 

contain varying amounts of elastic fibers that allow the vessels to expand and 
contract as the pressure and amount of fluid inside vary (these fibers are more 
prevalent in the aorta and large arteries than in the small arterioles and capillar-
ies). These fibers in the cylindrical walls produce a wall tension T, defined as

T =
F
L

where L is the length of an imaginary cut parallel to the axis of the vessel and F 
is the magnitude of the force that each side of the cut must exert on the other side 
to hold the two sides together.

Three forces are exerted on a short section of wall fiber—the system.  
(1) The fluid inside pushes outward, due to fluid pressure from inside 
Pinside fluid pushing out = Pout; (2) fluid outside the vessel pushes inward, due to fluid 
pressure from outside Poutside fluid pushing in = Pin; and (3) the wall next to the sys-
tem exerts wall tension T on each side of that wall. The pressure difference across 
the wall DP = Pout - Pin, the wall tension T, and the radius R of the cylindrical 
vessel are related by Laplace’s law:

DP =
T
R
 or T = DP # R

The inward gauge pressure Pin of tissue surrounding the vessels is approximately 
zero. Thus, the pressure difference DP = Pout - Pin = Pvessel - 0 = Pvessel is 
the gauge pressure in the blood vessel. We can now estimate the wall tension for 
different types of vessels. The tension in the aorta is approximately

T = DP # R < 1100 mm Hg2a 133 N>m2

1 mm Hg
b11.3 * 10-2 m2 = 170 N>m

Using similar reasoning, the wall tension in the low-pressure, very small radius 
capillaries is about 0.016 N>m—about 0.0003 times the tension needed to tear a 
facial tissue. Because such little tension is needed to hold a capillary together, its 
wall can be very thin, allowing easy diffusion of various molecules across the wall.

The walls of a healthy aorta can easily provide the tension needed to sup-
port the increased blood pressure when it fills with blood from the heart during 
each heartbeat. However, aging and various medical conditions may weaken 
the aortic wall in a short section, and increased blood pressure can cause it to 
stretch. The weakened wall bulges outward; this is called an aortic aneurism. The 
increased radius causes increased tension, which can increase bulging. This cycle 
can result in a rupture to the aorta: an aortic blowout.
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66. ** Two massless, frictionless pistons are inside a horizontal tube  
opened at both ends. A 10-cm-long thread connects the pistons. The 
cross-sectional area of the tube is 20 cm2. The pressure and temperature of 
gas between the pistons and the outside air are the same and are equal to 
P = 1.0 * 105 N>m2 and T = 24 8C. At what temperature of the gas will 
the thread break if it breaks when the tension reaches 30 N?

67. * A closed cylindrical container is divided into two parts by a light,  
movable, frictionless piston. The container’s total length is 100 cm. Where 
is the piston located when one side is filled with nitrogen 1N22 and the 
other side with the same mass of hydrogen 1H22 at the same temperature?

68. How many molecules are there in 1 g of air at normal conditions? If these 
molecules were distributed uniformly on Earth’s surface, estimate the  
number that would be under your feet right now. The radius of Earth is 
about 6400 km.

69. ** The speed of sound in an ideal gas is given by the relationship

v = AgRT

M

where R = the universal gas constant =  8.314 J>mol # K; T = the 
 absolute temperature; M = the molar mass of the gas in kg>mol; and g  
is a characteristic of the specific gas. For air, g = 1.4 and the average 
molar mass for dry air is 28.95 g>mol. (a) Show that the equation gives  
you correct units. (b) Give reasons why the temperature of the gas is in  
the numerator and the molar mass of the gas is in the denominator.

70. * Using the information from problem 12.69, calculate the speed of sound 
in the air. What assumptions are you making?

71. * Speed of sound in summer and winter Using the information in prob-
lem 12.69, estimate how much faster sound travels in summer than in winter. 
 Explain how you arrived at your answer and the assumptions that you made.
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FIGURE P12.72

72. ** A chamber of unknown volume is 
filled with an unknown amount of ideal 
gas. A cylinder with an open bottom 
and calibrated volume is connected  
to the chamber and is closed with a 
movable piston. A gas pressure sensor 
is also mounted on the chamber  
(Figure P12.72). The whole experimen-
tal setup is kept at a constant tempera-
ture of 300 K. Doris moves the piston 
from mark 0 to mark 200 mL 
in steps of 50 mL and records 
the corresponding pressure 
in the chamber. She moves 
the piston very slowly and 
waits several minutes before 
recording the pressure values. 
Use Doris’s data in the table 
to determine the volume of 
the chamber and the number 
of moles of gas. (Note: This 
is a problem that requires 
linearization of data.)

VCyl 1mL 2 P 11 0 5  N ,m2 2
  0 4.35

 50 3.85

100 3.50

150 3.15

200 2.90
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73. Why is the wall tension in capillaries so small?
(a) There are so many capillaries.
(b) Their radii are so small.
(c) The outward pressure of the blood inside is so small.
(d) b and c
(e) a, b, and c

74. Which answer below is closest to the wall tension in a typical arteriole of 
radius 0.15 mm and 60 mm Hg blood pressure?
(a) 0.001 N>m (b) 0.01 N>m
(c) 0.1 N>m (d) 1 N>m
(e) 10 N>m

75. According to Laplace’s law, elevated blood pressure in an artery should 
cause the wall tension in the artery to do what?
(a) Increase (b) Remain unchanged
(c) Decrease (d) Impossible to decide

76. As a person ages, the fibers in arteries become less elastic and the wall 
tension increases. According to Laplace’s law, this will cause the blood 
pressure to do what?
(a) Increase (b) Remain unchanged
(c) Decrease (d) Impossible to decide

77. Aortic blowout occurs when part of the wall of the aorta becomes  
weakened. What does this cause?
(a) A bulge and increased radius of the aorta when the blood pressure 

inside increases
(b) An increased radius of the aorta, which causes increased tension in  

the wall
(c) An increased tension in the aorta, which causes the radius to increase
(d) a and b
(e) a, b, and c

 Portable hyperbaric chamber In 1997, 
a hiking expedition was stranded for 38 days on 
the Tibetan side of Mount Everest at altitudes 
between 5200 m and 8000 m. While at those 
altitudes, 10 climbers suffered acute mountain 
sickness. A 37-year-old climber with acute 
 pulmonary edema (buildup of fluid in the lungs) 
was treated with a portable Gamow bag (see 
Figure 12.20), named after its inventor, Igor 
Gamow. The Gamow bag is a windowed cylin-
drical portable hyperbaric chamber constructed 
of nonpermeable nylon that requires constant 
pressurization with a foot pump attached to the 
bag. The climber enters the bag, and a person 
outside pumps air into the bag so that the air 
pressure inside is somewhat higher than the 
 outside pressure.

The bag and pump have a 6.76-kg mass. The volume of the inflated bag is 
0.476 m3. The maximal bag pressure is 0.15 * 105 N>m2 above the air pressure 
at the site where it is used. In the 1997 climb, with the temperature at -208C, the 
bag was filled in about 2 min with 10–20 pumps per minute. This raised the  
pressure in the bag to 0.58 * 105 N>m2 (equivalent to an elevation of 4400 m)  
instead of the actual outside pressure of 0.43 * 105 N>m2 at the 6450-m 
 elevation at which the climber was treated. The treatment lasted for 2 h, with  
the  climber inhaling about 15 times/min at about 0.5 L/inhalation, and was  
successful—the pulmonary edema disappeared.

78. What is closest to the volume of the Gamow bag?
(a) 50 L (b) 100 L
(c) 200 L (d) 500 L
(e) 1000 L

79. What is closest to the temperature at the 6450-m elevation on the day 
 described in the problem?
(a) 37 K (b) 253 K
(c) 20 K (d) -20 K
(e) 273 K

80. What is closest to the number n of moles of air in the filled bag when at 
4400 m?
(a) 3 moles (b) 10 moles
(c) 13 moles (d) 110 moles
(e) 170 moles

81. What is closest to the number n of moles of air in the bag if its pressure is 
at the 6450-m level?
(a) 3 moles (b) 10 moles
(c) 13 moles (d) 110 moles
(e) 170 moles

82. Estimate the fraction of the air in the Gamow bag that an occupant would 
inhale in 1 h, assuming no replacement of the air.
(a) 0.01 (b) 0.1
(c) 0.3 (d) 0.5
(e) 1.0

FIGURE 12.20 A Gamow 
bag, used to help 
 climbers with acute 
 altitude sickness.
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