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The first hot air balloon with a person on board was launched by the  Montgolfier 
brothers in 1783. Hot air is less dense than cold air. By carefully balancing the 
 density of the balloon and its contents with the density of air, the pilot can control 
the force that the outside cold air exerts on the balloon. What do pressure, volume, 
mass, and temperature have to do with this force?

IN THE PREVIOUS CHAPTER, we constructed the ideal gas model and used it 
to explain the behavior of gases. The temperature of the gas and the  pressure 
it exerted on surfaces played an important role in the phenomena we analyzed. 
We ignored the effect of the gravitational force exerted by Earth on the gas 
 particles. This simplification was reasonable, since in most of the processes 
we analyzed the gases had little mass and occupied a relatively small  region 
of space, like in a piston. In this chapter, our interest expands to include 
 phenomena in which the force exerted by Earth plays an important role. We 
will confine the  discussion to static fluids—fluids that are not moving.

Static Fluids

BE SURE YOU KNOW HOW TO:
 ● Draw a force diagram for a system of 
interest (Section 3.1).

 ● Apply Newton’s second law in 
 component form (Section 4.2).

 ● Define pressure (Section 12.2).

 ● Apply the ideal gas law (Sections 12.3 
and 12.4).

 ● How can a hot air balloon fly for hours?
 ● Why is it dangerous for scuba divers 

to ascend from a deep-sea dive too 
quickly?

 ● Why, in water, does a 15-g nail sink 
but a cargo ship float?
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13.1 Density
We are familiar with the concept of density (from Chapter 12). To find the density of an 
object or a substance, determine its mass m and volume V and then calculate the ratio 
of the mass and volume:

 r =
m
V

 (13.1)

Archimedes (Greek, 287–212 b.c.) discovered how to determine the  density of an 
object of irregular shape. First determine its mass using a scale. Then  determine its vol-
ume by submerging it in a graduated cylinder with water  (Figure 13.1).  Finally, divide 
the mass in kilograms by the volume in cubic meters to find the density in  kilograms per 
cubic meter. Using this method we find that the  density of an iron nail is 7860 kg>m3—
relatively large. A gold coin has an even larger  density—19,300 kg>m3. The universe, 
though, contains much denser objects. For  example, the rapidly spinning neutron star 
known as a pulsar (discussed in Chapter 9) has a density of  approximately 1018 kg>m3. 
Table 13.1 lists the densities of various solids, liquids, and gases.

TABLE 13.1 Densities of various solids, liquids, and gases

Solids Liquids1 Gases2

Substance Density 1kg ,m3 2 Substance Density 1kg ,m3 2 Substance Density 1kg ,m3 2
Aluminum 2700 Acetone 791 Dry air 0 8C 1.29

Copper 8920 Ethyl alcohol 789  10 8C 1.25

Gold 19,300 Methyl alcohol 791  20 8C 1.21

Iron 7860 Gasoline 726  30 8C 1.16

Lead 11,300 Olive oil 800–920 Helium 0.178

Platinum 21,450 Mercury 13,600 Hydrogen 0.090

Silver 10,500 Milk 1028–1035 Oxygen 1.43

Bone 1700–2000 Seawater 1025 Carbon dioxide 1.98

Brick 1400–2200 Water 0 8C 999.8

Cement 2700–3000  3.98 8C 1000.00

Clay 1800–2600  20 8C 998.2

Glass 2400–2800 Blood plasma 1030

Ice 917 Blood whole 1050

Styrofoam 25–100

Balsa wood 120

Oak 600–900

Pine 500

Planet Earth 5515

Moon 3340

Sun 1410

Universe (average) 10-26

Pulsar 1011-1018

1Densities of liquids are at 0 8C unless otherwise noted.
2Densities of gases are at 0 8C and 1 atm unless otherwise noted.

1. Measure mass of object.

2. Place the object in water in a graduated 
cylinder.

3. Measure the volume change of the water. 
Volume change of water 5 volume of object.

4. Density 5 r 5 m/V

V
Volume
of object

1
3

2

FIGURE 13.1 Measuring the density of an  
irregularly shaped object.
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Solve and evaluate For the neutron-star-filled ball:

 mneutron star ball = 10.003 kg2 + 11018 kg>m324
3 p10.020 m23

 = 3.4 * 1013 kg 

For the Saturn-filled ball:

 mSaturn ball = m ball + amSaturn

VSaturn
b14

3 pRball
3 2

 = 0.003 kg + a 5.7 * 1026 kg

8.3 * 1023 m3 b14
3p10.020 m232

 = 0.003 kg + 0.023 kg = 0.026 kg

The material from Saturn has less mass than an equal volume of water. 
The ball filled with the material from a neutron star has a mass of more 
than a billion tons!

Try it yourself The mass of the ping-pong ball filled with soil from 
Earth’s surface is 0.050 kg. What is the density of the soil?

1400 kg>m3.Answer

QUANTITATIVE EXERCISE 13.1 Ping-pong balls with different densities

Saturn has the lowest density of all the planets in the solar system 
(MSaturn = 5.7 * 1026 kg and VSaturn = 8.3 * 1023 m3). The average 
density of a neutron star is 1018 kg>m3. Compare the mass of a ping-
pong ball filled with material from Saturn with that of the same ball 
filled with material from a neutron star. An empty ping-pong ball has a 
0.037@m diameter (0.020@m radius) and a 2.7@g mass.

Represent mathematically To find the mass of a ping-pong ball 
filled with a particular material, we add the mass of the ball alone and 
the calculated mass of the material inside:

 mfilled ball = mball + mmaterial

where  mmaterial = rmaterialVball.

The density of the neutron star is given, and the density of Saturn can be 

found using the operational definition rSaturn =
mSaturn

VSaturn
. The interior of 

the ping-pong ball is a sphere of volume Vsphere = 4
3 pR3. Assume that 

the plastic shell of the ball has negligible volume. The mass of either 
filled ball is

 mfilled ball = m ball + mmaterial = m ball + rmaterialVball

 = mball + rmaterial 
4
3 pR3

ball

Density and floating
Understanding density allows us to pose questions about phenomena that we observe 
almost every day. For example, why does oil form a film on water? If you pour oil into 
water or water into oil, they form layers (see Figure 13.2a) independently of which 
fluid is poured first—the layer of oil is always on top of the water. The density of oil 
is less than the density of water. If you pour corn syrup and water into a container, the 
corn syrup forms a layer below the water (Figure 13.2b); the density of corn syrup is 
1200 kg>m3, greater than the density of water. Why, when mixed together, is the lower 
density substance always on top of the higher density substance?

Similar phenomena occur with gases. Helium-filled balloons accelerate upward in 
air, while air-filled balloons accelerate (slowly) downward. The mass of helium atoms 
is much smaller than the mass of any other molecules in the air. (Recall that at the same 
pressure and temperature, atoms and molecules of gas have the same concentration; 
because helium atoms have much lower mass, their density is lower.) The air-filled 
balloon must be denser than air. The rubber with which the skin of any balloon is made 
is denser than air. We can disregard the slight compression of the gas by the balloon, 
because even though it increases the density of the gas, the effect is the same for both 
the air and helium in the balloons.

Ice (solid water) floats in liquid water
The solid form of a particular substance is almost always denser than the liquid form of 
the substance, with one very significant exception: liquid water and solid ice. Since ice 
floats on liquid water, we can assume that the density of ice is less than that of water. This 
is in fact true: the density of water changes slightly with temperature and is the highest 
at 4 8C: 1000 kg>m3. The density of ice is 917 kg>m3. Ice has a lower density because 
in forming the crystal structure of ice, water molecules spread apart. The fact that water 
expands when it forms ice is important for life on Earth (see the second Reading Passage 
at the end of this chapter). Fish and plants living in lakes survive cold winters in liquid 

(a) (b)

Oil

Water

Water

Corn syrup

FIGURE 13.2 Less dense matter floats on 
denser matter.
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13.2 Pressure inside a fluid
We know that as gas particles collide with the walls of the container in which they re-
side, they exert pressure. In fact, if you place any object inside a gas, the gas particles 
exert the same pressure on the object as the gas exerts on the walls of the container. Do 
liquids behave in a similar way? In the last chapter we learned that the particles in a 
liquid are in continual random motion, somewhat similar to particles in gases.

Let’s conduct a simple observational experiment. Take a plastic water bottle and 
poke several small holes at the same height along its perimeter. Close the holes with 
tacks, fill the bottle with water, open the cap, remove the tacks, and observe what hap-
pens (Figure 13.3). Identically shaped parabolic streams of water shoot out of the 
holes. The behavior of the water when the tacks are removed is analogous to a person 
leaning on a door that is suddenly opened from the other side—the person falls through 
the door. Evidently, the water inside must push out perpendicular to the wall of the 
bottle, just as gas pushes out perpendicular to the wall of a balloon. Due to their similar 
behaviors, liquids and gases are often studied together and are collectively referred to 
as fluids. In addition, since the four streams are identically shaped, the pressure at all 
points at the same depth in the fluid is the same.

Pascal’s first law
Many practical applications involve situations in which an external object (for example, a 
piston) exerts a force on a particular part of a fluid. What happens to the pressure at other 
places inside the fluid? To investigate how the pressures at different points in a fluid are 
related, we use a special instrument that consists of a round glass bulb with holes in it 
connected to a glass tube with a piston on the other side (Figure 13.4a). When we fill the 
apparatus with water and push the piston, water comes out of all of the holes, not only 
those that align with the piston. When we fill the apparatus with smoke and push the pis-
ton, we get the same result (Figure 13.4b). The liquid and the gas behave similarly.

How can we explain this observation? Pushing the piston in one direction caused 
a greater pressure in the fluid close to the piston. It seems that almost immediately the 
pressure throughout the fluid increased as well, as the fluid was pushed out of all of 
the holes in the bulb in the same way. This phenomenon was first discovered by French 
scientist Blaise Pascal in 1653 and is called Pascal’s first law.

REVIEW QUESTION 13.1 How would you determine the density of an irregularly 
shaped object?

water under a shield of ice and snow at the surface. Water absorbed in the cracks of rocks 
freezes and expands in the winter, cracking the rock. Over the years, this process of liq-
uid water absorption, freezing, and cracking eventually converts the rock into soil.

Why do denser forms of matter sink in less dense forms of matter? We learned (in 
Chapter 12) that the quantity pressure describes the forces that fluids exert on each 
other and on the solid objects they contact. Let us investigate whether pressure ex-
plains, for example, why a nail sinks in water or why a hot air balloon rises.

Bottle is open.

Holes punched 
at same level 
in bottle

Water flow is
perpendicular
to the bottle
surface at
each hole.

FIGURE 13.3 Arcs of water leaving holes at the 
same level in a bottle.

Pascal’s first law An increase in the pressure of a static, enclosed fluid at one 
place in the fluid causes a uniform increase in pressure throughout the fluid.

Pushing the 
piston in...

...causes water 
to come out of 
the holes.

(a)

Similarly, pushing 
the piston...

...causes smoke 
to come out of 
the holes.

(b)

FIGURE 13.4 Pascal’s first law: increasing  
the pressure of a fluid at one location  
causes a uniform pressure increase  
throughout the fluid.

The above experiment describes Pascal’s first law macroscopically. We can also 
 explain Pascal’s first law at a microscopic level using gases as an example. Gas parti-
cles inside a container move randomly in all directions. When we push harder on one of 
the surfaces of the container, the gas compresses near that surface. The molecules near 
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390  CHAPTER 13 Static Fluids

that surface collide more frequently with their neighbors farther from the surface. They 
in turn collide more frequently with their neighbors. The extra pressure exerted at the 
one surface quickly spreads, and soon there is increased pressure throughout the gas.

Glaucoma
Pascal’s first law can help us understand a common eye problem—glaucoma. A clear 
fluid called aqueous humor fills two chambers in the front of the eye (Figure 13.5). 
In a healthy eye, new fluid is continually secreted into these chambers while old fluid 
drains from the chambers through sinus canals. A person with glaucoma has closed 
drainage canals. The buildup of fluid causes increased pressure throughout the eye, 
including at the retina and optic nerve, which can lead to blindness. Ophthalmologists 
diagnose glaucoma by measuring the pressure at the front of the eye. The eye pressure 
of a person with healthy eyes is about 1.2 * 105 N>m2; a person with glaucoma has an 
elevated pressure of 1.3 * 105 N>m2.

Hydraulic lift
One of the technical applications of Pascal’s first law is a hydraulic lift, a form of sim-
ple machine that converts small forces into larger forces, or vice versa. Automobile 
mechanics use hydraulic lifts to lift cars, and dentists and barbers use them to raise and 
lower their clients’ chairs. The hydraulic brakes of an automobile are also a form of hy-
draulic lift. Most of these devices work on the simple principle illustrated in Figure 13.6,  
although the actual devices are usually more complicated in construction.

In Figure 13.6, a downward force 
u
F1 on L is exerted by piston 1 (with small area A1)  

on the liquid. This piston compresses a liquid (usually oil) in the lift. The pressure in 
the liquid just under piston 1 is

P1 =
F1 on L

A1

Because the pressure changes uniformly throughout the liquid, the pressure under pis-
ton 2 is also P = F1 on L>A1, with a key assumption that the pistons are at the same 
elevation. Since piston 2 has a greater area A2 than piston 1, the liquid exerts a greater 
upward force on piston 2 than the downward force on piston 1:

 FL on 2 = PA2 = aF1 on L

A1
bA2 = aA2

A1
bF1 on L (13.2)

Since A2 is greater than A1, the lift provides a significantly greater upward force FL on 2 
on piston 2 than the downward push of the smaller piston 1 on the liquid F1 on L.

Aqueous 
humor

Retina

Optic 
nerve

Pressure

Pressure increases 
if the normal drainage 
canals are blocked.

Increased pressure 
against the retina 
and optic nerve can 
damage vision.

FIGURE 13.5 Glaucoma is an increase in 
 intraocular pressure, caused by blockage  
of the ducts that normally drain aqueous 
humor from the eye.

Piston 1

Liquid
Area A2Area A1

Piston 2

S
F1 on L

S
FL on 2

A small downward 
force exerted on the 
liquid by the small- 
area piston 1...     

...causes a large 
upward force on 
the large-area 
piston 2.

FIGURE 13.6 Schematic of a hydraulic lift.

force that piston 2 and the car exert on the liquid F2 on L, which equals 
the downward gravitational force that Earth exerts on the car and piston: 
F2 on L = mCar+Pistong.

EXAMPLE 13.2 Lifting a car with one hand

A hydraulic lift similar to that described above has a small piston with 
surface area 0.0020 m2 and a larger piston with surface area 0.20 m2.  
Piston 2 and the car placed on piston 2 have a combined mass of 
1800 kg. What is the minimal force that piston 1 needs to exert on the 
fluid to slowly lift the car?

Sketch and translate The situation is similar to that shown in  
Figure 13.6. We need to find F1 on L so the fluid exerts a force great 
enough to support the mass of the car and piston 2. The hydraulic lift 
Eq. (13.2) should then allow us to determine F1 on L.

Simplify and diagram Assume that the levels of the two pistons 
are the same and that the car is being lifted at constant velocity. Use 
the force diagram for the car and piston 2 (see diagram at right) and 
Newton’s second law to determine FL on 2. Note that the force that the 
liquid exerts on the large piston 2 FL on 2 is equal in magnitude to the 
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13.3 Pressure variation with depth
Pascal’s first law states that an increase in the pressure in one part of an enclosed 
fluid results in an increase at all other parts of the fluid. Does that mean that the pres-
sure is the same throughout a fluid—for example, in a vertical column of fluid? To 
test this hypothesis, consider another experiment with a water bottle. This time, poke 
vertical holes along one side of the bottle. Place tacks in the holes, and fill the bottle 
with water. Leave the cap off. If the pressure is the same throughout the fluid, when 
the tacks are removed the water should come out of each hole making an arc of the 
same shape, similar to projectiles thrown horizontally at the same speed, as shown in 
Figure 13.7a.

Try it yourself If you needed to lift the car about 0.10 m above  
the ground, what distance would you have to push down on the small 
piston, assuming the model of the hydraulic lift applies to industrial 
lifts? Is the answer realistic, and what does it tell you about the 
 operation of real hydraulic lifts?

Represent mathematically We rewrite the hydraulic lift Eq. (13.2) 
to determine the unknown force:

 F1 on L = aA1

A2
bF2 on L = aA1

A2
bmCar+Pistong

Solve and evaluate

F1 on L =
10.0020 m2210.20 m22  311800 kg219.8N>kg24 = 180 N

That is the force equal to lifting an object of mass 18 kg, which is 
 entirely possible for a person. The units are also consistent.

10 m. This answer is too large to be realistic. There must  
be some other technical details involved in the operation of  
industrial hydraulic lifts.Answer

REVIEW QUESTION 13.2 If you poke many small holes in a closed toothpaste tube 
and squeeze it, the paste comes out equally from all holes. Why?

Bottle is open(a) Predicted

Water bottle
with holes 
at various 
heights.

Prediction based on
Pascal’s first law.
The water streams 
come out equally fast.

(b) Observed

We infer that the
water streams faster
from lower holes.

Slowest
Water jets drawn
next to each other:1

1

2
3

2

3

Fastest

FIGURE 13.7 Water seems to be pushed harder from holes deeper in the water.

However, when the tacks are removed, we observe that the shapes of the arcs are 
different. The arcs produced by the water coming out from the lower holes resemble the 
trajectories of projectiles thrown at higher speeds (Figure 13.7b). Should we abandon 
Pascal’s first law now because the prediction based on it did not match the outcome of 
the experiment? In such cases, scientists do not immediately throw out the principle but 
first examine the additional assumptions that were used to make the prediction. In our 
first experiment with the water bottle, we did not consider the impact of poking holes at 
different heights. Maybe this was an important factor in the experiment. Let’s investi-
gate this in Observational Experiment Table 13.2, on the next page.
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From the patterns above we reason that the pressure of the fluid at the hole depends 
only on the depth of the fluid above the hole, and not on the mass of the fluid above. 
We also see that the pressure at a given depth is the same in all directions. This is con-
sistent with the experience you have when you dive below the surface of the water in a 
swimming pool, lake, or ocean. The pressure on your ears depends only on how deep 
you are below the surface. Pascal’s first law fails to explain this pressure variation at 
different depths below the surface. Now we need to understand why the pressure varies 
with depth and to devise a rule to describe this variation quantitatively.

Why does pressure vary at different levels?
To explain the variation of pressure with depth we can use an analogy of stacking ten 
books on a table (Figure 13.8a). Imagine that each book is a layer of water in a cylin-
drical tube (see Figure 13.8b). Consider the pressure (force per unit area) from above 
on the top surface of each book. The only force exerted on the top surface of the top 
book is due to air pushing down from above. However, there are in effect two forces 
exerted on the top surface of the second book: the force that the top book exerts on it 
(equal in magnitude to the weight of the book) plus the force exerted by the air on the 
top book. The top surface of the bottom book in the stack must balance the force ex-
erted by the nine books above it (equal in magnitude to the weight of nine books) plus 

OBSERVATIONAL 
EXPERIMENT TABLE 13.2 How does the location of the holes affect the streams leaving the holes? 

Observational experiment Analysis

Experiment 1. Place two tacks on each side of a plastic bottle,  
one hole above the other, and fill the bottle with water above the  
top tack. Remove the tacks. Water comes out on the left and right,  
and the stream from the lower holes resembles a projectile thrown  
at a higher speed.

There must be greater pressure inside than outside.
The pressure must be greater at the bottom holes than 
at the top holes.

Experiment 2. Repeat Experiment 1 but this time fill the bottle  
with water to the same distance above the bottom tack as it was  
filled above the top tack in Experiment 1. Remove the tacks. The  
stream comes out the bottom holes with the same arc as it came out  
of the top holes in Experiment 1.

The total water depth seems not to matter, just the 
height of the water above the hole.

Experiment 3. Repeat Experiment 1 using a thinner bottle  
with the water level initially the same distance above the top  
tack as it was in Experiment 1. Remove the tacks. The water  
streams are identical to those in Experiment 1.

Because the water comes out in exactly the same arc in 
a bigger bottle and in a smaller bottle when the water 
level above the top tack is at the same height, we can 
conclude that the mass of the water in the bottle does 
not affect the pressure.

Patterns

The stream shape at a particular level:
 ● Depends on the depth of the water above the hole.
 ● Is the same in different directions at the same level.
 ● Does not depend on the amount of water (volume or mass) above the hole.
 ● Does not depend on the amount (mass or volume) or depth of the water below the hole.

(a)

(b)

Pressure is 
greater as 
levels get 
deeper.

Only air pushing down

Pressure comes from 
air above book 1 
plus four books 
pushing down.

Least pressure

Greatest pressure

Pressure comes from 
air above book 1 
plus nine books 
pushing down.

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

Force exerted
and pressure
on a book’s
top surface
is greater
below 5 than
4 and below
6 than 5.

FIGURE 13.8 Pressure increases with depth.

VIDEO
OET 13.2
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the pressure force exerted by the air on the top book. So the pressure increases on the 
top surface of each book in the stack as we go lower in the stack.

Similar reasoning applies for the fluid-filled tube divided into a number of imaginary 
thin layers in Figure 13.8b. Air pushes down on the top layer. The second layer balances 
the weight of the top layer plus the force exerted by the air pushing down on the top layer, 
and so on. The pressure is lowest at the top of the fluid and greatest at the bottom.

Note that, at each layer, the pressure in a fluid is the same in all directions. If we 
could take a pressure sensor and place it inside the container of water, the readings of 
the sensor would be the same independent of the orientation of the sensor as long as its 
depth remains the same.

How can we quantify pressure change with depth?
We know that pressure increases with depth, and according to our model of pressure 
using layers, we can hypothesize that it increases with depth linearly (assuming that the 
density of the fluid remains constant). But what is the slope of the pressure-versus-depth 
graph, and what is the intercept? Consider the shaded cylinder C of water shown in 
 Figure 13.9a as our system of interest. The walls on opposite sides of the cylinder push 
inward, exerting equal-magnitude and oppositely directed forces—the forces  exerted 
by the sides cancel. What about the forces exerted by the water above and below? 
If the pressure at elevation y2 is P2 and the cross-sectional area of the cylinder is A, 
then the fluid above pushes down, exerting a force of magnitude F fluid above on C = P2A 
 (Figure 13.9b). Similarly, fluid from below the shaded section of fluid at elevation y1 
exerts on the cylinder an upward force of magnitude F fluid below on C = P1A. Earth exerts 
a third force on the shaded cylinder 

u
FE on C equal in magnitude to mCg, where mC is the 

mass of the fluid in the cylinder. Since the fluid is not accelerating, these three forces 
add to zero. Choosing the y-axis pointing up, we have

SFy = 1-F fluid above on C 2 + F fluid below on C + 1-mCg2 = 0

Substituting the earlier expressions for the forces, we have1-P2 A2 + P1A + 1-mCg2 = 0

The mass of the fluid in the shaded cylinder is the product of the fluid’s density and the vol-
ume of the cylinder (assuming the density of the fluid is the same throughout the cylinder):

mC = rfluidV = rfluid3A1y2 - y124
Substituting this expression for the mass in the above expression for the forces, we get

-P2 A + P1A - rfluid3A1y2 - y124g = 0

Divide by the common A in all of the terms and rearrange to get

 P1 = P2 + rfluid1y2 - y12g (13.3)

This is Pascal’s second law. As we see, pressure varies linearly with depth.

(a)

Fluid above pushes 
down on top of C.

Fluid below pushes 
up on bottom of C.

Fluid above C

A

A

Fluid below C

System 
(cylinder of fluid C)

y

y2

y1

(b)

y2

y1

S
Ffluid above on C

S
Ffluid below on C

S
Ffluid below on C

S
FE on C S

Ffluid above on C

S
FE on C 5 mgS

y

FIGURE 13.9 Using Newton’s second law  
to determine how fluid pressure changes  
with the depth in the fluid.

Pascal’s second law—variation of pressure with depth The pressure P1 in a 
static fluid at position y1 can be determined in terms of the pressure P2 at position 
y2 as follows:

 P1 = P2 + rfluid1y2 - y12g (13.3)

where rfluid is the fluid density, assumed constant throughout the fluid, and 
g = 9.8 N>kg. The positive y-direction is up. If y2 is chosen to be the top of the 
fluid, then Eq. (13.3) can be simplified as

 P1 = Patm + rfluidgd (13.4)

where Patm is the atmospheric pressure and d is the depth from the top of the fluid 
to the level at which we want to determine the pressure.

TIP When using Pascal’s second law  
[Eq. (13.3)], picture the situation and 

be sure to include a vertical y-axis that points 
upward and has a defined origin, or zero 
point. Then choose the two points of interest 
and identify their vertical y-positions relative 
to the axis. This lets you relate the pressures 
at those two points.
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Some history of physics books say that Blaise Pascal conducted the following 
testing experiment for his second law. Pascal filled a barrel with water and inserted 
a long, narrow vertical tube into the water from above. He then sealed the barrel (see  
Figure 13.10). He predicted that when he filled the tube with water, the barrel would 
burst even though the mass of water in the thin tube was small, because the pressure of 
the water in the barrel would depend on the depth, not the mass, of the water column. 
The barrel burst, matching Pascal’s prediction, thus supporting the idea that the depth 
of the fluid above, not its mass determined the pressure.

We derived Eqs. (13.3) and (13.4) using liquid as an example. The density of liquids 
does not change with depth because they are incompressible. Gases are compressible, 
and thus their density changes with depth. However, in all our examples, the changes in 
depth will be small enough so that we can neglect the density change in gases.  Applying 
Eq. (13.3) to atmospheric air, we can explain why the pressure at the top of a mountain 
is less than at the bottom.

Pascal burst a barrel by 
filling a long, narrow
tube with water.

Very high P

Patm

FIGURE 13.10 Pascal tests his second law.

CONCEPTUAL EXERCISE 13.3 Closed water bottle with tacks

You have a closed plastic water bottle with two holes in the side closed 
with tacks, one tack near the bottom of the bottle and the other in the 
middle. You remove the bottom tack, and a few drops of water come 
out of the hole but then the leaking stops. Then you remove the top tack 
(with the bottom hole still open), and an air bubble enters the bottle 
through the top hole. Draw depth-versus-pressure graphs and force dia-
grams to explain this phenomenon.

Sketch and translate We sketch the bottle with two tacks in the 
holes. Let’s choose the cap of the bottle to be the origin of the y-axis that 
points down; the horizontal axis will represent the pressure (Figure a).

Simplify and diagram We consider the pressure above the water level 
to be atmospheric at the beginning of the experiment (Figure a). Because 
only a few drops of water leave the bottle, we will neglect the changes 
in water level on the sketches and graphs. Figures b–d show the removal 
of the tacks and the changes in pressure on the graphs. We draw force 
diagrams for a tiny portion of water at the hole as our system of interest. 
There are two horizontal forces exerted on that system element of water: 
the force exerted by the outside air pushing inward 

u
FA on S and the force of 

the inside water pushing outward 
u
FW on S. If one of the forces is smaller, 

then the tiny system of water will either accelerate outward and we will 
see the bottle leaking, or it will accelerate inward and we will see bubbles 
of air coming in. When a little bit of water leaks out, the volume of air 
above the water in the bottle increases, and its pressure decreases. This 
decrease leads to a decrease of the pressure everywhere inside the bottle.

Try it yourself Predict what will happen after an air bubble enters 
the bottle through the top hole.

As new air enters the bottle, the air pressure above the water surface 
increases and so does the pressure elsewhere in the bottle. This results 
in more water leaking through the lower hole, which again decreases 
the pressure and causes more bubbles to enter the bottle, and so on. The 
process repeats until the water level drops to the upper hole. From then 
on, the water leaks out continuously until it reaches the level of the  
bottom hole.Answer

(a) Closed bottle

Pressure
outside
bottle

Pressure
inside
bottle

P1  5 Patm before bottom tack removed

Tacks
Water inside the bottle pushes out 
more than air outside pushes in 
(DP 5 Pinside2Poutside . 0)

y

P
Patm

DP . 0

P2 , Patm after some water leaks out

S
FA on S

S
FW on S

When the bottom tack is removed, water 
starts leaking out. When some water leaks 
out, volume of air at the top increases and 
P decreases.

(b)

y

P
Patm

DP . 0

P3  , P2  , Patm

S
FA on S

S
FW on S

When pressure inside the bottle at the hole 
becomes equal to air pressure outside
(DP 5 0), water stops leaking.

(c)

y

P
Patm

DP 5 0

Second tack removed
S
FA on S

S
FW on S

When we remove the top tack, the water 
pressure inside is less than the outside 
pressure (DP , 0). Air pushes into the bottle 
from outside. Bubbles start to enter the bottle.

(d)

y

P
Patm

DP , 0
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13.4 Measuring atmospheric pressure
We can now use Pascal’s second law to develop a method for measuring atmospheric 
air pressure.

Torricelli’s experiments
In the 1600s, suction pumps were used to lift drinking water from wells and to remove 
water from flooded mines. The suction pump was like a long syringe. The pump con-
sisted of a piston in a long cylinder that pulled up water (Figure 13.11a). Such pumps 
could lift water a maximum of 10.3 m. Why 10.3 m?

Evangelista Torricelli (1608–1647), one of Galileo’s students, hypothesized that the 
pressure of the air in the atmosphere could explain the limit to how far water could be 
lifted. Torricelli did not know of Pascal’s second law, which was published in the year 
that Torricelli died. However, it is possible that Torricelli’s work influenced Pascal. 
Let’s analyze the situation shown in Figure 13.11b.

QUANTITATIVE EXERCISE 13.4 

When at 1000 m above sea level, the outside air exerts a lower pressure 
P2 on the eardrum. So the net force exerted by the air on the drum is the 
pressure difference of air pushing out Pinside = P1 and air pushing in P2 
times the area of the eardrum: Fnet air on drum = 1P1 - P22A. This pressure 
difference can be determined using Pascal’s second law.

Solve and evaluate
 P1 - P2 = r1y2 - y12g

 = 11.3 kg>m3211000 m - 0219.8 N>kg2
 = +0.13 * 105 N>m2

This is 0.13 atm!

 Fnet air on drum = 1P1 - P22A

 = 10.13 * 105 N>m2210.50 cm22 * 11 m>100 cm22

 = +0.60 N 

The net force is exerted outward and is about half the gravitational force 
that Earth exerts on an apple. No wonder it can hurt until you get some 
air out of that middle ear!

Try it yourself Determine the difference in water pressure on your 
ear when you are 1.0 m underwater compared to when you are at the 
surface. The density of water is 1000 kg>m3.

+9800 N>m2 greater pressure when under the water, 
 or 0.1 atm.Answer

Pop your ears

If your ears did not pop, then what would be the net force exerted by 
the inside and outside air on your eardrum at the top of a 1000-m-high 
mountain? You start your hike from sea level. The area of your ear-
drum is 0.50 cm2. The density of air at sea level at standard conditions 
is 1.3 kg>m3. Assume the air density remains constant during the 
hike. The situation at the start at y1 = 0 and at the end of the hike at 
y2 = 1000 m is sketched below.

Pinside
Before popping
P2 , Pinside

After popping
P2 5 Pinside

P1

1

2

0y1

y2

y

P1 5 Pinside

Pinside

P2

Represent mathematically We use an upward-pointing vertical  
y-axis with the origin at sea level. Assume that the air pressure inside 
the eardrum remains constant at its sea level value Pinside = P1. The air 
pressure difference between the top of the mountain and sea level is

P2 - P1 = r1y1 - y22g

REVIEW QUESTION 13.3 Pascal’s first law says that an increase in pressure in one 
part of an enclosed liquid results in an increase in pressure throughout all parts of that 
fluid. Why then does the pressure differ at different heights?

(a)

Piston
pulled
up

Low P

Atmospheric pressure
Patm pushes water up
the cylinder.

Patm

(b)

0 5 y2

y3 5
10.3 m

y

Patm

P3 5 0

P2 5 Patm

1 2

3

FIGURE 13.11 A piston pulled up a cylinder 
causes water to rise to a maximum height  
of 10.3 m.
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Consider the pressure at three places: point 1, at the water surface in the pool out-
side the cylinder; point 2, at the same elevation but inside the cylinder; and point 3, in 
the cylinder 10.3 m above the pool water level. The pressure at point 1 is atmospheric 
pressure. The pressure at point 2, according to Pascal’s second law, is also atmospheric 
pressure, since it is at the same level as point 1. To get the water to the 10.3-m maxi-
mum height, the region above the water surface inside the cylinder and under the piston 
must be at the least possible pressure—essentially a vacuum. Thus, we assume that the 
pressure at point 3 is zero.

Now we will use Eq. (13.3) with y3 - y2 = 10.3 m to predict the pressure P2:

 P2 = P3 + rwater1y3 - y22g = 0 + 11.0 * 103 kg>m32110.3 m - 0219.8 N>kg2
 = 1.01 * 105 N>m2

This number is exactly the value of the atmospheric pressure that we encountered in 
our discussion of gases (in Chapter 12). The atmospheric pressure pushing down on the 
water outside the tube can push water up the tube a maximum of 10.3 m if there is a 
vacuum (absence of any matter) above the water in the tube.

At Torricelli’s time, the value of normal atmospheric pressure was unknown, so the 
huge number that came out of this analysis surprised Torricelli. Not believing the result, 
he tested it using a different liquid—mercury. Mercury is 14 times denser than water 1rHg = 13,600 kg>m3);  hence, the column of mercury should rise only 1>14 times as 
high in an evacuated tube. However, instead of using a piston to lift mercury, Torricelli 
devised a method that guaranteed that the pressure at the top of the column was about 
zero. Consider Testing Experiment Table 13.3.

Testing experiment Prediction Outcome

 ●  Torricelli filled a long glass tube closed at one 
end with mercury.

 ●  He put his finger over the open end and placed 
it upside down in a dish filled with mercury. He 
then removed his finger.

  

y2 5 ?P2 5 0

P1 5 Patm

0 5 y1

y

Predict what he observed based on the hypothesis 
that atmospheric pressure limits the height of the 
liquid in a suction pump.

Mercury should start leaking from the tube into the 
dish. When it leaks, it leaves an empty evacuated space 
at the top of the tube. It will leak until the height of 
the mercury column left in the tube produces the same 
pressure as the atmosphere at the bottom of the column 
at position 1. The height of the mercury in the tube 
should be

 y2 - y1 =
P1 - P2

rmercuryg

 =
11.01 * 105 N>m2 -  02113.6 * 103 kg>m32 19.8 N>kg2

 = 0.76 m

Torricelli observed some mer-
cury leaking from the tube 
and then the process stopped. 
He measured the height of 
the remaining mercury to be 
0.76 m = 760 mm, in agree-
ment with the prediction.

Conclusion

The outcome of the experiment was consistent with the prediction based on Torricelli’s hypothesis that atmospheric pressure limits the height of the 
liquid being lifted in a suction pump. Thus the hypothesis is supported by evidence.

TESTING  
EXPERIMENT TABLE 13.3 Testing Torricelli’s hypothesis using mercury 
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Torricelli also used his understanding of pressure and fluids to predict that in the 
mountains, where the atmospheric pressure is lower, the height of the mercury col-
umn should be lower. Experiments have shown that the mercury level indeed decreases 
at higher elevation. These experiments supported the explanation that atmospheric air 
pushes the liquids upward into the tubes.

Torricelli’s apparatus with the mercury tube became a useful device for meas-
uring atmospheric pressure—called a barometer. However, since mercury is toxic, 
the Torricelli device has since been replaced by the aneroid barometer (described in 
Chapter 12).

Diving bell
Our understanding of atmospheric pressure allows us to explain many simple 
 experiments that lead to important practical applications. For example, have you ever 
 submerged a transparent container upside down under water? If you have, you have 
seen that at first little water enters the container; then as the inverted container is 
pushed deeper into the water, more water enters the container. One practical application 
of this phenomenon is a diving bell—a large, bottomless chamber lowered under water 
with people and equipment inside. Divers use the diving bell to take a break and refill 
on  oxygen. In the past, diving bells were used for underwater construction, such as 
 building bridge foundations.

Eugenia, one of the book’s authors, stands 
under a 17th-century diving bell displayed in 
the Vasa Museum in Stockholm, Sweden.

TIP We now understand why pressure is often measured and reported in mm Hg 
and why atmospheric pressure is 760 mm Hg. The atmospheric pressure  

(1 0 1 ,0 0 0  N ,m2 ) can push mercury (density 1 3 ,6 0 0  kg ,m3 ) 760 mm up a column.

after it is submerged. This will let us find the ratio of the air volumes 
before and after, and from that we can determine h. Once we have that 
result, we can use Pascal’s second law to determine d.

Represent mathematically Apply the mathematical expression 
for an isothermal process to the process of submerging the bell, where 
the initial state is just before the bell starts to be submerged in the 
water and the final state is when submerged to some unknown depth. 
We have

P3Vi = P2Vf 1  Vf =
P3

P2
Vi

Next, use Pascal’s second law to determine d. The bottom of the bell is 
at y1 = 0; the water surface is at y3 = d. Compare the pressure at the 
ocean surface P3 to the pressure at the water surface inside the bell P2:

P2 = P3 + r1y3 - y22g

Solve and evaluate Vf =
P3

P2
 Vi =

1.0 * 105 N>m2

2.0 * 105 N>m2 Vi =
1
2

 Vi

Thus, the air volume inside the diving bell is half of what it was before 
entering the water. The bell is therefore half full of water, which means 
the height of the water level inside is

h =
1
2

 14.0 m2 = 2.0 m = y2

EXAMPLE 13.5 Diving bell

The bottom of a 4.0-m-tall cylindrical diving bell is at an un-
known depth underwater. The pressure of the air inside the bell is 
2.0 * 105 N>m2 (having been about 1.0 * 105 N>m2 before the bell en-
tered the water). The density of ocean water is slightly higher than fresh 
water: rocean water = 1027 kg>m3. How high is the water inside the bell, 
and how deep is the bottom of the bell under the water?

Sketch and translate A labeled sketch shows the situation. We want 
to find the height h of the water in the bell and the depth d that the bot-
tom of the bell is under the water.

Simplify and diagram Assume that the temperature is constant so 
we can apply our knowledge of an isothermal process (PV is constant 
for a constant temperature gas) to the air inside the bell and use it to 
relate the state of the air inside the bell before it is submerged to its state (continued)
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13.5 Buoyant force
Pascal’s first law tells us that pressure changes in one part of a fluid result in pressure 
changes in other parts. Pascal’s second law describes how the pressure in a fluid varies 
depending on the depth in the fluid. Do these laws explain why some objects float and 
others sink? Consider Observational Experiment Table 13.4.

REVIEW QUESTION 13.4 What does it mean if atmospheric pressure is 760 mm Hg?

The water is 2.7 m high in the bell (there is 1.3 m of air at the top), and 
the bottom of the bell is 23 m below the ocean’s surface.Answer

Rearrange Pascal’s second law to solve for the position y2 of the 
water level inside the bell:

 y2 = 2.0 m = y3 -
P2 - P3

rg
= d -

12.0 * 105 Pa - 1.0 * 105 Pa211027 kg>m3219.8 N>kg2
 = d - 10 m

Thus, d = 2.0 m + 10 m = 12 m. The position of the bottom of the 
bell is 12 m below the ocean’s surface.

Try it yourself Suppose the air pressure in the bell is 3.0 atm. 
In this case, how high is the water in the bell, and how deep is the 
 bottom of the bell?

OBSERVATIONAL 
EXPERIMENT TABLE 13.4 Effect of depth of submersion on a steel block suspended in water 

Observational experiment Analysis

Experiment 1. Hang a 1.0-kg block from a spring  
scale. The force that the scale exerts on the block  
balances the downward force that Earth exerts on  
the block 1mg = 11.0 kg219.8 N>kg2 = 9.8 N2.

Force diagram for the block B:

Experiment 2. Lower the block into a container  
of water, so it is partially submerged. The water  
level rises. The reading of the scale decreases.

We explain the decreased reading on the  
scale by the water pushing upward a little  
on the block.

Experiment 3. Lower the same block into the  
container of water to the point where the block is  
completely submerged. As the water level rises,  
the reading of the scale decreases.

The upward force exerted by the  
water increases.

9.8 N

y

S
FS on B

S
FE on B

9.0 N
y

S
FS on B S

FW on B

S
FE on B

8.0 N y

S
FS on B

S
FW on B

S
FE on B

VIDEO
OET 13.4
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Observational experiment Analysis

Experiment 4. Lower the block into the container  
of water so that the block is completely submerged  
near the bottom. The water level and the reading of  
the scale do not change.

The upward force exerted by the water  
does not change once it is completely  
submerged.

Patterns

We notice two effects:
1. The level of the water in the container rises as more of the block is submerged in the water.
2.  The scale reading decreases as more of the block is submerged. The water exerts an upward force on the block. The magnitude of this  

force depends on how much of the block is submerged. After it is totally submerged, the force does not change, even though the depth  
of  submersion changes.

8.0 N S
FS on B

S
FW on B

S
FE on B

CONCEPTUAL EXERCISE 13.6 

we show the three forces exerted by the three objects with which the 
cube interacts: Earth, the water, and the string. Because there is no 
 acceleration, the sum of the forces is zero.

The string does negative work on the cube because the force it 
exerts on the cube points opposite to the cube’s displacement. Given 
that both water and the cube interact with Earth, we consider the gravi-
tational potential energies of these interactions separately. We take zero 
gravitational potential energy to be at the bottom of the container. In the 
initial state, the system has initial gravitational potential energy due to 
the location of the cube and water. The gravitational potential energy 
of cube-Earth interaction decreases as the cube moves down; the grav-
itational potential energy of water-Earth interaction increases as some 
water moves up (being replaced by 
the cube). However, the total gravita-
tional potential energy of the system 
must decrease due to the negative 
work done by the string.

Try it yourself Draw the bar charts for the two states, choosing the 
cube and Earth as a system.

Qualitative force and energy analysis for an object in a fluid

You hang a solid metal cube (with side a) by a string over a rectangular 
container filled with water up to height a. The cube barely fits inside 
the container. Starting when the cube is just above the water in the con-
tainer, you very slowly lower the cube into the water until it is totally 
submerged. Represent this process by drawing force diagrams for the 
cube when it is above the water and when it is totally submerged. Also 
draw an energy bar chart for the cube, Earth, and the water as the  
system for those states.

Sketch and translate We draw a 
sketch of the situation; the system and 
the initial and final states are specified 
in the problem statement. The sub-
merged cube displaces water that is 
now above the cube. The volumes of 
the cube and water are the same, but the 
water has less mass due to its smaller 
density.

Simplify and diagram Because 
you are moving the cube very 
slowly, we can neglect the kinetic 
energy of the cube and the water in 
this process. We also assume that the 
cube has no acceleration during this 
motion and all friction effects are 
negligible. On the force  diagrams  

Answer

In Table 13.4, after the block is completely submerged, the scale reads 8.0 N  instead 
of 9.8 N. Evidently, the water exerts a 1.8-N upward force on the block. What is the 
mechanism responsible for this force?
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The magnitude of the force the fluid exerts  
on a submerged object
Consider only the fluid forces exerted on the block shown in Figure 13.12a. The fluid 
pushes inward on the block from all sides, including the top and the bottom. The forces 
exerted by the fluid on the vertical sides of the block cancel, since the pressure at a spe-
cific depth is the same magnitude in all directions.

What about the fluid pushing down on the top and up on the bottom of the block? 
The pressure is greater at elevation y1 at the bottom of the block than at elevation y2 at 
the top surface of the block. Consequently, the force exerted by the fluid pushing up on 
the bottom of the block is greater than the force exerted by the fluid pushing down on 
the top of the block. Arrows in Figure 13.12b represent the forces that the fluid exerts 
on the top and bottom of the block. The vector sum of these two fluid forces always 
points up and is called a buoyant force 

u
F F on B (fluid on block).

To calculate the magnitude of the upward buoyant force F F on B exerted by the fluid 
on the block, we use Eq. (13.3) to determine the pressure P1 of the fluid on the  bottom 
surface of the block compared to the pressure P2 of the fluid on the top surface (see 
Figure 13.12):

P1 = P2 + rfluid1y2 - y12g

The magnitudes of the forces exerted by the fluid on the top and on the bottom of the 
block are the products of the pressure P and the area A of the top and bottom surfaces 
of the block:

P1A = P2A + rfluid1y2 - y12Ag

or

F1 = F2 + rfluid1y2 - y12Ag

The volume of the block is

VB = A1y2 - y12
where A is the cross-sectional area of the block and 1y2 - y12 is its height. Substitute 
this volume into the above force equation and rearrange it to get an expression for the 
magnitude of the total upward buoyant force F F on B that the fluid exerts on the block 
(the object of interest):

F F on B = F1 - F2 = rfluid gV

Note that for a totally submerged block, V is the volume of the block. However, when it 
is partially submerged, V is the volume of the submerged part.

We can now understand the results of the experiments in Table 13.4. When sub-
merging the block further into the water, the scale reading decreased because the 
buoyant force was increasing. The scale reading stopped changing after the block was 
completely under the water. Once completely underwater, the submerged volume did 
not change; the upward buoyant force exerted by the fluid on the block remained con-
stant. Fluids of different densities exert different upward forces on the same object 
submerged to the same depth (Figure 13.13).

Archimedes’ principle—the buoyant force A stationary fluid exerts an upward  
buoyant force on an object that is totally or partially submerged in the fluid. The  
magnitude of the force is the product of the fluid density rfluid, the volume Vdisplaced 
of the fluid that is displaced by the object, and the gravitational constant g:

 F F on O = rfluidVdisplacedg = rfluidVsubmg (13.5)
TIP The derivation of Eq. (13.5) was for 

a solid cube, but the result applies 
to objects of any shape, though calculus is 
needed to establish that.

y

Top area A

Bottom area A

1 

2
P2

P1

(a)

(b)

y

y2

y1

S
F2  (P2  A)

S
F1 (P1 A)

The force exerted on the block by the fluid 
below is greater than the force exerted by the 
fluid above.

The upward force of the fluid on the bottom 
surface is greater than the downward force of 
the fluid on the top surface.

FIGURE 13.12 A fluid exerts an upward  
buoyant force on the block.

y

FF on B

0

rfluid 1VBg

rfluid 2VBg

Block
above
the fluid

Block partly
submerged
in the fluid

Block
completely
submerged

The slope depends on g, the 
density of the fluid, and the 
cross-sectional area of the block. 
For irregular objects, this part of 
the graph can be a curve.

FIGURE 13.13 Buoyant force dependence  
on the depth of the object and the density of 
the fluid.
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For simplicity, we will always use the volume of the submerged part of the object in 
our calculations and label it Vsubm. Because rfluidVdisplaced = mdisplaced fluid, we see that the 
buoyant force is equal in magnitude to the force that Earth exerts on the amount 
of fluid displaced by the object. However, the natures of these two forces are different. 
Earth exerts a gravitational force at a distance; the buoyant force is a contact force.

REVIEW QUESTION 13.5 Why does a fluid exert an upward force on an object  
submerged in it?

13.6  Skills for analyzing static fluid 
problems

In this section we adapt our problem-solving strategy to analyze processes involving 
static fluids.

Analyzing situations involving static fluids

Buoyant force exerted by air on a humanEXAMPLE 13.7 

Suppose your mass is 70.0 kg and your density is 970 kg>m3. If you could stand 
on a scale in a vacuum chamber on Earth’s surface, the reading of the scale would 
be mg = 170.0 kg219.80 N>kg2 = 686 N. What will the scale read when you are 
completely submerged in air of density 1.29 kg>m3?

You are the system.
The scale reads 686 N when in a vacuum. Your density is 970 kg>m3 and the 

density of air is 1.29 kg>m3. What does it read when you are submerged in air?

Assume that the air density is uniform.
Three objects exert forces on you. Earth exerts a downward 

gravitational force FE on Y = mg = 686 N. The air exerts an 
upward buoyant force FA on Y = rair gVY. The scale exerts an 
unknown upward normal force of magnitude NS on Y.

Sketch and translate
 ● Make a labeled sketch of the  situation and 
choose the system of interest. If applicable, 
decide on the initial and final states.

 ● Include all known information in the sketch 
and indicate the unknown(s) you wish to 
determine.

PROBLEM-SOLVING 
STRATEGY 13.1 

Simplify and diagram
 ● Indicate any assumptions you are making.
 ● Identify objects outside the system that 
 interact with it.

 ● Construct a force diagram for the system, 
 including a vertical coordinate axis. The 
buoyant force is just one of the forces 
 included in the diagram.

 ● Construct a bar chart or any other graphical 
representation that might help solve the 
problem.

(continued)
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The y-component form of Newton’s second law for your body with zero 
 acceleration is (assuming the upward direction as positive)

0 = NS on Y + FA on Y + 1-FE on Y 2
or

NS on Y = +FE on Y - FA on Y 

The buoyant force that the air exerts on your body has magnitude FA on Y =
rairVYg. The volume of your body is VY = 1m>rbody2. The magnitude of the 
buoyant force that the air exerts on you is

FA on Y = raira m
rbody

bg = mga rair

rbody
b

Thus the reading of the scale should be:

NS on Y = mg - mga rair

rbody
b

NS on Y = +686 N - 1686 N21.29 kg>m3

970 kg>m3 =  685 N

According to Newton’s third law, the force that you exert on the scale NY on S is 
equal in magnitude to the force the scale exerts on you.

The reading of the scale is actually 0.1% less when you step on the scale in 
air—not a big deal. We can usually neglect air’s buoyant force. Notice that overall 
the atmospheric air pushes up on objects, not down.

Try it yourself What will the scale read if you weigh yourself in a swimming 
pool with your body completely submerged?

Answer

Solve and evaluate
 ● Insert the known information and solve for 
the desired unknown.

 ● Evaluate the final result in terms of units, 
reasonable magnitude, and whether the 
 answer makes sense in limiting cases.

Represent mathematically
 ● Use the force diagram to help apply 
 Newton’s second law in component form.

 ● Use the energy bar chart to calculate work 
and energy if needed.

 ● Use the expression for the buoyant force 
and the definitions of pressure and density 
if needed; sometimes you might need the 
ideal gas law.

0 N. Because you are less dense than water, the buoyant force exerted by 
the water on you will completely support you, and the scale will not push 
upward on you at all.

We will use these strategies to analyze several more situations. In the next example, it 
might not be obvious how to arrive at the answer to the question with the information pro-
vided. Following the suggested problem-solving routine will help you arrive at a solution.

You can determine the mass of the crown easily from the measurement 
of the scale when the crown hangs in air. But how can you determine 
the volume from the given information? Crowns have irregular shapes, 
and it would be difficult to determine its volume by simple measure-
ments and calculations.

Simplify and diagram Let’s follow the recommended strategy and 
see what happens. First, we draw force diagrams for the crown hanging 
in air and again when hanging in water. When the crown is in air, the 
upward force exerted by the string attached to the spring scale balances 
the downward force exerted by Earth. We ignore the buoyant force that 
air exerts on the crown when hanging in air, since it will be very small 
in magnitude compared with the other forces exerted on the crown. 

EXAMPLE 13.8 Is the crown made of gold?

You need to determine if a crown is made from pure gold or some less 
valuable metal. From Table 13.1 you know that the density of gold is 
19,300 kg>m3. You find that the force that a string attached to a spring 
scale exerts on the crown is 25.0 N when the crown hangs in air and 
22.6 N when the crown hangs completely submerged in water.

Sketch and translate We draw 
a sketch of the situation and label 
the givens. If you could measure 
the mass mC of the crown and its 
volume VC, you could calculate 
the density rC = mC>VC of the 
crown—it should be 19,300 kg>m3. 
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When the crown is in water, the upward force 
exerted by the string (the force measured by 
the scale) and the upward buoyant force that 
the water exerts on the crown combine to 
balance the downward gravitational force that 
Earth exerts on the crown.

Represent mathematically Since the crown is in equilibrium,  
the forces exerted on it must add to zero in both cases. When the  
crown is hanging in air, the vertical component form of Newton’s  
second law is

0 = SFy = T9S on C + 1-FE on C2
where T9S on C is the 25.0-N string tension force exerted on the crown 
when it is suspended in air. Thus,

FE on C = mCg = 25.0 N

or

mC =
25.0 N

9.8 N>kg
= 2.55 kg

The vertical component form of Newton’s second law when the 
crown hangs in water becomes (the upward direction is positive):

SFy = TS on C + FW on C + 1-FE on C2 = 0 1000 kg>m3.Answer

where TS on C = 22.6 N is the magnitude of the string tension force, and 
the buoyant force that the water exerts on the crown is FW on C = rWVC g.  
Substituting in the above, we get

TS on C + rWVCg - mCg = 0

Solve and evaluate We see now that the last equation can be used to 
determine the volume of the crown:

 VC =  
mCg - TS on C

rWg

 =  
25.0 N - 22.6 N11000 kg>m3219.8 N>kg2 = 0.000245 m3

We now know the crown mass and volume and can calculate its density:

r =  
m
V

 =  
2.55 kg

0.000245 m3 =  10,400 kg>m3

Oops! Since 10,400 kg>m3 is much less than the 19,300 kg>m3 density 
of gold, the crown is not made of pure gold. The goldsmith must have 
combined the gold with some less expensive metal.

Try it yourself What is the density of the crown if the scale reads 0 
when submerged in water?

13.7  Ships, balloons, climbing,  
and diving

As we learned in Section 13.1, whether an object floats or sinks depends on its den-
sity relative to the density of the fluid. The reason for this lies in the interactions 
of the object with the fluid and Earth. Specifically, the magnitude of the buoyant 
force is FF on O = rfluidVsubm g, and the magnitude of the force exerted by Earth is 
FE on O = robjectVobject g. These forces are exerted in the opposite directions. The relative 
densities of the fluid and the object and consequently the relative magnitudes of the 
forces determine what happens to the object when placed in the fluid.

 ● If the object’s density is less than that of the fluid robject 6 rfluid, then robjectVobject g 6  
rfluidVobject g; the object floats partially submerged since the buoyant force can bal-
ance the gravitational force with less than the entire object below the surface of the 
fluid.

 ● If the densities are the same robject = rfluid, then robjectVobject g = rfluidVobject g; the 
sum of the forces exerted on the object is zero and it remains wherever it is placed 
totally submerged at any depth in the fluid.

 ● If the object is denser than the fluid robject 7 rfluid, then robjectVobject g 7  rfluidVobject g;  
the magnitude of the gravitational force is always greater than the magnitude of the 
buoyant force. The object sinks until it reaches the bottom of the container.

REVIEW QUESTION 13.6 Two objects have the same volume, but one is heavier than 
the other. When they are completely submerged in oil, on which one does the oil exert 
a greater buoyant force?
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These cases show that by changing the average density of an object relative to the 
 density of the fluid, the object can be made to float or sink in the same fluid. In this 
section we investigate this phenomenon and its many practical applications.

Building a stable ship
For years ships were made of wood. In the middle of the 17th century, people decided 
to try building metal ships. Many thought that this idea was absurd: iron is denser than 
water and an iron boat would certainly sink. In 1787 British engineer John Wilkinson 
succeeded in building the first iron ship that did not sink. Since the middle of the 19th 
century, large ships have been made primarily of steel, which is less dense than iron but 
much denser than water. These ships can float because part of the volume of a ship is 
filled with air, which reduces the average density of the ship to a density lower than that 
of water.

Making a ship or a raft float is only part of the challenge of building watercraft. 
Another problem is to maintain stable equilibrium for the ship, allowing it to right 
 itself if it tilts to one side due to wind or rough seas. Refresh your knowledge of stable 
 equilibrium (Section 8.6) before you read on.

Consider a floating bottle partially filled with sand. Earth exerts a gravitational 
force at the center of mass of the bottle (Figure 13.14a). The buoyant force exerted 
by the water on the bottle is effectively exerted at the geometrical center of the part 
of the bottle that is underwater, which equals the center of mass of the displaced 
water. If this point is above the center of mass of the bottle, then any slight tipping 
causes these forces to produce a torque that attempts to return the bottle to an upright 
 position (see Figure 13.14b). However, if the geometrical center of the part of the bottle 
that is  underwater is below the center of mass of the bottle, slight tipping causes the 
 gravitational force to produce a torque that enhances the tipping—unstable equilibrium 
(Figure 13.14c).

Although ships are more complicated than water bottles filled with sand, it is im-
portant to load a ship in such a way that when it begins to heel and one side of the hull 
begins to rise from the water, the center of mass of the displaced water is above the 
center of mass of the ship. This is why ships have their cargo stored at the bottom.

Geometrical center of
portion of bottle that is
under water

Center of mass
of bottle

Clay stuck in
upper part of
bottle

S
FE on B

S
FW on B

(a)

S
FE on B

S
FW on B

(b)

S
FE on B

S
FW on B

(c)

Air

Bottle partially filled with sand floats upright
if the center of mass is below the
geometrical center of bottle.

If the bottle is tipped, torques due to forces 
exerted on the bottle return it to the upright 
position.

If this bottle tips slightly, torques due to forces
exerted on the bottle cause it to overturn.

FIGURE 13.14 Making a bottle float with 
 stable equilibrium.

Simplify and diagram We have no information about the mass of the 
raft; thus we will assume it is negligible. We draw a sketch of the filled 
raft and a force diagram for the raft with passengers (the system). The 
vertical axis points up. There are two forces exerted on the system: the 
upward force exerted by the water 

u
FW on S of magnitude rwatergVsubm and 

the downward force exerted by Earth 
u
FE on S. The magnitude of the force 

Earth exerts on N people is Npeoplempersong. As the system is in equilib-
rium, the net force exerted on it is zero.

Raft sinks deeper in water as more 
people enter it.

EXAMPLE 13.9 Should we take this trip?

The top of an empty life raft of cross-sectional area 2.0 m *  3.0 m is 
0.36 m above the waterline. How many 75@kg passengers can the raft 
hold before water starts to flow over its top? The raft is in seawater of 
density 1025 kg>m3.

Sketch and translate We make a sketch of the unloaded raft. As peo-
ple get on the raft, it sinks deeper into the water, and the upward buoyant 
force increases until the raft reaches a maximum submerged volume, when 
the maximum number of people are on board. The maximum  submerged 
volume is Vsubm = 2.0 m *  3.0 m *  0.36 m = 2.16 m3. We need to 
determine the maximum buoyant force the seawater can exert on the raft 
and then decide how to convert this into the number of passengers the raft 
can hold. The raft and the passengers are our system of interest.
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Represent mathematically Using the upward direction as positive, 
apply the vertical component form of Newton’s second law:

 SFy = FW on S + 1-FE on S2 = 0 

 rwatergVsubm - Npeoplemperson g = 0

Assuming that all people have the same mass, we find the number of 
people:

Npeople =
rwaterVsubmg

mpersong
=

rwaterVsubm

mperson

Solve and evaluate

 Npeople =
rwaterVsubm

mperson

 =
11025 kg>m3210.36 m * 2.0 m * 3.0 m2

75 kg
= 29.5

The raft would sink 0.13 m into the water, and the water line would 
be 0.23 m below the top of the raft.Answer

The raft can precariously hold 29 passengers, which is a reasonable 
number. The number is inversely proportional to the mass of a person. 
This makes sense—the heavier the people, the fewer of them the raft 
should hold. The units, dimensionless, also make sense. We assumed 
that the raft has negligible mass. If we take the mass into account, the 
number of people will be smaller.

Try it yourself Suppose that 10 people of average mass 80 kg 
 entered the raft. Now how far would the water line be from the top 
of the raft?

Ballooning
Balloons used for transportation are filled with hot air. Why hot air? The density of 
100 8C air is 0.73 times the density of 0 8C air. Thus, balloonists can adjust the aver-
age density of the balloon (the balloon’s material, people, equipment, etc.) to match 
the density of air so that the balloon can float at any location in the atmosphere (up 
to certain limits). A burner under the opening of the balloon regulates the temperature 
of the air inside the balloon and hence its volume and density. This allows control 
over the buoyant force that the outside cold air exerts on the balloon. The same ap-
proach that we used in Example 13.9 allows us to predict that a balloon with radius of  
5.0 m and a mass of 20.0 kg filled with air at the temperature of 100 8C can carry 
about 160 kg (three slim 53-kg people or two medium-mass 80-kg people). This is 
not a heavy load.

At one time, hydrogen was used in closed balloons instead of air. The density of hy-
drogen is 1>14 times the density of air. Unfortunately, hydrogen can burn explosively 
in the presence of oxygen. The hydrogen-filled Hindenburg, a German airship, caught 
fire and exploded in 1937, killing 36 people (see Figure 13.15). Balloonists then turned 
to helium—an inert gas that does not interact readily with other types of atoms.

Effects of altitude on humans
Table 13.5 on the next page shows that atmospheric pressure decreases with  altitude. 
Therefore, climbers and balloonists have to guard against altitude sickness, caused 
by the low pressure and lack of oxygen. Below 3000 m, altitude has little effect 
on  performance. Between 3000 m and 4600 m, climbers experience compensated 
 hypoxia—increased heart and breathing rates. Between 4600 m and 6000 m,  manifest 
hypoxia sets in. Heart and breathing rates increase dramatically, and cognitive 
and sensory function and muscle control decline. Climbers may feel lethargy and 
 euphoria and even experience hallucinations. Between 6000 m and 8000 m,  climbers 
undergo critical hypoxia, characterized by rapid loss of muscular control, loss of 
 consciousness, and possibly death.

These symptoms were exhibited clearly on April 15, 1875 by three French balloon 
pioneers attempting to set an altitude record. They carried bags of oxygen with them, 
but as their elevation increased, slowly lost the mental awareness needed to use the 
bags. Instruments indicate that the balloon reached a maximum elevation of 8600 m 
twice. During the second time, two of the balloonists died. The third lost consciousness 
but survived.

FIGURE 13.15 The Hindenburg explosion.
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Scuba diving
The sport of scuba diving depends on an understanding of fluid pressure and buoyant 
force to avoid cases of excess internal pressure, oxygen overload, and decompression 
sickness.

Assuming that the surface area of your body is about 2 m2, the air exerts a 
200,000-N force (about 20 tons) on the surface of your body. Fortunately, fluids inside 
the body push outward and balance the force exerted by the outside air. For exam-
ple, the pressure inside your lungs is approximately atmospheric pressure. What would 
happen if the fluid pressure on the inside remained constant while the pressure on the 
outside doubled or tripled? Would you be crushed, the way a can or barrel is crushed by 
outside air pressure when the air pressure inside the can is much lower than the pres-
sure outside (Figure 13.16)? Scuba divers face this problem.

We know that atmospheric pressure (1 atm) is equivalent to the pressure of a 10-m 
column of water. Therefore, at depth d = 10 m, the water pressure is 2 atm. At 40 m 
below the water surface, the pressure is about 5 atm. This would surely be a problem 
for a scuba diver if the internal pressure were only 1 atm!

To avoid this problem, divers breathe compressed air. While moving slowly down-
ward, a diver adjusts the pressure outlet from the compressed air tank in order to ac-
cumulate gas from the cylinder into her lungs and subsequently into other body parts, 
increasing the internal pressure to balance the increasing external pressure. If a diver 
returns to the surface too quickly, the great gas pressure in the lungs can force bubbles 
of gas into the bloodstream. These bubbles can behave like blood clots, blocking blood 
flow to the brain and possibly causing death. Blood vessels can rupture if the pressure 
difference between the inside and outside of the vessel is too great. Thus, a diver rises 
to the surface slowly so that pressure changes gradually and bubbles of gas do not form. 
This gradual process is called decompression.

When humans travel to dangerous environments (mountaintops, the deep sea, or 
outer space), physics intersects with human physiology. A careful understanding of 
gases, liquids, and the effects of changing pressures on the human body is needed to 
allow humans to survive in these places. As we explore the universe, we will need to 
learn to adapt to ever more challenging environments.

TABLE 13.5 Pressure of air and pressure due to oxygen in the air (called partial 
pressure) at different elevations

Location Elevation (m) Pair (atm) Poxygen (atm)

Sea level  0 1.0 0.21

Mount Washington  1917 0.93 0.18

Pikes Peak  4301 0.59 0.12

Mount McKinley  6190 0.47 0.10

Mount Everest  8848 0.34 0.07

Jet travel  12,000 0.23 0.05

REVIEW QUESTION 13.7 A ship’s waterline marks the maximum safe depth of the 
ship in the water when it has a full cargo. An empty ship is at the dock with its waterline 
somewhat above the water level. How could you estimate its maximum cargo?

When air is pumped out of a can, outside air 
pressure causes it to collapse.

FIGURE 13.16 External air pressure  
collapses an evacuated can.
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Density r The ratio of the mass m of a 
substance divided by the volume of that sub-
stance. (Section 13.1)

V
Volume
of object

Mass of
object

1
3

2
 r =  

m
V

 Eq. (13.1)

Pascal’s first law—hydraulic lift An 
increase in the pressure in one part of an 
 enclosed fluid increases the pressure through-
out the fluid. In a hydraulic lift, a small force 
 F1 exerted on a small piston of area  A1 can 
cause a large force  F2 to be exerted on a large 
piston of area  A2. (Section 13.2)

Piston 1

Fluid
Area A2Area A1

Piston 2

S
F1 on F

S
FF on 2

For a hydraulic lift:
 FF on 2 = PA2 = 1A2>A12 F1 on F Eq. (13.2)

Pascal’s second law—variation of 
 pressure with depth On a vertical upward- 
pointing y-axis, the pressure of a fluid  P1 
at position y1 depends on the pressure  P2 at 
position  y2 and on the density of the fluid. 
(Section 13.3)

2

1
0

y1

y2

rfluid

  P1 = P2 + rfluid1y2 - y12g Eq. (13.3)

Buoyant force A fluid exerts an upward- 
pointing buoyant force on an object totally 
or partially immersed in the fluid. The force 
depends on the density of the fluid and on the 
volume of the fluid displaced. Once the object 
is totally submerged, the buoyant force does 
not change. (Section 13.5)

Totally 
submerged Partially submerged

rfluid

 FF on O = rfluidVdisplacedg Eq. (13.5)

Newton’s second law Use the standard 
 problem-solving strategies with this law 
(sketches, force diagrams, math descriptions) 
to find some unknown quantity. The problems 
often involve the buoyant force, pressure, and 
density. (Section 13.6)

y

S
FW on B

S
FS on B

S
FE on B

 ay =
SFy

m
 Eq. (3.7y)

Summary
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9. If Torricelli had a wider tube in his mercury barometer, what would the 
height of the mercury column in the tube do?
(a) Decrease (b) Increase (c) Stay the same

10. A wooden cube is floating in a fish tank that is filled with water. Imagine 
that you take this setup to a space station on the Moon. Air pressure and 
temperature inside the station are similar to conditions on Earth. After 
bringing the setup from Earth to the space station, you will observe that 
(choose all correct statements)
(a) the amount of water displaced by the cube increases.
(b) the amount of water displaced by the cube decreases.
(c) the amount of water displaced by the cube stays the same.
(d) the buoyant force exerted on the cube increases.
(e) the buoyant force exerted on the cube decreases.
(f) the buoyant force exerted on the cube stays the same.
(g) the pressure at the bottom of the fish tank is about 1>6 of the value on 

Earth.
(h) the pressure at the bottom of the fish tank is significantly less than 1>6 

of the value on Earth.
(i) the pressure at the bottom of the fish tank is slightly less than the value 

on Earth.
(j) the pressure at the bottom of the fish tank is the same as on Earth.

11. Two identical beakers with the same amount of water sit on the arms of an 
equal arm balance. A wooden block floats in one of them. What does the 
scale indicate?
(a) The beaker with the block is heavier.
(b) The beaker without the block is heavier.
(c) The beakers weigh the same.

12. A piece of steel and a bag of feathers are suspended from two spring scales 
in a vacuum. Each scale reads 100 N. What happens when you repeat the 
experiment outside under normal conditions?
(a) The scale with feathers reads more than the scale with steel.
(b) The scale with feathers reads less that the scale with steel.
(c) The scales have the same reading, but the reading is less than the read-

ing in a vacuum.
13. A metal boat floats in a pool. What happens to the level of the water in the 

pool if the boat sinks?
(a) It rises.
(b) It falls.
(c) It stays the same.

14. When a boat sails from seawater to fresh water, the buoyant force exerted 
on the boat
(a) decreases. (b) increases. (c) stays the same.

15. Three blocks are floating in oil as shown in Figure Q13.15. Which block 
has the highest density?
(a) A (b) B (c) C
(d) All blocks have the same 

density. 
16. Three blocks are floating in oil 

as shown in Figure Q13.15. On 
which block does the oil exert the 
greatest buoyant force?
(a) A   (b)  B   (c)  C
(d) The oil exerts the same force 

on all of them.

Conceptual Questions
17. Describe a method to measure the density of a liquid.
18. How can you determine the density of air?
19. Design an experiment to determine whether air has mass.
20. Does air exert a net upward force or a net downward force on an object 

submerged in the air? How can you test your answer experimentally?
21. What causes the pressure that air exerts on a surface that is in the air?
22. Why, when you fill a teapot with water, is the water always at the same 

level in the teapot and in the spout?
23. What experimental evidence supports Pascal’s first law?

Questions
Multiple Choice Questions

1. Rank in increasing order the pressure that the italicized objects exert on the 
surface.
I. A person standing with bare feet on the floor
II. A person in skis standing on snow
III. A person in Rollerblades standing on a road
IV. A person in ice skates standing on ice
(a) I, II, III, IV (b) IV, III, I, II (c) IV, III, II, I
(d) III, II, IV, I (e) II, I, III, IV

2. Choose a device that reduces the pressure caused by a force.
(a) Scissors (b) Knife (c) Snowshoes
(d) Nail (e) Syringe

3. What does it mean if the density of a material equals 2000 kg>m3?
(a) The mass of the material is 2000 kg.
(b) The volume of the material is 1 m3.
(c) The ratio of the mass of any amount of this material to the volume is 

equal to 2000 kg>m3.
4. An upside-down mug with some air 

trapped in it is fixed under water, as 
shown in Figure Q13.4. Which qual-
itative pressure-versus-position graph 
correctly shows how the gauge pressure 
changes along the dashed line through 
the mug from A to D?

y

P

A B C D

(a)

y

P

A B C D

(b)

y

P

A B C D

(c)

y

P

A B C D

(d)

5. If you hold a cylinder vertically, what is the net force exerted by the 
 atmospheric pressure on it?
(a) Downward (b) Upward (c) Zero

6. How do we know that a fluid exerts an upward force on an object sub-
merged in the fluid?
(a) Fluid pushes on the object in all directions.
(b) The reading of a scale supporting the object when submerged in the 

fluid is less than when not in the fluid.
(c) The fluid pressure on the bottom of the object is greater than the pres-

sure on the top.
(d) Both b and c are correct.

7. When you suspend an object from a spring scale, it reads 15 N. Then you 
place the same object and scale under a vacuum jar and pump out the air. 
What happens to the reading of the scale?
(a) It increases slightly.
(b) It decreases slightly.
(c) It says the same.
(d) Don’t have enough information to answer

8. Why can’t a suction pump lift water higher than 10.3 m?
(a) Because it does not have the strength to pull up higher
(b) Because the atmospheric pressure is equal to the pressure created by a 

10.3@m-high column of water
(c) Because suction pumps are outdated lifting devices
(d) Because most suction cups have an opening to the bulb that is too narrow

A

B

C

D

FIGURE Q13.4

Air

Oil

A
B

C

FIGURE Q13.15
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24. Fill a plastic cup to the very top with water. Put a piece of paper on top of 
the cup so that the paper covers the cup at the edges and is not much bigger 
than the surface of the cup. Turn the cup and paper upside down (practice 
over the sink first) and hold the bottom of the cup (now on the top). Why 
doesn’t the water fall out of the cup?

25. Why does a fluid exert a net upward force on an object submerged in the 
fluid?

26. Describe how you could predict whether an object will float or sink in a 
particular liquid without putting it into the liquid.

27. Why can you lift objects while in water that are too heavy to lift when in 
the air?

28. When placed in a lake, a solid object either floats on the surface or sinks. 
It does not float at some intermediate location between the surface and the 
bottom of the lake. However, a weather balloon floats at some intermediate 
distance between Earth’s surface and the top of its atmosphere. Explain.

29. A flat piece of aluminum foil sinks when placed under water. Take the 
same piece and shape it so that it floats in the water. Explain why the 
method worked.

30. Ice floats in water in a beaker. Will the level of the water in the beaker 
change when the ice melts? Explain.

31. The density of ice at 0 °C is less than the density of water at 0 °C. How is 
this related to the existence of life on Earth?

32. How would you determine the density of an irregular-shaped unknown 
object if (a) it sinks in water and (b) it floats in water? List all the steps and 
explain the reasoning behind them.

33. Why do people sink in fresh water and in most seawater (if they do not 
make an effort to stay afloat) but do not sink in the Dead Sea?

34. A bucket filled to the top with water has a piece of ice floating in it.  
Will the pressure on the bottom of the bucket change when the ice melts? 
Explain.

35. Marjory thinks that the mass of a fluid above a certain level should affect 
the pressure at this level. Describe how you will test her idea.

36. You are holding a brick that is completely submerged in water. Draw a 
force diagram for the brick. Why does it feel lighter in water than when you 
hold it in the air?

37. A bucket filled with water has a piece of ice floating in it. Will the level 
of water rise when the ice melts? Justify your answer.

38. Explain qualitatively and quantitatively how we drink through a straw. 
Make sure you can account for the water going up the length of the straw.

39. Three test tubes are inverted  
in a Petri dish as shown in  
Figure Q13.39. The first is com-
pletely filled with water, the second 
has an air bubble at the top, and the 
third has oil at the same level as the 
air bubble. (a) Rank the pressures 
at points A, B, and C from largest 
to smallest. (b) Rank the pressures 
at points A9, B9, and C9 from larg-
est to smallest.

A9

A

B9

B

Air

C9

C

Oil

FIGURE Q13.39

7. Imagine that you have gelatin cut into three cubes: the side of cube A is a 
cm long, the side of cube B is double the side of A, and the side of cube C 
is three times the side of A. Compare the following properties of the cubes: 
(a) density, (b) volume, (c) surface area, (d) cross-sectional area, and  
(e) mass.

8. An object made of material A has a mass of 90 kg and a volume of 0.45 m3. 
If you cut the object in half, what would be the density of each half? If you 
cut the object into three pieces, what would be the density of each piece? 
What assumptions did you make?

9. You have a steel ball that has a mass of 6.0 kg and a volume of 
3.0 * 10-3 m3. How can this be?

10. * A material is made of molecules of mass 2.0 * 10-26 kg. There are 
2.3 * 1029 of these molecules in a 2.0@m3 volume. What is the density of 
the material?

11. You compress all the molecules described in Problem 13.10 into 1.0 m3.  
Now what is the density of the material? What type of material could 
 possibly behave this way?

12. * Bowling balls are heavy. However, some bowling balls float in water. Use 
available resources to find the dimensions of a bowling ball and explain 
why some balls float while others do not.

13. *  Estimate the average density of a glass full of water and then the 
glass when the water is poured out (do not forget the air that now fills the 
glass instead of water).

13.2 Pressure inside a fluid
14. * Anita holds her physics textbook and complains that it is too heavy. 

Andrew says that her hand should exert no force on the book because the 
atmosphere pushes up on it and balances the downward pull of Earth on 
the book (the book’s weight). Jim disagrees. He says that the atmosphere 
presses down on things and that is why they feel heavy. Who is correct? 
Approximately how large is the force that the atmosphere exerts on the 
bottom of the book? Why does this force not balance the force exerted by 
Earth on the book?

Below,  indicates a problem with a biological or medical focus. Problems 
 labeled  ask you to estimate the answer to a quantitative problem rather than 
derive a specific answer. Asterisks indicate the level of difficulty of the problem. 
Problems with no * are considered to be the least difficult. A single * marks moder-
ately difficult problems. Two ** indicate more difficult problems.

13.1 Density
1. Determine the average density of Earth. What data did you use? What as-

sumptions did you make?
2. *  Height of atmosphere Use data for the normal pressure and the 

density of air near Earth’s surface to estimate the height of the atmosphere, 
assuming it has uniform density. Indicate any additional assumptions you 
made. Are you on the low or high side of the real number?

3.  A single-level home has a floor area of 200 m2 with ceilings that are 
2.6 m high. Estimate the mass of the air in the house.

4. *  A diet decreases a person’s mass by 5%. Exercise creates muscle 
and reduces fat, thus increasing the person’s density by 2%. Determine the 
percent change in the person’s volume.

5. Pulsar density A pulsar, an extremely dense rotating star made of 
 neutrons, has a density of 1018 kg>m3. Determine the mass of a pulsar 
 contained in a volume the size of 
your fist (about  200 cm3).

6. Use the graph lines in Figure P13.6  
to determine the densities of the 
three liquids, A, B, and C, in SI 
units. If you place them in one 
container, how will they position 
themselves? How does the density 
of each liquid change as its volume 
increases? As its mass decreases? 
Compare the masses of the three 
liquids when they occupy the same 
volume. Compare the volumes of 
the three liquids when they have 
the same mass.

Problems

A

BC

0

0.5

1.0

0 0.5
Volume (1023  m3 )

1.0
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FIGURE P13.6
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20. You have a rubber pad with a han-
dle attached to it (Figure P13.20). 
If you press the pad firmly on a 
smooth table, it is impossible to 
lift it off the table. Why? What 
force would you need to exert on 
the handle to lift it? The surface 
area of the pad is 0.023 m2.

21. *  Toy bow and arrow A child’s toy arrow has a suction cup on one 
end. When the arrow hits the wall, it sticks. Draw a force diagram for the 
arrow stuck on the wall and estimate the magnitudes of the forces exerted 
on it when it is in equilibrium. The mass of the arrow is about 10 g. Why 
are the words “suction cup” not appropriate?

13.3 Pressure variation with depth
22. * Pressure on the Titanic The Titanic rests 4 km (2.5 miles) below the 

surface of the ocean. What physical quantities can you determine using this 
information?

23. You have three reservoirs (Figure P13.23). Rank the pressures at the bot-
tom of each and explain your rankings. Then rank the net force that the 
water exerts on the bottom of each reservoir. Explain your rankings.

Flat surface of
hollow cylinder

FIGURE P13.19

FIGURE P13.20

A B C

FIGURE P13.23

24. Water reservoir and faucet The pressure at the top of the water in a city’s 
gravity-fed reservoir is 1.0 * 105 N>m2. Determine the pressure at the fau-
cet of a home 42 m below the reservoir.

25. Dutch boy saves Holland An old story tells of a Dutch boy who used his 
fist to plug a 2.0-cm-diameter hole in a dike that was 3.0 m below sea level, 
thus preventing the flooding of part of Holland. What physical quantities 
can you determine from this information? Determine them.

26.   Blood pressure Estimate the pressure of the blood in your 
brain and in your feet when standing, relative to the average pressure of the 
blood in your heart of 1.3 * 104 N>m2 above atmospheric pressure.

27. *  Intravenous feeding A glucose solution of density 1050 kg>m3 is 
transferred from a collapsible bag through a tube and syringe into the vein 
of a person’s arm. The blood pressure in the arm exceeds the atmospheric 
pressure by 1400 N>m2. How high above the arm must the top of the liquid 
in the bottle be so that the pressure in the glucose solution at the needle 
 exceeds the pressure of the blood in the arm?

28. * Mountain climbing Determine the change in air pressure as you climb 
from elevation of 1650 m at the timberline of Mount Rainier to its 4392-m 
summit, assuming an average air density of 0.82 kg>m3. Will the real 
change be more or less than the one you calculated? Explain.

29.   Giraffe raises head Estimate the pressure change of the blood 
in the brain of a giraffe when it lifts its head from the grass to eat a leaf 
on an overhead tree. Without special valves in its circulatory system, the 
 giraffe could easily faint when lifting its head.

30. * A truck transporting chemicals has crashed, and some dangerous liquid 
has spilled onto the ground and possibly entered a water well. An inspec-
tor fixes a pressure sensor to the end of a long string and lets the sensor 
slowly descend from the top of the well to the bottom. Using this device, 
he obtains the graph in Figure P13.30 that shows how the pressure P in 
the well changes with distance d measured from the top of the well. (a) 
Explain what features of the graph support the idea that there is another 
liquid in the well in addition to water. (b) Determine the density of the 
unknown liquid. Is the liquid above the water or below the water?  
(c) Determine the depth of the water, the depth of the unknown liquid, 
and the depth of the well.

1.00
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1.10
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1.20

1.25

1.30

0 1 2 3 4 5 6
d (m)

P (105  N/m2)

FIGURE P13.30

31. Drinking through a straw You are drinking water through a straw in an 
open glass. Select a small volume of water in the straw as a system and 
draw a force diagram for the water inside this volume that explains why the 
water goes up the straw.

32. * More straw drinking While you are drinking through the straw, the 
pressure in your mouth is 30 mm Hg below atmospheric pressure. What is 
the maximum length of a straw in an open glass that you can use to drink a 
fruit drink of density 1200 kg>m3?

33. * Your office has a 0.020 m3 cylindrical container of drinking water. The 
 radius of the container is about 14 cm. When the container is full, what 
is the gauge pressure that the water exerts on the sides of the container 
 halfway down from the top? All the way down?

34. *   Eardrum Estimate the net force on your 0.5-cm2 eardrum 
that air exerts on the inside and the outside after you drive from Denver, 
Colorado (elevation 1609 m) to the top of Pikes Peak (elevation 4301 m). 
Assume that the air pressure inside and out are balanced when you leave 
Denver and that the average density of the air is 0.80 kg>m3. What other 
assumptions did you make?

35.  Eardrum again You now go snorkeling. What is the net force 
 exerted on your eardrum when you are 2.4 m under the water, assuming the 
pressure was equalized before the dive?

15. * The air pressure in the tires of a 980@kg car is 3.0 * 105 N>m2. 
 Determine the average area of contact of each tire with the road. Indicate 
any assumptions that you made.

16. *  Estimate the pressure that you exert on the floor while wearing 
hiking boots. Now estimate the pressure under each heel if you change into 
high-heeled shoes. Indicate any assumptions you made.

17. Hydraulic car lift You are designing a hydraulic lift for a machine shop. 
The average mass of a car it needs to lift is about 1500 kg. What should 
be the specifications on the dimension of the pistons if you wish to exert a 
force on a smaller piston of not more than 500 N? How far down will you 
need to push the piston in order to lift the car 30 cm?

18.  Force of air on forehead Estimate the force that air exerts on your 
forehead. Describe the assumptions you made.

19. *  A 30-cm-diameter cylindrical iron plunger is held against the 
 ceiling, and the air is pumped from inside it. A 72-kg person hangs by a 
rope from the plunger (Figure P13.19). List the quantities that you can esti-
mate about the situation and estimate them. Make assumptions if necessary.
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38. * A test tube of length L and cross-sectional area A is submerged in water 
with the open end down so that the edge of the tube is a distance h below 
the surface. The water goes up into the tube so its height inside the tube is l.  
Describe how you can use this information to decide whether the air that 
was initially in the tube obeys the mathematical description for an isother-
mal process (Boyle’s law). List your assumptions.

39. Half of a 20-cm-tall beaker is filled with glycerol (density 1259 kg>m3) 
and the other half with olive oil (density 800 kg>m3). (a) Draw a graph that 
shows how the density of the liquids in the beaker changes with the dis-
tance from the surface to the bottom of beaker. (b) Draw a graph that shows 
how the pressure in the liquids changes with the distance from the surface 
to the bottom of the beaker.

40. Blaise Pascal found a seemingly 
paradoxical situation when he 
poured water into the apparatus 
shown in Figure P13.40. The 
water level was the same in all 
four parts of the apparatus despite 
differences in the shapes of the 
parts and the masses of water in 
each part. Explain qualitatively the 
outcome of Pascal’s experiment.

41. Four containers are filled with different volumes of water as shown in 
 Figure P13.41. Rank the containers in order of decreasing pressure that the 
water exerts on the bottom of the containers.

FIGURE P13.37

FIGURE P13.40

Squeezed
bulb

20 cm

FIGURE P13.46

Bulb

FIGURE P13.45
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C

200 ml

D

350 ml

FIGURE P13.41

42. Venus pressure and underwater pressure Atmospheric pressure on Venus 
is 9.0 * 106 N>m2. How deep underwater on Earth would you have to go 
to feel the same pressure?

13.4 Measuring atmospheric pressure
43. The reading of a barometer in your room is 780 mm Hg. What does this 

mean? What is the pressure in pascals?
44. How long would Torricelli’s barometer have had to be if he had used oil of 

density 950 kg>m3 instead of mercury?

Vacuum

80 mm

Gas

FIGURE P13.47

36. Water and oil are poured into opposite sides of an open U-shaped tube. The 
oil and water meet at the exact center of the U at the bottom of the tube. 
If the column of oil of density 900 kg>m3 is 16 cm high on one side, how 
high is the water on the other side?

37. * Examine the vertical cross section of the Hoover Dam shown in 
 Figure P13.37. Explain why the dam is thicker at the bottom than at the top.

45. Sometimes gas pressure is measured with a device called a liquid manom-
eter (Figure P13.45). Explain how this instrument can be used to measure 
the pressure of gas in a bulb attached to one of the tubes.

46. You use a liquid manometer with water to measure the pressure inside a 
 rubber bulb. Before you squeeze the bulb, the water is at the same level in 
both legs of the tube. After you squeeze the bulb, the water in the opposite  
leg rises 20 cm with respect to the leg connected to the bulb (Figure P13.46).  
What is the pressure in the bulb? What assumptions did you make? How 
will the answer change if the assumptions are not valid?

47. * In a mercury-filled manometer 
 (Figure P13.47), the open end is in-
serted into a container of gas and the 
closed end of the tube is evacuated. 
The difference in the height of the 
mercury is 80 mm. The radius of the 
connecting tube is 0.50 cm. (a) Deter-
mine the pressure inside the container 
in newtons per square meter. (b) An 
identical manometer has a connecting 
tube that is twice as wide. If the dif-
ference in the height of the mercury is 
the same, then what is the pressure in 
the container?

48. Examine the reading of the manom-
eter that you use to measure the 
pressure inside car tires. What are the 
units? Does the manometer measure the absolute pressure of the air inside 
the tires or gauge pressure? How do you know?

13.5 Buoyant force
49. Draw a force diagram for an object that is floating at the surface of a liquid. 

Is the force exerted by air on the object included in your diagram? Explain.
50. Draw a cubic object that is completely submerged in a fluid but not resting 

on the bottom of the container. Then draw arrows to represent the forces 
exerted by the fluid on the top, sides, and bottom of the object. Make the 
arrows the correct relative lengths. What is the direction of the total force 
exerted by the fluid on the object?

51. Three people are holding three identical sealed metal containers, ready to 
release them. Container A is filled with air at atmospheric pressure and 
room temperature, container B is filled with helium at atmospheric pres-
sure and room temperature, and container C is evacuated (all air has been 
pumped out). Draw force diagrams for the containers after they are released.

52. * Four cubes of the same volume are made of different materials: lead 
 (density 11,300 kg>m3), aluminum (density 2700 kg>m3), wood (density 
800 kg>m3), and Styrofoam (density 50 kg>m3). You place the cubes in a 
large container filled with water. Rank the buoyant forces that the water 
exerts on the cubes from largest to smallest.

53. * You place four identical cubes made of oak (density 900 kg>m3) in water, 
olive oil (density 880 kg>m3), alcohol (density 790 kg>m3), and mercury 
(density 13,600 kg>m3). Rank the buoyant forces that the liquids exert on 
the cubes from largest to smallest.
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60. * Does air affect what a scale reads? A 60-kg woman with a density of 
980 kg>m3 stands on a bathroom scale. Determine the reduction of the 
scale reading due to air.

61. * When analyzing a sample of ore, a geologist finds that it weighs 2.00 N 
in air and 1.13 N when immersed in water. What is the density of the ore? 
What assumptions did you make to answer the question? If the assumptions 
are not correct, how would the answer be different?

62. * A pin through a hole in the middle supports a meter stick. Two identical 
blocks hang from strings at an equal distance from the center so the stick is 
balanced. What happens to the stick if one block is submerged in water of 
density 1000 kg>m3 and the other block in kerosene of density 850 kg>m3?

63. * A meter stick is supported by a pin through a hole in the middle. (a) Two 
blocks made of the same material but different sizes hang from strings at 
different positions in such a way that the stick balances. What happens 
when the blocks hang entirely submerged in beakers of water? (b) Next 
you hang two blocks of different masses but the same volume at different 
positions so the stick balances. What happens when these blocks hang com-
pletely submerged in beakers of water? Support your answer for each part 
using force diagrams with arrows drawn with the correct relative lengths.

13.6 Skills for analyzing static fluid problems
64. Goose on a lake A 3.6-kg goose floats on a lake with 40% of its body 

below the 1000@kg>m3 water level. Determine the average density of  
the goose.

65. ** Floating in seawater A person of average density r1 floats in seawater 
of density r2. What fraction of the person’s body is submerged? Explain.

A B

C

D

FIGURE P13.59

74. * You hold a ping-pong ball fully underwater (the initial state). When you 
release the ball, it jumps out of the water to a certain height above the 
surface. Let the final state be when the ball is just above the water surface, 
moving upward. Represent the process with energy bar charts (a) choosing 
the water, the ball, and Earth as the system, and (b) choosing the ball and 
Earth as the system. Indicate any assumptions that you made.

75. * You hang a steel ball on a string above a beaker that is filled to the top 
with water (the initial state). The beaker is sitting on a large empty tray. You 
slowly lower the ball until it reaches the bottom of the beaker. Some water 
spills over the rim of the beaker to the tray (the final state). (a) Represent 
the process with an energy bar chart choosing the water, the ball, and Earth 
as the system. (b) Repeat the analysis for a similar process with the same 
ball and the same amount of water, but a beaker tall enough so that no 
water spills over into the tray. Indicate any assumptions that you made.

Oil
10 cm

FIGURE P13.73

54. ** You fill a 20-cm-tall container with glycerol so that the glycerol (density 
1260 kg>m3) reaches the 10-cm mark. You place an oak cube (density  
900 kg>m3) into the container. Each side of the cube is 10 cm. (a) What 
is the distance x from the upper face of the cube to the glycerol surface 
assuming the cube is in an upright position? (b) Make a prediction using 
qualitative reasoning (without mathematics) about what will happen to the 
cube in (a) if you now add olive oil (density 800 kg>m3) to the container 
until it is completely full. Will the distance x decrease, increase, or stay the 
same? (c) Determine the new distance x using mathematics (physics laws) 
and compare your result with the prediction in (b).

55. * A 30-g ball with volume 37.5 cm3 is attached to the bottom of a glass 
beaker with a light string. When the beaker is filled with water, the ball 
floats fully submerged under the water surface. Draw a force diagram for 
the ball and determine the force exerted on the ball by the string.

56. ** You have a ball (volume V, average density rB) and a glass beaker. The 
ball is attached to the bottom of the beaker with a light spring (coefficient k). 
When you fill the beaker with a liquid of density rL, the ball floats fully 
submerged under the surface with the spring extended by x. Draw a force 
diagram for the ball and derive the expression for x in terms V, rB, rL, and k. 
Evaluate the expression using unit analysis and limiting case analysis.

57. * This textbook says that the upward force that a fluid exerts on a sub-
merged object is equal in magnitude to the product of the density of the 
fluid, the gravitational constant g, and the volume of the submerged part of 
the object. Where did this equation come from?

58. * Design This textbook says that the upward force that a fluid exerts on a 
submerged object is equal in magnitude to the product of the density of the 
fluid, the gravitational constant g, and the volume of the submerged part of 
the object. Design an experiment to test this expression, including a predic-
tion about the outcome of the experiment.

59. * You have four objects at rest, each of the same volume. Object A is 
partially submerged, and objects B, C, and D are totally submerged in the 
same container of liquid, as shown in Figure P13.59. Draw a force diagram 
for each object. Rank the densities of the objects from least to greatest and 
indicate whether any objects have the same density.

66. * Floating in seawater A person of average density 980 kg>m3 floats in 
seawater of density 1025 kg>m3. What can you determine using this infor-
mation? Determine it.

67. ** (a) Determine the force that a vertical string exerts on a 0.80-kg rock 
of density 3300 kg>m3 when it is fully submerged in water of density 
1000 kg>m3. (b) If the force exerted by the string supporting the rock 
increases by 12% when the rock is submerged in a different fluid, what is 
that fluid’s density? (c) If the density of another rock of the same volume is 
12% greater, what happens to the buoyant force the water exerts on it?

68. * Snorkeling A 60@kg snorkeler (including snorkel, mask, and other gear) 
displaces 0.058 m3 of water when 1.2 m under the surface. Determine the 
magnitude of the buoyant force exerted by the 1025@kg>m3 seawater on the 
person. Will the person sink or drift upward?

69. * A helium balloon of volume 0.12 m3 has a total mass (the helium plus the 
balloon) of 0.12 kg. Determine the buoyant force exerted on the balloon by 
the air if the air has density 1.13 kg>m3. Determine the initial acceleration 
of the balloon when released.

70. *  Protein sinks in water A protein molecule of mass 1.1 * 10-22 kg 
and density 1.3 * 103 kg>m3 is placed in a vertical tube of water of 
 density 1000 kg>m3. (a) Draw a motion diagram and a force diagram at 
the  moment immediately after the molecule is released. (b) Determine the 
initial acceleration of the protein.

71. * How can you determine if a steel ball of known radius is hollow? List 
the equipment that you will need for the experiment, and describe the 
 procedure and calculations. Can you determine how big the hollow part  
is if present in the ball?

72. ** Crown composition A crown is made of gold and silver. The scale 
reads its mass as 3.0 kg when in air and 2.75 kg when in water. Determine 
the masses of the gold and the silver in the crown. The density of gold is 
19,300 kg>m3 and that of silver is 10,500 kg>m3.

73. * You place an open bottle filled with olive oil (density 880 kg>m3) in a 
container filled with water so that the surfaces of both liquids are at the same 
level. The bottle has a hole in it 10 cm below the surface that is initially closed 
with adhesive tape (Figure P13.73). (a) Using Pascal’s laws, predict what 
will happen when you remove the tape. Indicate any assumptions that you 
made. (b) Draw pressure-versus-depth graphs (similar to the graphs in  
Conceptual Exercise 13.3) for the states before and after you remove the  
tape. (c) If you predict any changes, determine their numerical values.
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Initial Final

FIGURE P13.76

86. *  Bursting a wine barrel Pascal placed a long 0.20@cm-radius tube in 
a wine barrel of radius 0.24 m. He sealed the barrel where the tube entered 
it. When he added wine of density 1050 kg>m3 to the tube so the column of 
wine was 8.0 m high, the cover of the barrel burst off the top of the barrel. 
Estimate the net force that caused the cover to come off.

87. *  Lowest pressure in lungs Experimentally determine the maximum 
distance you can suck water up a straw. Use this number to determine the 
pressure in your lungs above or below atmospheric pressure while you are 
sucking. Be sure to indicate any assumptions you made and show clearly 
how you reached your conclusion.

88. ** Measuring ocean depth with a soda bottle You can use an empty soda 
bottle with a cap to measure the depth to which you dive in the ocean. Dive 
to a certain depth, turn the closed bottle upside down (with the cap toward 
the sea bottom), and open the cap. A certain volume of seawater will enter 
the bottle, compressing the air that was trapped in it. Keep the bottle in an 
upside-down position and carefully close the bottle. Then swim up to the 
surface and measure the volume Vwater of water in the bottle and the total 
volume V0 of the bottle. (a) Derive the expression for the depth to which 
you dived in terms of Vwater, V0, and other relevant parameters. Indicate any 
assumptions that you made. Evaluate the expression using unit analysis and 
limiting case analysis.

89. * Justin is observing pearl-like strings of bubbles that move upward in 
his father’s glass of champagne. He notices that as the bubbles rise, their 
volume increases (see Figure P13.89). He proposes the following explana-
tion: “The pressure inside the bubble is equal to the pressure in the liquid 
surrounding the bubble.  Because the pressure in the liquid decreases toward 
the surface of the liquid, the pressure in the ascending bubble decreases and 
therefore the volume of the bubble increases.” Justin estimates that the size 
of a bubble near the surface is approximately twice that of a bubble 10 cm 
below the surface. Can Justin reject his explanation based on these data? 
Explain. If you answered yes, propose a different explanation that is con-
sistent with the data and describe how you could test it. (Hint: Champagne 
contains dissolved carbon dioxide.)

13.7 Ships, balloons, climbing, and diving
77. * Wood raft Logs of density 600 kg>m3 are used to build a raft. What is  

the maximum mass of the load that can be supported by a raft built from 
300 kg of logs?

78. *  Standing on a log A floating log is L long and d in diameter. What 
is the mass of a person who can stand on the log without getting her feet wet?

79. * Ferryboat A ferryboat is 12 m long and 8 m wide. Two cars, each of 
mass 1600 kg, ride on the boat for transport across the lake. How much  
farther does the boat sink into the water?

80.  Iceberg Icebergs are large pieces of freshwater ice. Estimate the 
percentage of the volume of an iceberg that is underwater. Indicate any 
 assumptions that you made.

81. * Life preserver A life preserver is manufactured to support a 70@kg person 
with 20% of his volume out of the water. If the density of the life preserver 
is 100 kg>m3 and it is completely submerged, what must its volume be? 
List your assumptions.

82. ** To increase the effect of the buoyant force on a submarine, the crew 
 replaces seawater in the ballast tanks with air. To push the seawater out 
of the tanks, they use compressed air from air flasks. The submarine is 
located 10 m below the surface in seawater with density 1030 kg>m3 and 
temperature 6 8C. How many kilograms of air should the crew let out from 
the flasks to increase the difference between the gravitational force and the 
buoyant force exerted on the submarine by 5 * 106 N? Assume the temper-
ature of air in the flasks is the same as the seawater temperature.

General Problems
83. * Compare the density of water at 0 8C to the density of ice at 0 8C. Suggest 

possible explanations in terms of the molecular arrangements inside the  
liquid and solid forms of water that would account for the difference.  
If necessary, use extra resources to help answer the question.

84. * Collapsing star The radius of a collapsing star destined to become a 
pulsar decreases by 10% while at the same time 12% of its mass escapes. 
Determine the percent change in its density.

85. * Deep dive The Trieste research submarine traveled 10.9 km below the 
ocean surface while exploring the Mariana Trench in the South Pacific, 
the deepest place in the ocean. Determine the force needed to prevent a 
0.10@m-diameter window on the side of the submarine from imploding. 
Assume that the pressure inside the submarine is 1 atm and the density of 
the water is 1025 kg>m3.

76. * One end of a light spring is attached to a ping-pong ball, the other end to 
a heavy metal block that is fixed to a thin-wire holder (see Figure P13.76). 
You hold this setup so that the metal block is above the surface of water in 
a beaker (the initial state). You then slowly lower the setup until the metal 
block touches the bottom of the beaker (the final state). Represent the pro-
cess with an energy bar chart, choosing the water, the ball, the spring, the 
block, and Earth as the system. Assume that the mass of the ball and the 
mass of the spring are much smaller than the mass of the block and so can 
be ignored. Indicate any other assumptions that you made.

90. ** You have an empty water bottle. Predict how much mass you need to 
add to it to make it float half-submerged. Then add the calculated mass  
and explain any discrepancy that you found. How did you make your  
prediction?

91. **  Flexible bladder helps fish sink or rise A 1.0@kg fish of density 
1025 kg>m3 is in water of the same density. The fish’s bladder contains 
10 cm3 of air. The bladder compresses to 4 cm3. Now what is the density of 
the fish? Will it sink or rise? Explain.

92. * Plane lands on Nimitz aircraft carrier When a 27,000-kg fighter airplane 
lands on the deck of the aircraft carrier Nimitz, the carrier sinks 0.25 cm 
deeper into the water. Determine the cross-sectional area of the carrier.

93. Derive an equation for determining the unknown density of a liquid by 
measuring the magnitude of a force TS on O that a string needs to exert on 
a hanging object of unknown mass m and density r to support it when the 
object is submerged in the liquid.

FIGURE P13.89
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Reading Passage Problems
 Free diving So-called “no-limits” free divers slide to deep water on a 

weighted sled that moves from a boat down a vinyl-coated steel cable to the 
bottom of a dive site. The diver reaches depths where a soda can would implode. 
After reaching the target depth, the diver releases the sled and an air bag opens 
and brings the diver quickly back to the surface. The divers have no external ox-
ygen supply—just lungs full of air at the start of the dive. In August 2002, Tanya 
Streeter of the Cayman Islands held the women’s no-limits free dive record at 
160 m. In 2005 Patrick Musimu set the men’s record with a 209.6-m free dive in 
the Red Sea just off the Egyptian coast (the record was later broken by Herbert 
Nitsch of Austria).

Musimu’s 2005 dive took 3 minutes 28 seconds. He began the dive with his 
9-L lungs full of air. By the time he passed the 200-m mark, Musimu’s lungs had 
contracted to the size of a tennis ball. His body transferred blood from his limbs 
to essential organs such as the heart, lungs, and brain. This “blood shift” occurs 
when mammals submerge in water. Blood plasma fills the chest cavity, especially 
the lungs. Without this adaptation, the lungs would shrink and press against the 
chest walls, causing permanent damage. When he reached his target, Musimu 
released the weighted segment of the specialized sled that had taken him down 
and opened an airbag, which began his return to the surface at an average speed 
of 3–4 m>s.

94. Assuming Musimu weighs 670 N (150 lb) and is 1.6 m tall, 0.30 m wide, 
and 0.15 m thick, which answer below is closest to the magnitude of the 
force that the deep water exerted on one side of his body?
(a) 0 (b) 670 N (130 lb)
(c) 15,000 N (3000 lb) (d) 105 N (20,000 lb)
(e) 106 N (200,000 lb)

95. Musimu’s training allows him to hold up to 9 L = 9000 cm3 of air when in 
a 1 atm environment. Which answer below is closest to the volume of that 
air if at pressure 22 atm?
(a) 100 cm3 (b) 200 cm3 (c) 400 cm3

(d) 9000 cm3 (e) 2 * 105 cm3

96. As Musimu descends, the buoyant force that the water exerts on him
(a) remains approximately constant.
(b) increases a lot because the pressure is so much greater.
(c) decreases significantly because his body is being compressed and 

made much smaller.
(d) is zero for the entire dive.
(e) There is not enough information to answer the question.

97. Why don’t his lungs, heart, and chest completely collapse?
(a) The return balloon helps counteract the external pressure.
(b) There is no external force pushing directly on the organs.
(c) The sled that helps him descend protects the front of his body.
(d) Blood plasma moves from his extremities to his chest and the organs 

in it.
(e) The air originally in the lungs is transferred to the vital organs.

Lakes freeze from top down We all know that ice cubes float in a glass of water. 
Why? Virtually every substance contracts when it solidifies—the solid is denser 
than the liquid. If this happened to water, ice cubes would sink to the bottom of a 
glass, and ice sheets would sink to the bottom of a lake. Fortunately, this doesn’t 
happen. Liquid water expands by 9% when it freezes into solid ice at 0 8C, from 
a liquid density of a little less than 1000 kg>m3 to a solid density of 917 kg>m3.

But this is not the only special thing about water. While the density of most 
substances increases when they are cooled, water density shows a very peculiar 
temperature dependence (see Figure 13.17). As the temperature decreases, water 
density increases, but only until 4 8C, when water density reaches its maximum 
value, 1000.0 kg>m3. As the temperature decreases further, water density de-
creases until at 0 8C water freezes and density abruptly decreases to 917 kg>m3. 

It is this peculiar water-density-temperature dependence that plays a vital role in 
the survival of animals and plants that live in water. In the winter when the water 
in a lake freezes, the solid ice stays at the top, forming an ice sheet. Water just 
below the ice sheet cools, but when it reaches 4 8C it becomes the most dense and 
sinks to the bottom of the lake. Since water colder than 4 8C is less dense, it stays 
above, keeping the bottom of the lake at a constant 4 8C. Note that if water were 
most dense at the freezing point, then in the winter the very cold water at the 
 surface of lakes would sink. In this case the lake would freeze from the  bottom 
up, and all life in it would be destroyed.

The expansion of water when it freezes has another important environmental 
benefit: the so-called freeze-thaw effect on sedimentary rocks. Water is absorbed 
into cracks in these rocks and then freezes in cold weather. The solid ice expands 
and cracks the rock, like a wood-cutter splitting logs. This continual process of 
liquid water absorption, freezing, and cracking releases mineral and nitrogen de-
posits into the soil and can eventually break the rock down into soil.

98. When is water densest?
(a) When liquid at 0 8C
(b) When solid ice at 0 8C
(c) When liquid at 4 8C
(d) Water density is always 1000.0 kg>m3.

99. Why does water freeze from the top down?
(a) The denser water at 0 8C sinks to the bottom of the lake.
(b) The less dense ice at 0 8C rises above the liquid water at 0 8C.
(c) The denser water at 4 8C sinks to the bottom of the lake.
(d) Because of both a and b
(e) Because of both b and c

100. Using Newton’s second law, expressions for buoyant force and other forces, 
and the densities of liquid and solid water at 0 8C, find the fraction of an 
iceberg or an ice cube that is under liquid water.
(a) 0.84 (b) 0.88 (c) 0.92
(d) 0.96 (e) 1.00

101. A swimming pool at 0 8C has a very large chunk of ice floating in it—like 
an iceberg in the ocean. When the ice melts, what happens to the level of 
the water at the edge of the pool?
(a) It rises. (b) It stays the same.
(c) It drops. (d) It depends on the size of the chunk.

102. Which of the following is/are benefits of the temperature dependence of the 
density of water?
(a) Fish and plants can survive winters without being frozen.
(b) Over time, soil is formed from sedimentary rocks.
(c) Water pipes when frozen in the winter do not burst.
(d) Two of the above three
(e) All of the first three
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