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Fluids in Motion

BE SURE YOU KNOW HOW TO:
 ● Draw work-energy bar charts  
(Section 7.2).

 ● Apply the concept of pressure to 
 explain the behavior of liquids  
(Section 13.2).

 ● Draw force diagrams and apply 
 Newton’s second law (Section 3.5).

Plaque (fatty deposits) accumulates on the walls of arteries as cholesterol-laden 
blood flows by. As plaque grows, blood flows past at higher speed. If the blood is 
moving fast enough, it can dislodge deposits, which may then become lodged 
downstream and stop blood flow. If this stoppage occurs in the heart, it can cause a 
heart attack. In this chapter, we will learn why blood flows faster through an  artery 
clogged with plaque and why the fast-moving stream of blood tends to pull the 
plaque off the artery wall.

 ● How does blood flow dislodge plaque 
from an artery?

 ● Why can a strong wind cause the roof 
to blow off a house?

 ● Why do people snore?

IN THE PREVIOUS CHAPTER, we investigated the behavior of static fluids. 
What happens when a gas or liquid moves across a surface—for example, when 
air moves across the roof of a house or when blood moves through a blood 
vessel? In this chapter, we will investigate and explain phenomena involving 
moving fluids—fluid dynamics.

14
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416  CHAPTER 14 Fluids in Motion

14.1  Fluids moving across surfaces—
qualitative analysis

You learned in Chapters 12 and 13 that a key property of a static fluid is its pressure. 
What happens to that pressure when a fluid moves? To investigate this, we will analyze 
the simple experiment described in Observational Experiment Table 14.1.

Bernoulli’s effect
Extrapolating from the pattern in Table 14.1, could it be that for any fluid, the speed 
with which fluid is moving along the object and the pressure exerted by this fluid on 
the object are related: the greater the speed, the smaller the pressure? Let’s test this 
hypothesis experimentally.

It is important to note here that in all of the experiments, the movement of the 
fluid was parallel to the surface of interest. When the fluid is moving perpendicular 
to the surface of interest, it exerts a force in the direction of motion (you can think 
of the momentum of fluid particles changing as the particles hit the surface). You 
can clearly observe this effect if you repeat the experiment in Testing Experiment 
Table 14.2 with the hairdryer blowing directly downward into the tube—the water 
level inside the tube lowers.

OBSERVATIONAL 
EXPERIMENT TABLE 14.1 Pressure inside a moving fluid 

Observational experiment Analysis

Hold two pieces of paper separated by 
plastic blocks and blow down directly 
between them. You see the pieces of 
paper coming close together, as if they 
are pushed toward the moving air.

We consider the piece of paper 
on the right to be our system 
and examine the moment 
when the paper starts moving 
to the left. We draw forces 
exerted on the paper in the 
horizontal direction. For the 
system to start moving, the 
sum of the horizontal forces 
must point to the left—from 
the region of stationary air to 
the region of moving air.

Pattern

Based on the analysis of the experiment and using the force diagram, we can infer that air moving along the surface of an object exerts a smaller 
force on the object. Given that force divided by the area over which it is exerted is pressure, we conclude that the air moving along a surface exerts 
less pressure on the object than stationary air.

Left paper Right paper

y

x
FStationary air on P

S
FMoving air on P

S

S
FHand on P

S
FEarth on P

Right paper P

VIDEO
OET 14.1
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14.1 Fluids moving across surfaces—qualitative analysis  417

It is important to note here that in all of the experiments, the movement of the 
fluid was parallel to the surface of interest. When the fluid is moving perpendicular 
to the surface of interest, it exerts a force in the direction of motion (you can think of 
the  momentum of fluid particles changing as the particles hit the surface). You can 
clearly observe this effect if you repeat the experiment in Table 14.2 with the hairdryer 
 blowing directly downward into the tube—the water level inside the tube lowers.

At this point, without evidence to the contrary, we can say that as a fluid’s speed 
parallel to a surface increases, the pressure that the moving fluid exerts on the surface 
decreases. This statement is a qualitative version of a principle formulated in 1738 by 
Daniel Bernoulli and named in his honor.

Testing experiment Prediction Outcome

We cut the top and bottom off a plastic bottle 
to make a plastic tube and put it into a con-
tainer of water. The level of the water in the 
tube is the same as in the container. Then using 
a hair dryer set to cold, we blow cold air  
parallel to the surface of the water right above  
the tube, first using a low-speed setting and 
then a high-speed setting.

Off

If a faster-moving fluid exerts less pres-
sure than a stationary fluid, and we blow 
air parallel to the opening of the tube, then 
the pressure at the top of the tube (but 
also inside the tube) should be lower than 
 atmospheric pressure. When the speed 
of the moving air increases, the pressure 
should decrease. The pressure outside the 
tube, above the surface of the water in the 
container is atmospheric; therefore, the sum 
of the forces on an element of water inside 
the tube should point upward and the water 
in the tube should rise until the sum of the 
forces exerted on the raised water inside the 
tube is zero. The height of the water inside 
the tube should increase when the hair dryer 
is switched to high.

The outcomes are shown in the figures. They 
match the predictions.

Low
Svair

The water level 
inside the tube 
is higher than 
outside.

High
Svair

The water level 
is even higher.

Conclusion

The hypothesis that the pressure exerted by a faster-moving fluid along an object is less than the pressure exerted by a slower-moving fluid  
was not disproved.

TESTING  
EXPERIMENT TABLE 14.2 How are the speed of a fluid and its pressure related? 

Bernoulli’s effect The pressure that a fluid exerts on a surface decreases as the 
speed with which the fluid moves parallel to the surface increases.

VIDEO
TET 14.2
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418  CHAPTER 14 Fluids in Motion

Bernoulli’s effect has important fluid-flow implications in biological systems—for 
example, in the flow of blood through blood vessels. The blood pressure against the 
wall of a vessel depends on how fast the blood is moving—pressure is lower when the 
blood is moving faster. Let’s look at another biological application of Bernoulli’s effect.

Snoring
A snoring sound occurs when air moving through the narrow opening above the soft 
palate at the back of the roof of the mouth has lower pressure than nonmoving air below 
the palate (Figure 14.1). The normal air pressure below the soft palate, where the air is 
not moving, pushes the palate closed. When airflow stops, the pressures equalize and 
the passage reopens. The rhythmic opening and closing of the soft palate against the 
throat leads to the snoring sound.

REVIEW QUESTION 14.1 What is the empirical evidence for Bernoulli’s effect?

14.2 Flow rate and fluid speed
We have found qualitatively that the pressure of a fluid along the direction of flow 
 depends on the speed of the moving fluid—the greater the speed, the lower the 
 pressure. In this section, we will learn new physical quantities that we will need to 
 describe the effect quantitatively. The quantitative analysis is much easier if we limit 
our  investigations to fluids in confined regions—pipes or tubes.

Perhaps you have taken a shower in which little water flowed from the  showerhead. 
In physics, we would say the water flow rate was low. The flow rate Q is an  important 
consideration in designing showerheads. A smaller flow rate will save water, but a 
larger flow rate will help you rinse off faster. Flow rate is defined as the volume V of 
fluid that moves through a cross section of a pipe divided by the time interval Dt during 
which it moved (see Figure 14.2):

 Q =
V
Dt

 (14.1)

The SI unit of flow rate is m3>s, but you may also see it as ft3>s, ft3>min, gallons>min, 
L>min, or any unit of volume divided by any unit of time interval. Notice that flow rate 
in m3>s is different from the speed of the fluid v in m>s.

TIP The symbols V, t, and Q are also used in other aspects of physics. For 
example, a lowercase v denotes speed, the capital letter T  is used for 

temperature, and in future chapters we will use Q for two other unrelated quantities. 
Because these symbols are often used to indicate different quantities, it is important 
when working with equations to try to visualize their meaning with concrete images 
(for example, the volume of water flowing out of a faucet during 1 s).

How does the flow rate relate to the speed of the moving fluid? To explore the 
relationship, consider Figure 14.2a. Over a certain time interval Dt the shaded volume 
of fluid passes a cross section of area A at some position along the pipe. Thus, after a 
time Dt, the back part of this fluid volume has in effect moved forward to the position 
shown in Figure 14.2b. The volume V of fluid in the shaded portion of the cylinder is 
the product of its length l and the cross-sectional area A of the pipe:

V = lA

Tongue

Soft palate

1. Inhaled air 
moving above the 
soft palate decreases 
the pressure.

2. Air not moving 
below the palate is at 
higher pressure and 
pushes up. Palate 
closes.

3. When airflow stops, the pressures equalize
and the soft palate reopens.  The moving
air causes the process to repeat.

4. The vibrating palate and airflow cause the
snoring sound.

FIGURE 14.1 Snoring occurs when the soft 
palate opens and closes due to the starting 
and stopping of airflow across it.

V

(a) t 5 0

(b) t 5 0 1 Dt

A volume V 5 lA of fluid flows past 
cross section A in time interval Dt.

l

l

A

FIGURE 14.2 Flow rate is the volume of fluid 
that passes a cross section of a vessel in a 
given time interval.
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14.2 Flow rate and fluid speed  419

TIP The definition of flow rate is an 
operational definition, not a cause-

effect relationship, because it is the speed  
of the fluid that depends on the flow rate  
and the cross-sectional area. The flow rate  
is determined by the source of the fluid  
(for example, how much you open the faucet).

Thus, the fluid flow rate is

Q =
V
Dt

=
lA
Dt

= a l
Dt

bA

However, l is also the distance the fluid moves in a time interval Dt. Thus, l>Dt is 
the average fluid speed v. Substituting v = l>Dt into the above equation, we find that

 Q = vA (14.2)

The flow rate is equivalent to the average fluid speed multiplied by the cross- sectional 
area of the pipe.

When an incompressible fluid (such as water) flows through a pipe with variable 
cross-sectional area (Figure 14.3), the amount of fluid entering at cross section A1 
must equal the amount of fluid leaving at cross section A2. Thus the flow rate should 
remain constant. What must change is the speed of the fluid as it travels through the 
narrower part of the pipe. In the narrow section of the pipe (A2), the speed will be 
greater in order to keep the flow rate constant. Thus, the flow rate past cross section A1 
equals that past cross section A2:

 Q1 = v1A1 = v2A2 = Q2 (14.3)

where v1 is the average speed of the fluid passing cross section A1, and v2 is the average 
speed of the fluid passing cross section A2. Equation (14.3) is called the continuity 
equation and is used to relate the cross-sectional area and average speed of fluid flow 
in different parts of a rigid pipe carrying an incompressible fluid.

Q 5 v1A1 5 v2A2

Fluid speed is
lower through 
a wide opening ...

... and greater
through a narrow
opening.

A1 A2

Q Qv2v1

FIGURE 14.3 The flow speed v2 7 v1 depends 
on the cross-sectional area of pipe carrying the 
fluid.

QUANTITATIVE EXERCISE 14.1 

Solve and evaluate Combining the above two equations, we find 
that the average speed of blood flow in the aorta is

v =
Q
A

=
Q

p1d>222 =
180 cm3>s2

p11.5 cm>222 = 45 cm>s

The unit is correct. The magnitude is reasonable—about half a meter 
each second.

100 cm>s.Answer

Speed of blood flow in the aorta

The heart pumps blood at an average flow rate of 80 cm3>s into the 
aorta, which has a diameter of 1.5 cm. Determine the average speed of 
blood flow in the aorta.

Represent mathematically The flow rate can be determined by 
rearranging Eq. (14.2):

v =
Q
A

where the cross-sectional area of the aorta is

A = pr2 = pad
2
b2

Try it yourself Determine the average speed of blood flow if the dia-
meter is reduced from 1.5 cm to 1.0 cm but the flow rate is the same.

Notice that blood speed more than doubles when the aorta diameter decreases by 
33%. Vessel diameter has a very significant effect on the flow rate of fluid through a 
vessel, including those in biological systems. The narrower the blood vessel, the faster 
the blood flows, increasing the risk of dislodging plaque. Likewise, the narrower the 
airway from the nose to the mouth, the faster the air moves and the more likely you are 
to snore. These effects depend on the speed of the fluid, like blood or air in different 
parts of a vessel or pipe in which the diameter changes from one section to another.

Outlet

v1
S

v2
S

FIGURE 14.4 Why is v2 7 v1?

REVIEW QUESTION 14.2 Why does water in a river flow more slowly just before a 
dam than it does while passing through the outlet of the dam (Figure 14.4)?
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420  CHAPTER 14 Fluids in Motion

14.3 Types of fluid flow
Before we can proceed to describing Bernoulli’s effect quantitatively, we need to learn 
more about fluid flow.

What kinds of flow can occur? There is the smooth flow that we see in a wide 
river and the whitewater flow that we see as water rushes and swirls through a narrow 
channel. Studies of fluid flow in wind tunnels indicate that there are two primary kinds 
of flow: laminar flow and turbulent flow. In laminar flow, every particle of fluid that 
passes a particular point follows the same path as the particles that preceded it. These 
paths are called streamlines. This is the smooth flow that we see in a wide river (see 
the fluid flowing smoothly in the wide tube in Figure 14.5). Turbulent flow, on the 
other hand, is characterized by agitated, disorderly motion.  Instead of following a given 
path, the fluid forms whirlpool patterns called eddies, which come and go randomly, or 
sometimes become semi-stable (see Figure 14.6). Turbulent flow occurs when a fluid 
moves around objects and through pipes at high speed.

The force exerted by the fluid on objects is called the drag force. This is the force 
you “feel” when running against the wind. Due to the drag force, more kinetic energy 
is converted into thermal energy in turbulent flow than in laminar flow. Designing a car 
so that air moves over it with laminar flow reduces the drag force that the air exerts on 
the car and improves gasoline mileage. Placing a curved dome above the cab of a truck 
deflects air up and over the trailer, reducing turbulent flow and increasing gas mileage 
by more than 10% (see Figure 14.7).

Measuring blood pressure
To measure a person’s blood pressure, a nurse uses a device called a  sphygmomanometer 
(see Figure 14.8). The nurse places a cuff around the upper arm of a patient at about 
the level of the heart and places a stethoscope on the inside of the elbow above the bra-
chial artery in the arm. The nurse then increases the gauge pressure in the cuff to about 
180 mm Hg by pumping air into the cuff. The expanded cuff pushes on the brachial 
artery and stops blood flow in the arm. Then the nurse slowly releases the air from the 
cuff, decreasing the pressure of the air in it. When the pressure in the cuff is equal to 
the systolic pressure (120 mm Hg if the systolic blood pressure is normal), blood starts 
to squeeze through the artery past the cuff. The flow is intermittent and turbulent and 
causes a sound heard with the stethoscope. This turbulent sound continues until the 
cuff pressure decreases below the diastolic pressure (80 mm Hg for normal diastolic 
blood pressure). At that point the artery is continually open and blood flow is laminar 
and makes no sound. The systolic and diastolic pressure numbers together make up the 
blood pressure measurement.

REVIEW QUESTION 14.3 Is it easier for the heart to pump blood if the flow of the 
blood through the blood vessels is laminar or if it is turbulent? Explain.

14.4 Bernoulli’s equation
Earlier in this chapter we investigated Bernoulli’s effect qualitatively. In this section we 
will learn how to describe it quantitatively.

To achieve this goal, we use the case of a fluid flowing through a pipe, as shown 
in Figure 14.9a. We assume that (1) the fluid is incompressible, (2) there are no resis-
tive forces exerted on the flowing fluid, and (3) the flow is laminar. We can apply the 
work-energy principle to describe the behavior of the fluid as it moves a short distance 
along the pipe. Consider the system to be composed of the shaded volume of fluid 
 pictured in Figures 14.9a and b and Earth.

FIGURE 14.5 Laminar flow.

Eddies

FIGURE 14.6 Turbulent flow.

FIGURE 14.7 Streamlining a truck.

Sphygmomanometer

Brachial artery

Stethoscope

Inflation
bulb

Sphygmomanometer cuff

Pressure
(mm Hg)

FIGURE 14.8 Measuring blood pressure
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14.4 Bernoulli’s equation  421

Figure 14.9a shows us the initial state of the system. As the volume of fluid flows 
to the right, the fluid behind it at position 1 exerts a force of magnitude F1 = P1A1 to 
the right, where P1 is the fluid pressure against the left side of the volume and A1  is  
the cross-sectional area of the left side of the volume. Simultaneously, the fluid 
ahead of the system at position 2 exerts a force in the opposite direction of magnitude 
F2 = P2A2, where P2 is the fluid pressure against the right side of the volume and A2 is 
the cross-sectional area of the right side of the volume.

In Figure 14.9b, the shaded volume of fluid has moved to the right. Because the 
pipe is narrower at 2, the right side of the fluid at position 2 moves a greater distance 
than the left side of the same volume of fluid in the wider part of the pipe at position 1. 
The net effect of the movement of the fluid a short distance to the right is summarized 
in Figure 14.9c. The volume of fluid initially at position 1 moving at speed v1 has now 
been transferred, in effect, to position 2 where it moves at speed v2. The volume of fluid 
stays constant, since we assume the fluid is incompressible. The fluid is now moving 
faster through the narrow tube at position 2 than it was earlier when moving through 
the wider tube at position 1, thus we have an increase in kinetic energy. The fluid at po-
sition 2 is at a higher elevation than when at position 1, thus the gravitational potential 
energy of the system increases. The energies changed as a result of the work done by 
the forces exerted by the fluid behind and ahead of the shaded volume. We can repre-
sent this quantitatively using the generalized work-energy equation [Eq. (7.3)].1K1 + Ug12 + W = 1K2 + Ug22
If we move the terms with the subscript 1 to the right side of the equation, we have

W = 1K2 - K12 + 1Ug2 - Ug12
or
 W = DK + DUg (14.4)

Let us now write expressions for each of the terms in the above equation.

Work done Two forces are doing work on the system. The fluid behind the system 
exerts a force F1 to the right on the left side of the system over a distance Dx1. The fluid 
ahead of the system exerts a force F2 to the left on the right side of the system over a 
distance Dx2. (Figures 14.9a and b show fluid pressures; the corresponding forces have 

As the fluid system moves right ... 

... the fluid in front does negative work.
 W2 5 2P2A2Dx2

The fluid behind does positive work.
W1 5 P1A1Dx1

2

(a)

(b)

(c)

0

1

A1

A2

P2

P2

Dx2

Dx1

P1

P1

v1

y1

y2

y

v2

After

2

Before

y1

y2

v2

v1

1

Our system is the shaded
volume of fluid and Earth.

The work done on the system has effectively 
caused the volume of fluid to move from position 
1 to position 2. The gravitational potential energy 
and the kinetic energy have increased:

(Ug1 1 K1) 1 W1 1 W2 5 (Ug2 1 K2)

FIGURE 14.9 Applying the work-energy principle to fluid flow.
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422  CHAPTER 14 Fluids in Motion

magnitudes F1 = P1A1 and F2 = P2A2.) The force F1 does positive work since it points in 
the direction of the motion of the system. The force F2 does negative work since it points 
in the direction opposite the motion of the system. The total work done on the system is

 W = F1 Dx1 cos 08 + F2 Dx2 cos 1808

 = P1A1 Dx1 - P2A2 Dx2

The volume of fluid V that has moved from the left to the right is V = A1 Dx1 = A2 Dx2 
since the fluid is incompressible. The preceding expression for work becomes

W = P1V - P2V = 1P1 - P22V

Change in kinetic energy The mass m of the system (the moving volume of fluid) is 
related to its density r and volume V:

m = rV

As the system moves from the initial to the final state, the speed of the element of fluid 
that effectively moved changes from v1 to v2. Thus, the kinetic energy change of the 
mass m of fluid shown in Figure 14.9c is

DK = 1
2 mv2

2 - 1
2 mv1

2 = 1
2 rVv2

2 - 1
2 rVv1

2

Change in gravitational potential energy The gravitational potential energy of the 
system has also changed because part of the system has moved from elevation y1 to 
elevation y2. The change in gravitational potential energy is then

DUg = mg1y2 - y12 = rVg1y2 - y12
We can now substitute the above three expressions into Eq. (14.4) to get1P1 - P22V = 11

2 rVv2
2 - 1

2 rVv1
22 + rVg1y2 - y12

If the common V is canceled from each term, we find that

P1 - P2 = 1
2 r1v2

2 - v1
22 + rg1y2 - y12

By dividing by V in that last step we have changed the units of each term in the equa-
tion from energy (measured in joules) to energy density (measured in joules per cubic 
meter). Energy density is the same as energy per unit volume of fluid and appears on 
the right side of the above equation. The left-hand side represents the amount of work 
done on the fluid per unit volume of fluid.

Bernoulli’s equation relates the pressures, speeds, and elevations at two points 
on the same streamline in laminar flow in a fluid:

 P1 - P2 = 1
2 r 1v2

2 - v1
22 + rg1y2 - y12 (14.5)

The equation can be rearranged into an alternate form:

 1
2 rv1

2 + rgy1 + P1 = P2 + 1
2 rv2

2 + rgy2 (14.6)

The sum of the kinetic and gravitational potential energy densities and the pres-
sure at position 1 equals the sum of the same three quantities at position 2.

It is important to remember the assumptions that we used to derive Bernoulli’s 
 equation. It describes quantitatively the flow of a frictionless, nonturbulent, incom-
pressible fluid.

Using Bernoulli bar charts  
to understand fluid flow
Bernoulli’s equation looks fairly complex and might be difficult to use for visualizing fluid 
dynamics processes. However, since Bernoulli’s equation is based on the work-energy 
principle, we can represent such processes using energy bar charts similar to the ones used  
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14.4 Bernoulli’s equation  423

To start, first draw a sketch of the process. Choose positions 1 and 2 at appropriate  
locations in order to help answer the question. One of the positions might be a  
place where you want to determine the pressure in the fluid and the other position a place 
where the pressure is known. For the water pump-hose process, it is useful to choose 
position 1 (the location of the unknown pressure) and position 2 at the exit of the water 
from the small hose (at known atmospheric pressure).

Represent this process by placing bars of appropriate relative lengths on the chart 
(the absolute lengths are not known). It is often easiest to start by analyzing the gravita-
tional potential energy density. Use a vertical y-axis with a well-defined origin to keep 
track of the gravitational potential energy densities. For the fire hose process, choose 
position 1 as the origin of the vertical  coordinate system. The gravitational potential 
energy density at position 1 is then zero. The exit of the water from the small hose is at 
higher elevation; thus, there is a positive gravitational potential energy density bar for 
position 2 (in the bar chart we arbitrarily assign it one positive unit of energy density).

Next, consider the kinetic energy. The water flows from a wider hose at  position 1 
to a narrower hose at position 2. Thus the kinetic energy density at 2 is greater than 
at 1—thus the longer bar at position 2. We arbitrarily assume that the kinetic energy 
density bar for position 1 is one unit and that for position 2 is three units.

Notice now that the total length of the bars on the right side of the chart is much 
higher than on the left side (the difference is three units). To account for the difference 
we need to consider the change in pressure. Since the fluid pressures at 1 and 2 are 
analogous to the work done on the system in an ordinary work-energy bar chart, P1 and 
P2 appear in the shaded box in the center of the bar chart, where work is represented. 
The difference in the pressure heights should account for the total difference in the en-
ergy densities. Thus, we draw the bar for P1 three units higher than for P2. The bar chart 
is now complete. We can use it to write a mathematical description for the process and 
solve for any unknown quantity.

Constructing a bar chart for a moving fluidPHYSICS  
TOOL BOX 14.1

0.5rv1
2 1  0 1 P1  5  P2 1 0.5rv2

2 1 rgy2

1

2

y

0

K1 Ug11 P11 P25 K21 Ug21

0

1. Sketch the situation. 
Include an upward-
pointing y-coordinate axis.

2. Choose points 1 and
2 at positions in the 
fluid that will help
you achieve the goal
of your analysis.

3. Construct a
Bernoulli bar chart.

4. Use the bar chart and 
the sketch to help apply 
Bernoulli’s equation.

~ ~ ~ ~

REVIEW QUESTION 14.4 Compare and contrast work-energy bar charts and  Bernoulli 
bar charts.

in Chapters 7 and 13 (here the bars represent pressures and energy densities; we use  
a ~ over the energy symbols to emphasize that they are energy densities, not energies). 
Physics Tool Box 14.1 describes how to construct a fluid dynamics bar chart for the follow-
ing process. A fire truck pumps water through a big hose up to a smaller hose on the ledge 
of a building. Water sprays out of the smaller hose onto a fire. Compare the pressure in the 
hose at the lowest point of the larger hose to the pressure at the exit of the smaller hose.
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424  CHAPTER 14 Fluids in Motion

14.5  Skills for analyzing processes 
using Bernoulli’s equation

In this section, we will adapt our problem-solving strategy to analyze processes in-
volving moving fluids. In this case, we describe and illustrate a strategy for finding the 
speed of water as it leaves a bottle. The general strategy is on the left side of the table 
and the specific process is on the right.

Applying Bernoulli’s equation

Removing a tack from a water bottleEXAMPLE 14.2 

What is the speed with which water flows from a hole punched in the side of an open 
plastic bottle? The hole is 10 cm below the water surface.

 ● Choose the origin of the vertical y-axis to be the location of 
the hole.

 ● Choose position 1 to be the place where the water leaves 
the hole and position 2 to be a place where the pressure, 
elevation, and water speed are known—at the water surface 
y2 = 0.10 m. The pressure in Bernoulli’s equation at both 
 positions 1 and 2 is atmospheric pressure, since both posi-
tions are exposed to the atmosphere 1P1 = P2 = Patm2.

 ● Choose Earth and the water as the system.

 ● Assume that no resistive forces are exerted on the 
flowing fluid.

 ● Assume that y2 and y1 stay constant during the 
process, since the elevation of the surface  decreases 
slowly compared to the speed of the water as it 
leaves the tiny hole.

 ● Because the water at the surface is moving very slowly relative to the hole, assume that 
v2 = 0.

 ● Draw a bar chart that represents the process.

 ● We see from the sketch and the bar chart that the speed of the fluid at position 2 is zero 
(zero kinetic energy density) and that the elevation is zero at position 1 (zero gravitational  
potential energy density). Also, the pressure is atmospheric at both 1 and 2. Thus

1
2 r1022 + rgy2 + Patm = Patm + 1

2 rv1
2 + rg102

1 rgy2 = 1
2 rv1

2

Sketch and translate
 ● Sketch the situation. Include an 
upward-pointing y-coordinate axis. 
Choose an origin and positive direc-
tion for the coordinate axis.

 ● Choose points 1 and 2 at positions in 
the fluid where you know the pressure/
speed/position or that involve the 
quantity you are trying to determine.

 ● Choose a system.

PROBLEM-SOLVING 
STRATEGY 14.1 

Simplify and diagram
 ● Identify any assumptions you are 
making. For example, can we as-
sume that there are no resistive 
forces exerted on the flowing fluid?

 ● Construct a Bernoulli bar chart.

Represent mathematically
 ● Use the sketch and bar chart to help 
apply Bernoulli’s equation.

 ● You may need to combine Bernoul-
li’s equation with other equations, 
such as the equation of continuity 
Q = v1A1 = v2A2 and the definition 
of pressure P = F>A.
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 ● Solve for v1:

v1 = 22gy2

Substituting for g and y2, we find that

v1 = 2219.8 m>s2210.10 m2 = 1.4 m>s

 ● The unit m>s is the correct unit for speed. The magnitude seems reasonable for water 
streaming from a bottle (if we obtained 120 m>s it would be unreasonably high).

Try it yourself In the above situation the water streams out of the bottle onto the floor 
a certain horizontal distance away from the bottle. The floor is 1.0 m below the hole. 
Predict this horizontal distance using your knowledge of projectile motion. (Hint: Use 
Eqs. (4.7) and (4.8).)

Answer

The equations yield a result of 0.63 m. However, if we were to actually perform this 
 experiment with a tack-sized hole, the water would land short of our prediction because 
of resistive forces exerted by the hole on the water. In order to make the water land 
closer to 0.63 m from the bottle, we must increase the diameter of the hole. We  
discuss the  effect of resistive forces on fluid flow later in the chapter.

Solve and evaluate
 ● Solve the equations for an unknown 
quantity.

 ● Evaluate the results to see if they 
are reasonable (the magnitude of 
the answer, its unit, how the answer 
changes in limiting cases, and so 
forth).

Blowing the roof off a house
You’ve no doubt seen images of roofs being blown from houses during tornadoes or 
hurricanes. How does that happen? On a windy day, the air inside the house is not mov-
ing, whereas the air outside is moving very rapidly. The air pressure inside the house is 
therefore greater than the air pressure outside, creating a net pressure that pushes out-
ward against the roof and windows. If the net pressure becomes great enough, the roof 
and/or the windows will blow outward off of the house. In the following example, we 
do a quantitative estimate of the net force exerted by the inside and outside air on a roof.

 without friction or turbulence and that the roof is fairly thin so that the 
air has approximately the same gravitational potential energy density at 
points 1 and 2.

Represent mathematically With the y-axis oriented upward, the 
net force exerted by the air on the roof is

 Fnet Air = F2 on R - F1 on R = Patm A - P1A

 = 1Patm - P12A

We use Bernoulli’s equation to find this pressure difference.

P2 + 1
2 rv2

2 + rgy2 = 1
2 rv1

2 + rgy1 + P1

1 Patm + 0 + rgy2 = 1
2 rv1

2 + rgy1 + P1

1 Patm - P1 = 1
2 rv1

2 + 1rgy1 - rgy22 = 1
2 rv1

2 + 0

We can now determine the net force exerted by the air on the roof.

Fnet Air = 1Patm - P12A = 1
2 rv1

2A

EXAMPLE 14.3 Effect of high-speed air moving across the roof of a house

During a storm, air moves at speed 45 m>s (100 mi>h) across the top of 
the 200@m2 flat roof of a house. Estimate the net force exerted by the air 
pushing up on the inside of the roof and the outside air pushing down on 
the outside of the roof. Indicate any assumptions made in your estimate.

Sketch and translate The situation 
is shown at right. We need to determine 
the pressure just above and below the 
roof.

Simplify and diagram A force 
 diagram for the roof is shown here. 
The air above the house exerts a downward force on 
the roof F1 on R = P1A, where P1 is the air pressure 
above the house and A is the area of the roof. The air 
inside the house pushes up, exerting a force on the 
roof F2 on R = Patm A, where Patm is the assumed atmos-
pheric pressure of the stationary air inside the house. 
We  assume that the air is incompressible and flows (continued)
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Dislodging plaque
The physical principles of a roof being lifted from a house also explain how plaque 
can become dislodged from the inner wall of an artery. Plaque may block a consider-
able portion of the area where blood normally flows. Suppose the radius of the vessel 
opening is one-third its normal value because of the plaque. Then the area available 
for blood flow, proportional to r2, is about one-ninth the normal value. The speed of 
flow in the narrowed portion of the artery will be about nine times greater than in the 
unblocked part of the vessel. The kinetic energy density term in Bernoulli’s equation 
is proportional to v2 and therefore is 81 times greater in the constricted area than in the 
open part of the vessel.

Notice that in Bernoulli’s equation, the sum of the gravitational potential energy 
density, the kinetic energy density, and the pressure at one location should equal the 
sum of the same three terms at some other location along a streamline in the blood. 
As blood speeds by the plaque, its kinetic energy density is 81 times greater, and con-
sequently its pressure is much less than the pressure in the open vessel just before and 
just after the plaque. This pressure differential could cause the plaque to be pushed off 
the wall and tumble downstream, causing a blood clot (a process called thrombosis). 
Let’s estimate the net force that the blood exerts on the plaque.

An upward force of 2200 N (about 500 lb). No wonder the canvas 
 covering a truck trailer moving on a highway balloons outward.Answer

Solve and evaluate

 Fnet Air = 1
2 rv1

2A

 = 1
211.3 kg>m32145 m>s221200 m22 = 2.6 * 105 N

The result is an upward net force that is enough to lift more than ten 
cars of combined mass 27,000 kg.

We were a little lax in applying Bernoulli’s equation in this exam-
ple. The equation relates the properties of a fluid at two points along 
the same streamline. A streamline does not flow between just below 
the roof and just above the roof. We could, with some more complex 
 reasoning, use the equation correctly by considering two streamlines 

that start far from the house at the same pressure. One ends up in the 
house under its roof with the air barely moving. The other passes just 
above the roof with the air moving fast. We would get the same result in 
a somewhat more cumbersome manner.

Try it yourself A 2.0 m * 2.0 m canvas covers a trailer. The trailer 
moves at 29 m>s (65 mi>h). Determine the net force exerted on the 
canvas by the air above and below it.

Simplify and diagram Assume for 
simplicity that the blood is nonviscous 
and flows with laminar flow without 
turbulence. Assume also that the vertical 
distance between points 1 and 2 is small 1y1 - y2 < 02 and that the area of the 
stationary blood above the plaque is the 
same as the area where the blood moves below the plaque. A bar chart 
represents the process. The blood pressure at position 2 is less than at 
position 1 because the blood flows at high speed through the constricted 
artery, whereas it sits at rest in the channels at position 11v1 = 02.

EXAMPLE 14.4 A clogged artery

Blood flows through the unobstructed part of a blood vessel at a 
speed of 0.5 m>s. The blood then flows past a plaque that constricts 
the cross-sectional area to one-ninth the normal value. The surface 
area of the plaque parallel to the direction of blood flow is about 
0.60 cm2 = 6.0 * 10-5 m2. Estimate the net force that the fluid exerts 
on the plaque.

Sketch and translate A simplified two-dimensional sketch of 
three-dimensional the situation is shown above right. The third dimen-
sion is perpendicular to the page of the book. The plaque is as large in 
this dimension as in the x-dimension, but the area where it is attached 
to the top wall is very small. Point 1 is above the plaque in stationary 
blood pooled in a channel where the plaque attaches to the artery wall. 
Point 2 is in the bloodstream below the plaque, where blood flows 
rapidly past it. The net force depends on the differences in pressure at 
points 1 and 2. Thus, we need to first find the pressure difference. Since 
points 1 and 2 are not on the same streamline, we cannot automatically 
use  Bernoulli’s equation. But since the streamlines that do go through 
points 1 and 2 were side by side before they reached the plaque, each 
streamline will have the same P + 11>22rv2 + rgy value. This means 
we can equate the P + 11>22rv2 + rgy values at points 1 and 2.
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Using Bernoulli’s equation to explain how 
airplanes fly
You may have heard that airplanes can fly because of the special shape of their 
wings, which causes the air above the wing to move faster than the air below the 
wing (

u
vabove 7 u

vbelow, shown in Figure 14.10a). Let us apply Bernoulli’s equation to 
an  airplane wing to evaluate this claim. A Boeing 747-8’s maximum takeoff mass is 
442 metric tons, its takeoff speed is 330 km>h, and its wing surface area is 554 m2. We 
assume that the speed of air above the wing is equal to the takeoff speed and the speed 
of air below the wing is zero (this is a rather unrealistic assumption, but it allows us to 
estimate the largest possible force due to Bernoulli’s effect). In this case we find

Dp = 1
2 rairvtakeoff

2 = 0.5 * 11.3 kg>m32 * 192 m>s22 = 5501 N>m2

and

Fair on airplane = Dp # A = 3.1 * 106 N

The force exerted by Earth on the airplane is

FE on airplane = mairplane g = 4.3 * 106 N

This force is much larger than the largest possible lifting force exerted on the plane due 
to Bernoulli’s effect.

In other words, Bernoulli’s effect is at work, but it does not provide a complete ex-
planation of how airplanes fly. The important missing force comes from the change of 
direction of the air’s motion. Due to the shape and the tilt of the wing, the air passing the 
wing changes its direction of motion from horizontal 1u

v i2 to slightly downward 1u
v f2  

(Figure 14.10b). For this to happen, the wing must exert a downward force on the air; 
therefore (remember Newton’s third law), the air exerts an equal and opposite force up-
ward on the wing. It is this force that provides the main lift and (together with the force 
due to Bernoulli’s effect) makes the airplane fly. Note that the origin of this force is the 
change of the direction of motion of air and has nothing to do with Bernoulli’s effect.

REVIEW QUESTION 14.5 In Example 14.2 we said that the pressure was the same at 
two levels when we drew the bar chart. Doesn’t the pressure in a fluid increase with depth?

0.02 N upward, toward the inside of the mouthpiece.Answer

Represent mathematically Compare the two points using Bernoul-
li’s equation:

 P1 - P2 = 1
2 r 1v2

2 - v1
22 + rg 1y2 - y12

 = 1
2 r 1v2

2 - 02 + 0 = 1
2 rv2

2

Since the cross-sectional area of the vessel at the location of the plaque 
is one-ninth its normal area (the radius is one-third the normal value), 
the blood must be flowing at nine times its normal speed. The net force 
exerted by the blood on the plaque downward and perpendicular to the 
direction the blood flows will be

 Fnet blood on P y = Fblood 1 on P + 1-Fblood 2 on P2
 = P1A - P2A = 1P1 - P22A

 1 Fnet blood on P y = 1
2 rv2

2 A

Solve and evaluate

Fnet blood on P y = 1
2 11050 kg>m32 19 * 0.5 m>s2216.0 * 10-5 m22

 = 0.64 N < 0.6 N

This is about the weight of one-half of an apple pulling on this tiny 
plaque. In addition, an “impact” force caused by blood hitting the 
plaque’s upstream side contributes to the risk of breaking the plaque 
off the side wall of the vessel. The loose plaque can then tumble down-
stream and block blood flow in a smaller vessel in the heart (causing a 
heart attack) or in the brain (causing a stroke).

Try it yourself Air of density 1.3 kg>m3 moves at speed 10 m>s 
across the top surface of a clarinet reed that has an area of 3 cm2. 
The air below the reed is not moving and is at atmospheric pressure. 
Determine the net force exerted on the reed by the air above and 
below it.

Svabove

Svbelow

(a)

(b)

Svi

Svf

FIGURE 14.10 Airflow over an airplane wing.
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14.6 Viscous fluid flow
In our previous discussions and examples in this chapter, we assumed that there were 
no resistive forces exerted on the moving fluid or that fluids flow without friction. 
That is, we assumed no interaction either between the fluid and the walls of the pipes 
it flows in, or between the layers of the fluid. However, in Example 14.2 we found that 
this assumption was not reasonable. In fact, for many processes, such as the transport 
of blood in the small vessels in our bodies, fluid friction is very important. When we 
cannot neglect this friction inside the fluid, we call the fluid viscous.

Consider the following situation. You have an object that can slide on a frictionless 
horizontal surface, say, a puck on smooth ice. You push the puck abruptly and then let 
go. What happens to the puck? Once in motion, the puck will continue to slide at con-
stant speed with respect to the ice even if nothing else pushes it. However, if there is 
friction between the contacting surfaces (there is a little sand in the ice), then the puck 
starts slowing down; for it to continue moving at constant speed, someone or something 
has to push it forward to balance the opposing friction force.

By analogy, if a fluid flows through a horizontal tube without friction (nonviscous 
fluid), we would expect it to continue to flow at a constant rate with no additional 
 forward pressure. But if friction is present (the fluid is viscous), there must be greater 
pressure at the back of the fluid than at the front of the fluid to maintain a constant flow 
rate. If this is the case, the force exerted on any volume of the fluid due to the forward 
pressure is greater than the force exerted on the same volume of the fluid due to the 
pressure in the opposite direction.

Factors that affect fluid flow rate
What factors affect the flow rate in the vessel with friction? What is the functional 
 dependence of those factors? Let’s think about the physical properties of the fluid and 
the vessel that can affect the flow rate. The following quantities might be important.

Pressure difference The flow rate should depend on how hard the fluid is pushed 
forward, that is, on the difference between the fluid pressure pushing forward from 
 behind and the fluid pressure pushing back from in front of the fluid, or 1P1 - P22.

Radius of the tube The radius r of the tube carrying the fluid should affect the flow 
rate. From everyday experience we know that it is more difficult to push (a greater 
pressure difference) fluid through a tube of tiny radius than through a tube with a large 
radius.

Length of the tube The length l of the tube might also affect the ease of fluid flow. A 
long tube offers more resistance to flow than a shorter tube.

Fluid type Water flows much more easily than molasses does. Thus some property of 
a fluid that characterizes its “thickness” or “stickiness” should affect the flow.

Let’s design an experiment to investigate exactly how the first three of these four 
factors 1P, r, and l2 affect the fluid flow rate Q. As shown in Figure 14.11, a pump that 
produces an adjustable pressure P1 causes fluid to flow through tubes of different radii 
r and lengths l. We collect the fluid exiting the tube and measure the flow rate Q, which 
is the volume V of fluid leaving the tube in a certain time interval Dt divided by that 
time interval. The results of the experiments are reported in Table 14.3.

How is the flow rate affected by each of the three factors?

Pressure difference Looking at the first three rows of the table, we notice that the flow 
rate is proportional to the pressure difference 1Q ~ P1 - P22.
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Radius of the tube Looking at rows 1, 4, and 5, we notice that the flow rate  increases 
rapidly as the radius increases. Doubling the radius causes the flow rate to increase by 
a factor of 16 1242. Tripling the radius causes the flow rate to increase by a factor of 
81 1342. It seems that the flow rate is proportional to the fourth power of the radius of 
the tube 1Q ~ r42.
Length of the tube Looking at rows 1, 6, and 7, we notice that the flow rate decreases as 
the length of the tube increases. It seems that the flow rate is proportional to the inverse 
of the length 1Q ~ 1>l2.

These three relationships can be combined in a single equation:

Q ~
r41P1 - P22

l

The equation has been confirmed by numerous experiments.

Viscosity and Poiseuille’s law
In this experiment we did not investigate the fourth factor: the type of fluid. Under the 
same conditions, water flows faster than oil, which flows faster than molasses. If we 
use the same pressure difference to push different fluids through the same tube, we find 
that the fluids have different flow rates. The quantity by which we measure this effect 
on flow rate is called the viscosity h of the fluid. The flow rate is inversely propor-
tional to viscosity:

Q ~
1
h

In 1840, using an experiment similar to that described above, French physician and 
physiologist Jean Louis Marie Poiseuille established a relationship between these phys-
ical quantities. However, instead of writing the flow rate in terms of the other four 
quantities, he wrote an expression for the pressure difference needed to cause a particu-
lar flow rate.

Poiseuille’s law The forward-backward pressure difference P1 - P2 needed to 
cause a fluid of viscosity h to flow at a rate Q through a vessel of radius r and 
length l is

 P1 - P2 = a 8
p
b  
hl

r4  Q (14.7)

Pump

We can change P1  2 P2 , r, and l.

We collect water to measure 
the flow rate Q 5 V/Dt.

V

l

P1

P1

P2r

FIGURE 14.11 How do P1 - P2, r, and l affect the flow rate Q? TABLE 14.3 Different quantities affect 
the flow rate Q of fluid through a tube 
(data are reported in relative units)

P1 2 P2  
(Pressure  

difference)
r  

(Radius)
l  

(Length)

Q  
(Flow  
rate)

1 1 1  1

2 1 1  2

3 1 1  3

1 2 1 16

1 3 1 81

1 1 2  0.5

1 1 3  0.33

The pressure difference term P1 - P2 on the left side of Poiseuille’s law determines 
the net force pushing the fluid. The flow rate Q on the far right side is a consequence of 

this net push on the fluid. The term before Q on the right side (the a 8
p
bhl

r4 term) can be 

thought of as the resistance of the fluid to flow: the same pressure difference will pro-
duce a smaller flow rate if the resistance is greater. The resistance is greater if the fluid 
has greater viscosity h, is greater for a longer tube (greater l), and is far more resistive 
if the vessel through which the fluid flows has a smaller radius (1>r4 is much greater 

TIP Notice that the pressure difference 
needed to cause a particular flow 

rate is proportional to the inverse of the 
fourth power of the radius of the vessel. If the 
radius of a vessel carrying fluid is reduced 
by a factor of 0.5, the pressure difference 
needed to cause the same flow rate must 
increase by 11>0.524 = 16. We need 16 times 
the pressure difference to cause the same 
flow rate.
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for small r). This idea has many applications relative to the circulatory system—see the 
example a little later in this section.

From Poiseuille’s law we can determine the unit for viscosity. To do this, we  express 
the viscosity using other quantities in Eq. (14.7):

P1 - P2 = a 8
p
b  
hl

r4  Q 1 h =
1P1 - P22 r

4p

8Ql

We use the latter equation to find the units for the viscosity. Remember that the units of 
pressure are

Pa =
N
m2 =

kg # m

s2 # m2 =
kg

s2 # m

and the units for flow rate are m3>s. Using these units, we get

h =
1kg21m421s21s2 # m21m321m2 =

kg
s # m

We can also rewrite the last combination of units as N # s>m2. Remember that 
N>m2 = Pa; thus the unit for viscosity can be written Pa # s. A list of viscosities of 
 several fluids appears in Table 14.4 using N # s>m2 for the units of h.

TABLE 14.4 Viscosities of some liquids 
and gases

Substance
Viscosity H 1N # s ,m2 2

Air 130 8C2  1.9 * 10-5

Water vapor 130 8C2 1.25 * 10-5

Water 10 8C2  1.8 * 10-3

Water 120 8C2  1.0 * 10-3

Water 140 8C2 0.66 * 10-3

Water 180 8C2 0.36 * 10-3

Blood, whole 137 8C2    4 * 10-3

Oil, SAE No. 10 0.20

Limitations of Poiseuille’s law: Reynolds number
Poiseuille’s law describes the flow of a fluid accurately only when the flow is laminar. 
Experiments indicate that to determine when the flow is laminar or turbulent, we need 
to calculate what is called the pipe Reynolds number Re:

 Re =
2vrr
h

 (14.8)

where v is the average speed of the fluid, r is its density, h is the viscosity, and r is 
the radius of the pipe that carries the fluid. Experiments show that if the  Reynolds 
number is less than 2000, the fluid flow is laminar; if it is more than 3000, the flow is 
turbulent; and between 2000 and 3000 the flow is unstable and can be either laminar 
or turbulent.

Solve and evaluate The ratio of the flow rates is

Q
Q0

=
ap

8
b a DP

hl
br4

ap
8
b a DP

hl
br0

4

=
r4

r0
4 = a r

r0
b4

= 10.6024 = 0.13

The flow rate is only 13% of the original flow rate! To compensate for 
such a dramatically reduced flow rate, the person’s blood pressure will 
increase.

Q>Q0=0.0001, or 0.01% of its original value!Answer

QUANTITATIVE EXERCISE 14.5 Blood flow through a narrow artery

Because of plaque buildup, the radius of an artery in a person’s heart 
decreases by 40%. Determine the ratio of the present flow rate to the 
original flow rate if the pressure across the artery, its length, and the 
 viscosity of blood are unchanged.

Represent mathematically In this exercise, we are interested in the 
change in the flow rate and not in the change in pressure. Consequently, 
we rearrange Poiseuille’s law for the flow rate in terms of the other 
quantities:

Q = ap
8
b a DP

hl
br4

If the radius decreases by 40%, the new radius is 100% - 40% = 60% 
of the original. Thus the radius r of the vessel at the present time is 
 related to the radius r0 years earlier by the equation r = 0.60r0.

Try it yourself Determine the reduction in flow rate, assuming a 
constant pressure difference, if the radius of the vessel is reduced 
90% (to 0.10 times its original value). This is not an unusual reduc-
tion for people with high blood pressure.
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The Reynolds number, used as a criterion to decide whether the flow inside a pipe 
is laminar or turbulent, came from experiments conducted in the 1880s by Osborne 
Reynolds. Using a glass pipe with flowing water inside, he adjusted a valve to control 
the speed of the water flow. He then added colored water to the stream and observed 
that when the speed of the water was low, the colored layer of water could be clearly 
seen inside the pipe. When the speed of water flow increased beyond a certain limit, the 
colored part would break apart into vortices and mix with the rest of the water. Reyn-
olds expressed the criterion for the type of flow with a unitless number (hence the name 
the Reynolds number), which he derived by taking the ratio of the net force pushing the 
fluid and the resistive force opposing it.

The transition from laminar to turbulent flow is also observed when an object and 
fluid are moving relative to each other. Reynolds derived a similar criterion (expressed 
as a unitless number) for this phenomenon. In general, the flow in pipes remains lami-
nar up to much larger Re numbers than does the flow of a fluid around an object.

14.7 Drag force
So far in this chapter all of our analyses have focused on a moving fluid. In  Section 14.6 
we were concerned with the resistive forces as fluids move through a tube. Now we 
focus on solid objects moving through a fluid—for example, a swimmer moving 
through water, a skydiver falling through the air, or a car traveling through air. As you 
know from experience, the fluid in these and in other cases exerts a resistive drag force 
on the object moving through the fluid. So far we have been neglecting this force in our 
mechanics problems. Now we will not only learn how to calculate this force but also 
learn whether our assumptions were reasonable: for example, is the resistive drag force 
indeed insignificant when people and objects fall from small and large heights?

Laminar drag force Imagine that an object moves relatively slowly through a fluid 
(for example, a marble sinking in oil). In this case the fluid flows around the solid 
object in streamline laminar flow, with no turbulence. However, the fluid does exert a 
drag force on the object. For a spherical object O of radius r moving at speed v through 
a liquid of viscosity h, the magnitude of this nonturbulent drag force FD F on O exerted by 
fluid on the object is given by the equation

 FD F on O = 6phrv (14.9)

This equation is called Stokes’s law. Notice that the drag force is proportional to the 
speed of the object relative to the fluid and to the radius of the sphere.

Turbulent drag force A rock sinks in oil much faster than a small marble. In this case 
the motion of oil past the sinking rock is turbulent, and Eq. (14.9) does not apply. A dif-
ferent Reynolds number, called the object Reynolds number, can be used to determine 
whether the flow of fluid past an object is laminar or turbulent:

 Re =
vlr
h

 (14.10)

where v is the object’s speed with respect to the fluid, l is the characteristic dimension 
of the object, in most cases the diameter, and r and h are the density and viscosity of 
the fluid. When the Reynolds number is calculated using this equation, the threshold 
value for laminar flow is 1. If the Reynolds number is much more than 1, the flow is 

REVIEW QUESTION 14.6 Describe some of the physics-related effects on the cardio-
vascular system of medication that lowers the viscosity of blood.
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turbulent and we cannot use Stokes’s law. In this case, a new equation for drag force 
applies:

 FD F on O < 1
2 CDrAv2 (14.11)

where r is the density of fluid, A is the cross-sectional area of the object as seen along 
its line of motion, and CD is a dimensionless number called the drag coefficient. The 
drag coefficient depends on the shape of the object (the lower the number, the smaller 
the drag force and the more laminar the flow past the object). For example, the drag 
coefficient for a sphere is 0.5 and for a dolphin it is 0.005.

Drag force exerted on a moving vehicle
Does Stokes’s law apply to moving cars? At 60 mi>h (about 27 m>s), for a car about 
2 m wide in air with density 1.3 kg>m3 and viscosity 2 * 10-5 N # s>m2, the estimated 
Reynolds number is

Re =
vlr
h

=
127 m>s212 m211.3 kg>m3212 * 10-5 N # s>m22 < 4 * 106

This is much more than 1. We need to use Eq. (14.11) for the drag force.
We can estimate the magnitude of the drag force that air exerts on a compact car 

traveling at 27 m>s (60 mi>h) assuming that the drag coefficient CD is approximately 
0.3 for a well-designed car, the cross-sectional area of a car is 2 m2, and the air density 
is 1.3 kg>m3.

Because the flow of air past the car is turbulent, we use Eq. (14.11) to estimate the 
drag force that the air exerts on the car:

FD Air on Car = 1
2 CDrAv2 = 1

2 10.3211.3 kg>m3212 m22127 m>s22 = 280 N

or a force of about 60 lb. Designing cars to minimize the drag force improves fuel 
 efficiency.

Terminal speed
As a skydiver falls through the air, her speed increases, as does the drag force that the 
air exerts on her. Eventually, the diver’s speed becomes so great that the magnitude of 
the upward resistive drag force that the air exerts on the diver equals the magnitude of 
the downward gravitational force that Earth exerts on the diver. The sum of the forces 
exerted on the diver is zero, so the diver moves downward at a constant speed, known 
as terminal speed. Let’s estimate the terminal speed for a skydiver.

TIP Note that if the speed of a car 
doubles, the drag force exerted on  

it quadruples. Thus, because of air drag, 
when you increase your driving speed, you 
reduce your gas mileage.

Simplify and diagram A force diagram for the diver is 
shown to the right. Assume that the buoyant force that the 
air exerts on the diver is negligible in comparison to the 
other forces exerted on her and that the drag force involves 
turbulent airflow past the diver.

Represent mathematically Use the force diagram to 
help apply Newton’s second law for the diver:

 may = SFy

 1 0 = FD Air on D + 1-FE on D2
 = 1

2 CDrAv2
terminal - mg

EXAMPLE 14.6 Terminal speed of skydiver

Estimate the terminal speed of a 60-kg skydiver falling through air of 
density 1.3 kg>m3, assuming a drag coefficient CD = 0.6.

Sketch and translate The sit-
uation is sketched here. When the 
diver is moving at terminal speed, 
the forces that the air exerts on the 
diver and that Earth exerts on the 
diver balance—the net force is zero. 
We choose the diver as the system 
of interest with vertical y-axis 
pointing upward.
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Below is an example of a problem whose solution depends on our assumptions. 
Being able to consider the effects of assumptions is a very useful skill.

Her cross-sectional area would be smaller, and according  
to the above equation, her terminal speed would be greater.Answer

Solve and evaluate Solving for the diver’s terminal speed gives

vterminal = A 2mg
CDrA

All of the quantities in the above expression are known except the 
cross-sectional area of the diver along her line of motion. If we assume 
that she is 1.5 m tall and 0.3 m wide, her cross-sectional area is about 
0.5 m2. We find that her terminal speed is

vterminal = B 2160 kg219.8 N>kg210.6211.3 kg>m3210.5 m22 = 55 m>s

The unit is correct. The magnitude seems reasonable—about 120 mi>h.
Note that we assumed a turbulent drag force (Eq. (14.11). Was this 

 assumption appropriate? To assess this, we will estimate the maximum 
speed of the diver for the drag force to be laminar. According to Eq. (14.10),

Re =
vlr
h
 1  v =

Reh

lr

Estimating the characteristic dimension for the person to be about 
1 m (somewhere between her 1.5-m height and 0.3-m width) and the 
critical value of the Reynolds number to be 1 for a laminar drag force, 
we obtain the following estimate for the greatest speed of an object for 
which the drag force exerted by the fluid is laminar:

v =
Reh

lr
<

1 * 11.9 * 10-5 N # s>m2211 m2 * 11.3 kg>m32 < 1.5 * 10-5 m>s

This is a tiny speed—much too slow for a skydiver. Therefore,  
we could safely use the equation for turbulent drag force to estimate  
her speed.

Try it yourself Suppose the diver pulled her legs to her chest so 
she was more in the shape of a ball. How qualitatively would that 
affect her terminal speed? Explain.

(continued)

Since ay =
SFO on B y

mB
, and FE on B y and FB O on B y are constant, the sign 

and magnitude of 
u
ay will depend on the magnitude of FD O on B y or on 

the speed of the ball. Let us consider the following assumptions.

 1. The ball is initially moving such that the magnitude of the drag 
force is exactly equal to the difference between the gravitational 
force and the buoyant force:

FD O on B y = FE on B y - FB O on B y 1 SFO on B y = 0; ay = 0

In this special case, the ball will continue to move with the same 
speed with which it was launched. This is the terminal speed, which 
we will denote vBT. The graphs for this motion are shown below.

 2. The ball is initially moving such that the magnitude of the drag 
force is smaller than the difference between the gravitational force 
and the buoyant force:

FD O on B y 6 FE on B y - FB O on B y 1 SFO on B y 7 0; ay 7 0

Since FD O on B is proportional to vB, this case will occur when 
vBi 6 vBT. In this case, the ball will initially accelerate downward, 

EXAMPLE 14.7 Multiple possibility problem

A small metal ball is launched vertically downward, with initial velocity 
u
vBi, from just below the surface of oil that fills a very deep container. 
Draw a qualitative velocity-versus-time and an acceleration-versus-time 
graph for the motion of the ball.

Sketch and translate We draw a sketch of the 
situation; let’s choose the y-axis to point down. In 
order to draw velocity- and acceleration- versus-
time graphs, we need to know the sum of the  
forces exerted on the ball.

Simplify and diagram The term “simplify” relates to the 
 assumptions that we need to make to solve the problem. Given that 
one of the forces exerted on the ball is variable (the drag force), the 
 assumptions we make about the initial velocity will determine the 
 outcome. Therefore, in this case it is more useful to first identify the 
forces exerted on the ball and then consider different assumptions.

First, we need to identify the forces that are exerted on the ball and 
draw a force diagram (at right). Earth exerts a force FE on B = mBg that 
points down. The oil exerts a buoyant force FB O on B = roilgVB that points 
up. Since the ball is made of metal we know that 
FE on B 7 FB O on B. The oil also exerts a drag force 
FD O on B that is proportional to vB and points opposite 
to 

u
vB (up in our case). Given that we are interested in 

qualitative graphs, it is enough to remember that the 
drag force exerted by the oil on the ball is proportional 
to the speed of the ball with respect to the oil. This is 
true for a laminar as well as for a turbulent drag force.
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No matter what the initial speed of the ball, the ball will move upward 
and slow down because all the forces exerted on it point in the direction 
 opposite to its motion. Then it will start moving downward in the  
same way as described in case 2 in this example.

Answer

but as the speed of the ball increases, FD O on Bwill increase until the 
sum of the forces is zero. As explained in case 1, at this point the ball 
reaches terminal velocity and continues moving with constant speed 
(zero acceleration). The graphs for this motion are shown below.

 3. The ball is initially moving such that the magnitude of the drag 
force is larger than the difference between the gravitational force 
and the buoyant force:

FD O on B y 7 FE on B y - FB O on B y 1 SFO on B y 6 0 ; ay 6 0

Since FD O on B is proportional to vB, this case will occur when 
vBi 7 vBT. In this case, the acceleration of the ball will initially 
point up (the ball will slow down). As the speed of the ball de-
creases, FD O on B will  decrease until the sum of the forces is zero. 

Therefore, the ball will slow down until it reaches the terminal 
velocity and then continues moving with constant speed (zero ac-
celeration). The graphs for this motion are shown below.

Try it yourself Describe what will happen if we shoot the ball 
upward from the bottom of the oil-filled container. How does the 
scenario depend on the initial speed of the ball?

REVIEW QUESTION 14.7 When a skydiver falls at  constant terminal speed, shouldn’t 
the magnitude of the resistive drag force that the air exerts on the skydiver be a little 
less than the magnitude of the downward gravitational force that Earth exerts on the 
diver? If they are equal, shouldn’t the diver stop falling? Explain.

M14_ETKI1823_02_SE_C14.indd   434 23/09/17   10:58 AM



Questions  435

Summary

Flow rate The flow rate Q of a fluid is the volume V 
of fluid that passes a cross  section in a tube divided by 
the time interval Dt needed for that volume to pass. 
The flow rate also equals the product of the average 
speed v of the fluid and the cross-sectional area A of 
the vessel. (Section 14.2)

A

l 5 vDt

vS  Q = vA Eq. (14.2)

Continuity equation If fluid does not accumulate, 
the flow rate into a region (position 1) must equal the 
flow rate out of the region (position 2). At position 1 
the fluid has speed v1 and the tube has cross-sectional 
area A1. At position 2 the fluid has speed v2 and the 
tube has cross-sectional area A2. (Section 14.2)

A1 A2

Q Qv2v1

 Q = v1A1 = v2A2 Eq. (14.3)

Bernoulli’s equation For a fluid flowing without 
resistive forces or turbulence, the sum of the kinetic 
energy density 11>22rv2, the gravitational potential 
energy density rgy, and pressure P of the fluid is a 
constant. (Section 14.4)

P2

P1 v1

v2

y1

y2

y

S

S

1
2 rv1

2 + rgy1 + P1

  = P2 + 1
2 rv2

2 + rgy2 Eq. (14.6)

Poiseuille’s law For viscous fluid flow, the pressure 
drop 1P1 - P22 across a fluid of viscosity h flowing in 
a tube depends on the length l of the tube, its radius r, 
and the fluid flow rate Q. (Section 14.6)

P2P1

l

Q1
2r

2

 P1 - P2 = a 8
p
b  
hl

r4  Q Eq. (14.7)

Laminar drag force When a spherical object (like a 
marble sinking in oil) moves slowly through a fluid, 
the fluid exerts a resistive drag force on the object that 
is proportional to the object’s speed v. Stokes’s law 
describes the force. (Section 14.7)

vS

 FD = 6phrv Eq. (14.9)

Turbulent drag force For an object moving at faster 
speed through a fluid (like a parachutist with an 
open parachute), turbulence occurs and the resistive 
drag force is proportional to the square of the speed. 
 (Section 14.7)

vS

 FD = 1
2 CDrAv2 Eq. (14.11)

3. Why does the closed top of a convertible bulge when the car is riding along 
a highway?
(a) The volume of air inside the car increases.
(b) The air pressure is greater outside the car than inside.
(c) The air pressure inside the car is greater than the pressure  

outside.
(d) The air blows into the front part of the roof, lifting the  

back part.

Multiple Choice Questions
1. A roof is blown off a house during a tornado. Why does this happen?

(a) The air pressure in the house is lower than that outside.
(b) The air pressure in the house is higher than that outside.
(c) The wind is so strong that it blows the roof off.

2. A river flows downstream and widens, and the flow speed slows. As a 
result, the pressure of the water against a dock downstream compared to 
upstream will be
(a) higher. (b)  lower. (c)  the same.

Questions
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4. How does Bernoulli’s principle help explain air going up the chimney of 
a house?
(a) Air blowing across the top of the chimney reduces the pressure above 

the chimney.
(b) The air above the chimney attracts the ashes.
(c) The hot ashes seek the cooler outside air.
(d) The gravitational potential energy is lower above the chimney.

5. As a river approaches a dam, the width of the river increases and the speed 
of the flowing water decreases. What can explain this effect?
(a) Bernoulli’s equation
(b) The continuity equation
(c) Poiseuille’s law

6. What is an incompressible fluid?
(a) A law of physics
(b) A physical quantity
(c) A model of an object

7. What is viscous flow?
(a) A physical phenomenon
(b) A law of physics
(c) A physical quantity

8. The heart does about 1 J of work pumping blood during one heartbeat. 
What is the immediate first and main type of energy that increases due to 
the heart’s work?
(a) Kinetic energy
(b) Thermal energy
(c) Elastic potential energy

9. Several air bubbles are present 
in water flowing through a pipe 
of variable cross-sectional area 
 (Figure Q14.9). What happens to 
the volume of an air bubble when 
it arrives at the narrow part of the 
pipe, where the cross-sectional 
area is half that of the wider part? Assume the temperature of the gas in the 
bubble stays constant.
(a) The volume of the bubble remains unchanged because water is 

 incompressible.
(b) The volume of the bubble remains unchanged because the temperature 

of the gas in the bubble is constant.
(c) The volume of the bubble decreases because the pressure in water 

increases.
(d) The volume of the bubble increases because the pressure in water 

 decreases.

11. A small metal ball is launched downward from just below the surface of oil 
that fills a very deep container. The initial speed of the ball is larger than 
the terminal speed of the ball in the oil. The y-axis points down. Which 
of the graphs in Figure Q14.10 represents the motion of the ball after it is 
launched?

Conceptual Questions
12. You have two identical large jugs with small holes on the side near the 

bottom. One jug is filled with water and the other with liquid mercury. The 
liquid in each jug, sitting on a table, squirts out the side hole into a con-
tainer on the floor. Which container, the one catching the water or the one 
catching the mercury, must be closer to the table in order to catch the fluid? 
Or should they be placed at the same distance? Which jug will empty first, 
or do they empty at the same time? Explain. Indicate any assumptions that 
you made.

13. Why does much of the pressure drop in the circulatory system occur across 
the arterioles (small vessels carrying blood to the capillaries) and capillaries 
as opposed to across the much larger diameter arteries?

14. If you partly close the end of a hose with your thumb, the water  
squirts out farther. Give at least one explanation for why this phenomenon 
occurs.

15. Compare and contrast work-energy bar charts, which you learned about in 
Chapter 7, with Bernoulli bar charts.

16. Consider Bernoulli’s equation, Poiseuille’s law, and Stokes’s law. Which of 
these are applicable to viscous fluids? Explain.

17. You need a liquid that will exhibit turbulent flow in a tube even at lower 
speeds. Which properties of liquids will you evaluate when choosing a 
 liquid? Explain.

t

ay

(a)

t

ay

(b)

t

ay

(c)

t

ay

(d)

t

ay

(e)

FIGURE Q14.10
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FIGURE Q14.9

10. A small metal ball is released from just below the surface of oil that fills 
a very deep container. The y-axis points down. Which of the acceleration- 
versus-time graphs in Figure Q14.10 represents the motion of the ball after 
it is released?

Below,  indicates a problem with a biological or medical focus. Problems 
labeled  ask you to estimate the answer to a quantitative problem rather 
than derive a specific answer. Asterisks indicate the level of difficulty of the 
problem. Problems with no * are considered to be the least difficult. A single * 
marks moderately difficult problems. Two ** indicate more difficult problems. 
Unless stated otherwise, assume in these problems that atmospheric pressure is 
1.01 * 105 N>m2 and that the densities of water and air are 1000 kg>m3 and 
1.3 kg>m3, respectively.

14.1 and 14.2  Fluids moving across surfaces—qualitative 
analysis and Flow rate and fluid speed

1. Watering plants You water flowers outside your house. (a) Determine the 
flow rate of water moving at an average speed of 32 cm>s through a garden 
hose of radius 1.2 cm. (b) Determine the speed of the water in a second 
hose of radius 1.0 cm that is connected to the first hose.

2. Irrigation canal You live near an irrigation canal that is filled to the top 
with water. (a) It has a rectangular cross section of 5.0-m width and  
1.2-m depth. If water flows at a speed of 0.80 m>s, what is its flow rate?  

Problems
(b) If the width of the stream is reduced to 3.0 m and the depth to 1.0 m  
as the water passes a flow-control gate, what is the speed of the water past 
the gate?

3. Fire hose During a fire, a firefighter holds a hose through which 0.070 m3 
of water flows each second. The water leaves the nozzle at an average 
speed of 25 m>s. What information about the hose can you determine using 
these data?

4. The main waterline for a neighborhood delivers water at a maximum flow 
rate of 0.010 m3>s. If the speed of this water is 0.30 m>s, what is the pipe’s 
radius?

5. *  Blood flow in capillaries The average flow rate of blood in the 
aorta is 80 cm3>s. Beyond the aorta, this blood eventually travels through 
about 6 * 109 capillaries, each of radius 8.0 * 10-4 cm. What is the 
 average speed of the blood in the capillaries?

6. * Irrigating a field It takes a farmer 2.0 h to irrigate a field using a 
4.0-cm-diameter pipe that comes from an irrigation canal. How long would 
the job take if he used a 6.0-cm pipe? What assumption did you make?  
If this assumption is not correct, how will your answer change?
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12. Repeat Problem 14.9 using the bar chart in Figure P14.12.
13. An application of Bernoulli’s equation is shown below. Construct a 

 qualitative Bernoulli bar chart that is consistent with the equation and draw 
a sketch of a situation that could be represented by the equation (there are 
many possibilities).
r gy2 = 0.5rv1

2

14. Repeat Problem 14.13 using the equation 0.5r v2
1 + 1P1 - P22 = 0.5r v2

2 
and P1 6 P2.

15. * Repeat Problem 14.13 using the equation below.
0.5r v2

1 + 1P1 - P22 =
0.5r v2

2 + r gy2 and P1 6 P2.
16. * Wine flow from barrel While visiting a winery, you observe wine shoot-

ing out of a hole in the bottom of a barrel. The top of the barrel is open. The 
hole is 0.80 m below the top surface of the wine. Represent this process in 
multiple ways (a sketch, a bar chart, and an equation) and apply Bernoulli’s 
 equation to a point at the top surface of the wine and another point at the 
hole in the barrel.

17. Water flow in city water system Water is pumped at high speed from 
a reservoir into a large-diameter pipe. This pipe connects to a smaller 
 diameter pipe. There is no change in elevation. Represent the water flow 
from the large pipe to the smaller pipe in multiple ways—a sketch, a bar 
chart, and an equation.

14.5  Skills for analyzing processes using  
Bernoulli’s equation

18. * The pressure of water flowing through a 0.060-m-radius pipe at a speed 
of 1.8 m>s is 2.2 * 105 N>m2. What is (a) the flow rate of the water and 
(b) the pressure in the water after it goes up a 5.0-m-high hill and flows in a 
0.050-m-radius pipe?

19. * Siphoning water You want to siphon rainwater and melted snow from 
the cover of an above-ground swimming pool. The cover is 1.4 m above 
the ground. You have a plastic hose of 1.0-cm radius with one end in the 
water on the pool cover and the other end on the ground. (a) At what speed 
does water exit the hose? (b) If you want to empty the pool cover in half the 
time, what new hose radius should you use? (c) How much faster does the 
water flow through this wider pipe?

20. * Cleaning skylights You are going to wash the skylights in your kitchen. 
The skylights are 8.0 m above the ground. You connect two garden hoses 
together—a 0.80-cm-radius hose to a 1.0-cm-radius hose. The smaller hose 
is held on the roof of the house and the wider hose is attached to the faucet 
on the ground. The pressure at the opening of the smaller hose is 1 atm, and 
you want the water to have the speed of 6.0 m>s. What should be the pres-
sure at ground level in the large hose? What should be the speed?

21. *  Blood flow in artery Blood flows at an average speed of  
0.40 m>s in a horizontal artery of radius 1.0 cm. The average pressure  
is 1.4 * 104 N>m2 above atmospheric pressure (the gauge pressure).  
(a) What is the average speed of the blood past a constriction where the  
radius of the opening is 0.30 cm? (b) What is the gauge pressure of the 
blood as it moves past the constriction? What assumption did you make  
to answer these  questions?

22. * Straw aspirator A straw extends out of a glass of water by a height h. 
How fast must air blow across the top of the straw to draw water to the top 
of the straw?

23. * Gate for irrigation system You observe water at rest behind an irrigation 
dam. The water is 1.2 m above the bottom of a gate that, when lifted,  allows 
water to flow under the gate. Determine the height h from the  bottom 
of the dam that the gate should be lifted to allow a water flow rate of 
1.0 * 10-2 m3>s. The gate is 0.50 m wide.

24. *  Flutter in blood vessel A person has a 5200@N>m2 gauge  pressure 
of blood flowing at 0.50 m>s inside a 1.0-cm-radius main artery. The 
gauge pressure outside the artery is 3200 N>m2. When using his stetho-
scope, a physician hears a fluttering sound farther along the artery. The 
sound is a sign that the artery is vibrating open and closed, which indicates 
that there must be a constriction in the artery that has reduced its radius 
and subsequently reduced the internal blood pressure to less than the 
external 3200@N>m2 pressure. What is the maximum artery radius at this 
 constriction?

25. *  Effect of smoking on arteriole radius The average radius of a 
smoker’s arterioles, the small vessels carrying blood to the capillaries, is 
5% smaller than those of a nonsmoker. (a) Determine the percent change in 
flow rate if the pressure across the arterioles remains constant. (b) Deter-
mine the percent change in pressure if the flow rate remains constant.

26. * Roof of house in wind The mass of the roof of a house is 2.1 * 104 kg 
and the area of the roof is 160 m2. At what speed must air move across 
the roof of the house so that the roof is lifted off the walls? Indicate any 
 assumptions you made.

27. * You have a U-shaped tube open at both ends. You pour water into the 
tube so that it is partially filled. You have a fan that blows air at a speed of 
10 m>s. (a) How can you use the fan to make water rise on one side of the 
tube? Explain your strategy in detail. (b) To what maximum height can you 
get the water to rise? Note: You cannot touch the water yourself.
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14.4 Bernoulli’s equation
7. Represent the process sketched in Figure P14.7 using a qualitative 

 Bernoulli bar chart and an equation (include only terms that are not zero).

8. * Represent the process sketched in Figure P14.8 using a qualitative 
 Bernoulli bar chart and an equation (include only terms that are not zero).

9. Fluid flow problem Write a symbolic equation (include only terms that 
are not zero) and draw a sketch of a situation that could be represented by 
the qualitative Bernoulli bar chart shown in Figure P14.9 (there are many 
possibilities).

10. Repeat Problem 14.9 using the bar chart in Figure P14.10.
11. * Repeat Problem 14.9 using the bar chart in Figure P14.11.
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14.6 Viscous fluid flow
29. * A 5.0-cm-radius horizontal water pipe is 500 m long. Water at 20 8C 

flows at a rate of 1.0 * 10-2 m3>s. (a)  Determine the pressure drop due to 
viscous friction from the beginning to the end of the pipe. (b) What radius 
pipe must you use if you want to keep the pressure difference constant and 
double the flow rate?

30. Fire hose A volunteer firefighter uses a 5.0-cm-diameter fire hose that is 60 m 
long. The water moves through the hose at 12 m>s. The temperature outside is 
20 8C. What is the pressure drop due to viscous friction across the hose?

31. Another fire hose The pump for a fire hose can develop a maximum pres-
sure of 6.0 * 105 N>m2. A horizontal hose that is 50 m long is to carry 
water of viscosity 1.0 * 10-3 N # s>m2 at a flow rate of 1.0 m3>s. What is 
the minimum radius for the hose?

32. * Solar collector water system Water flows in a solar collector through a 
copper tube of radius R and length l. The  average temperature of the water 
is T  8C and the flow rate is Q cm3>s. Explain how you would determine the 
viscous pressure drop along the tube, assuming the water does not change 
elevation.

33. *  Blood flow through capillaries Your heart pumps blood at a flow 
rate of about 80 cm3>s. The blood flows through approximately 9 * 109 
capillaries, each of radius 4 * 10-4 cm and 0.1 cm long. Determine the 
viscous friction pressure drop across a capillary, assuming a blood viscosity 
of 4 * 10-3 N # s>m2.

34. * Determine the ratio of the flow rate through capillary tubes A and B  
(that is, QA>QB). The length of A is twice that of B, and the radius of A is 
one-half that of B. The pressure across both tubes is the same.

35. * A piston pushes 20 8C water through a horizontal tube of 0.20-cm radius 
and 3.0-m length. One end of the tube is open and at atmospheric pressure. 
(a) Determine the force needed to push the piston so that the flow rate is 
100 cm3>s. (b) Repeat the problem using SAE 10 oil instead of water.

36. * How can you use the venturi meter system (see Problem 14.28) to deter-
mine whether viscous fluid needs an additional pressure difference to flow 
at the same speed as a nonviscous fluid?

37. * A syringe is filled with water and fixed at the edge of a table at height 
h = 1.0 m above the floor (Figure P14.37). The diameter of the piston is 
d1 = 20.0 mm, the needle has length L = 50.00 mm, and the inner diame-
ter of the needle is d2 = 1.0 mm. You press on the piston so that it moves at 
constant speed of 10.00 mm>s. Determine (a) the distance D at which the 
water jet hits the floor and (b) the pressure difference between the ends of 
the needle. Assume the viscosity of water is 1.0 * 10-3 N # s>m2.

14.7 Drag force
38. Car drag A 2300-kg car has a drag coefficient of 0.60 and an effective 

frontal area of 2.8 m2. Determine the air drag force on the car when 
 traveling at (a) 24 m>s (55 mi>h) and (b) 31 m>s (70 mi>h).

39. *  Air drag when biking Estimate the drag force opposing your 
 motion when you ride a bicycle at 8 m>s.

40.  Drag on red blood cell Determine the drag force on an object the 
size of a red blood cell with a radius of 1.0 * 10-5 m that is moving 
through 20 8C water at speed 1.0 * 10-5 m>s. (Assume laminar flow.)

41. *   Protein terminal speed A protein of radius 3.0 * 10-9 m 
falls through a tube of water with viscosity h = 1.0 * 10-3 N # s>m2. Earth 
exerts a constant downward 3.0 * 10-22@N force on the protein. (a) Use 
Stokes’s law and the information provided to estimate the terminal speed 
of the protein. Assume no buoyant force is exerted on the protein. (b) How 
many hours would be required for the protein to fall 0.10 m?

42. *  Earth exerts a constant downward force of 7.5 * 10-13 N on a clay 
particle falling in water. The particle settles 0.10 m in 820 min. Estimate 
the radius of a clay particle. Assume no buoyant force is exerted on the clay 
particle. The viscosity of water is 1.0 * 10-3 N # s>m2.

43. * A sphere falls through a fluid. Earth exerts a constant downward 0.50-N 
force on the sphere. The fluid exerts an opposing drag force on the fluid 
given by FD = 2v, where FD is in newtons if v is in meters per second. 
 Determine the terminal speed of the sphere.

44. * Terminal speed of balloon A balloon of mass m drifts down through the 
air. The air exerts a resistive drag force on the balloon described by the 
equation FD = 0.03v2 where FD is in newtons if v is in meters per second. 
What is the terminal speed of the balloon?

45. You observe four different 
 liquids (listed with their viscos-
ities and densities in the table 
below) as they flow with the 
same speed through identical 
tubes. You gradually increase 
the speed of the liquids until 
their flows become turbulent. 
Rank the liquids in the order in 
which you see their flow become 
turbulent.

vS

D

h

d2

d1
L

FIGURE P14.37

vS b

FIGURE P14.48

1 2

h

v1 v2

FIGURE P14.28

28. * Engineers use a venturi meter to measure the speed of a fluid traveling 
through a pipe (see Figure P14.28). Positions 1 and 2 are in pipes with 
 surface areas A1 and A2, with A1 greater than A2, and are at the same 
 vertical height. How can you determine the relative speeds at positions  
1 and 2 and the pressure difference between positions 1 and 2?

Liquid
Viscosity
(N # s ,m2 )

Density
(kg ,m3 )

Blood 4 * 10-3 1.05 * 103

Water 1 * 10-3 1.00 * 103

Ethanol 1 * 10-3 0.79 * 103

Acetone 3 * 10-4 0.79 * 103

General Problems
46. ** Describe how you will design an experimental procedure that will help 

you decide whether the drag force exerted on a coffee filter falling at termi-
nal velocity depends on the filter’s speed v or on its speed squared v2.

47. * If the speed of air that is blowing across the upper end of a vertical tube 
is great enough, a thin plate that is placed at the lower end of the tube 
will remain touching the end of the tube, without falling down. Derive an 
 expression for the minimum speed of air that needs to blow across a tube of 
diameter d to keep the plate of mass m from falling down.

48. Mariotte’s bottle Figure 
P14.48 shows a device called 
Mariotte’s bottle that can 
deliver a constant flow rate. It 
consists of a tube that releases 
air bubbles into a sealed bottle 
or tank at a height b above 
the point where the liquid 
exits. (a) Under what condi-
tions does Mariotte’s bottle 
deliver a constant flow rate 
and thus a constant speed of 
liquid? Explain. (b) How does 
this constant speed of liquid 
leaving the bottle depend on 
b, assuming that there is no 
friction at the opening where 
liquid leaves the bottle? (Hint: Note that the pressure at the point where the 
bubbles are entering the bottle is equal to atmospheric pressure.)
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49. **  Pressure needed for intravenous needle A glucose solution 
of viscosity 2.2 * 10-3 N # s>m2 and density 1030 kg>m3 flows from 
an elevated open bag into a vein. The needle into the vein has a radius of 
0.20 mm and is 3.0 cm long. All other tubes leading to the needle have 
much larger radii, and viscous forces in them can be ignored. The pressure 
in the vein is 1000 N>m2 above atmospheric pressure. (a) Determine the 
pressure relative to atmospheric pressure needed at the entrance of the nee-
dle to maintain a flow rate of 0.10 cm3>s. (b) To what elevation should the 
bag containing the glucose be raised to maintain this pressure at the needle?

50. ** Viscous friction with Bernoulli We can include the effect of viscous 
friction in Bernoulli’s equation by adding a term for the thermal energy 
generated by the viscous retarding force exerted on the fluid. Show that 
the term to be added to Eq. (14.5) for flow in a vessel of uniform cross- 
sectional area A is

DUTh

V
=

4phlv

A

where v is the average speed of the fluid of viscosity h along the center of a 
pipe whose length is l.

51. ** (a) Show that the work W done per unit time Dt by viscous friction in a 
fluid with a flow rate Q across which there is a pressure drop DP is

W
Dt

= DPQ = Q2R =
DP2

R

where R = 8hl>pr4 is called the flow resistance of the fluid moving 
through a vessel of radius r. (b) By what percentage must the work per  
unit time increase if the radius of a vessel decreases by 10% and all other 
quantities including the flow rate remain constant (the pressure does not 
remain constant)?

52. **   Thermal energy in body due to viscous friction Estimate 
the thermal energy generated per second in a normal body due to the 
 viscous friction force in blood as it moves through the circulatory system.

53. **  Essential hypertension Suppose your uncle has hypertension 
that causes the radii of his 40,000,000 arterioles to decrease by 20%. Each 
arteriole initially was 0.010 mm in radius and 1.0 cm long. By what factor 
does the resistance R = 8hl>pr4 to blood flow through an arteriole change 
because of these decreased radii? The pressure drop across all of the arteri-
oles is about 60 mm Hg. If the flow rate remains the same, what now is the 
pressure drop change across the arteriole part of the circulatory system?

54. * Parachutist A parachutist weighing 80 kg, including the parachute, falls 
with the parachute open at a constant 8.5@m>s speed toward Earth. The drag 
coefficient CD = 0.50. What is the area of the parachute?

55. A 0.20-m-radius balloon falls at terminal speed 40 m>s. If the drag 
 coefficient is 0.50, what is the mass of the balloon?

56. ** Terminal speed of skier A skier going down a slope of angle u below 
the horizontal is opposed by a turbulent drag force that the air exerts on the 
skier and by a kinetic friction force that the snow exerts on the skier. Show 
that the terminal speed is

vT = c 2mg1sin u - m cos u2
CD rA

d 1>2
where m is the coefficient of kinetic friction between the skis and the  
snow, r is the density of air, A is the skier’s frontal area, and CD is the drag 
coefficient.

57. ** A grain of sand of radius 0.15 mm and density 2300 kg>m3 is placed in 
a 20 8C lake. Determine the terminal speed of the sand as it sinks into the 
lake. Do not forget to include the buoyant force that the water exerts on  
the grain.

58. **  Comet crash On June 30, 1908, a monstrous comet fragment of 
mass greater than 109 kg is thought to have devastated a 2000@km2 area of 
remote Siberia (this impact was called the Tunguska event). Estimate the 
terminal speed of such a comet in air of density 0.70 kg>m3. State all of 
your assumptions.

Reading Passage Problems
 Intravenous (IV) feeding A patient in the hospital needs fluid from  

a glucose nutrient bag. The glucose solution travels from the bag down a  
tube and then through a needle inserted into a vein in the patient’s arm  

(Figure 14.12a). Your study of fluid dynamics makes you think that the bag 
seems a little low above the arm and the narrow needle seems long. You wonder 
if the glucose is actually making it into the patient’s arm. What height should 
the bag (open at the top) be above the arm so that the glucose solution (density 
1000 kg>m3 and viscosity 1.0 * 10-3 N # s>m2) drains from the open bag down 
the 0.6-m-long, 2.0 * 10-3@m  radius tube and then through the 0.020-m-long, 
4.0 * 10-4@m radius needle and into the vein? The gauge pressure in the vein 
in the arm is +930 N>m2 (or 7 mm Hg). The nurse says the flow rate should be 
0.20 * 10-6 m3>s 10.2 cm3>s2.

PB 2 PC 5 ?

l 5 2.0 cm

Q 5 0.2 cm3/s
r 5 4.0 3 1024 m

C B

PA 5 1 atm
Position A

PC 5 1 atm
1120 mm Hg
Position C

(a)

(b)

Q

y

PBPC

yA 5 ?

yC

FIGURE 14.12 (a) A glucose solution 
 flowing from an open container into a vein.  
(b) The analysis of the needle in this system.

59. Which answer below is closest to the speed with which the glucose should 
flow out of the end of the needle at position C in Figure 14.12b?
(a) 0.0004 m>s (b)  0.004 m>s (c)  0.04 m>s
(d) 0.4 m>s (e)  4 m>s

60. Which answer below is closest to the speed with which the glucose  
should flow through the end of the tube just to the right of position B in 
Figure 14.12b?
(a) 0.0002 m>s (b)  0.002 m>s (c)  0.02 m>s
(d) 0.2 m>s (e)  2 m>s

61. Assume that there is no resistive friction pressure drop across the needle 
(as could be determined using Poiseuille’s law). Use the Bernoulli equation 
and the results from Problems 14.59 and 14.60 to determine which  answer 
below is closest to the change in pressure between positions B and C 
(PB - PC) in Figure 14.12b.
(a) 8 N>m2 (b)  80 N>m2 (c)  800 N>m2

(d) 8000 N>m2 (e)  80,000 N>m2

62. Now, in addition to the Bernoulli pressure change from position B to 
 position C calculated in Problem 14.61, there may be a Poiseuille resistive 
friction pressure change across the needle from position B to position C. 
Which answer below is closest to that pressure change?
(a) 0.4 N>m2 (b)  4 N>m2 (c)  40 N>m2

(d) 400 N>m2 (e)  4000 N>m2

63. The blood pressure in the vein at position C in Figure 14.12b at the exit 
of the needle into the blood is 930 N>m2. Use this value and the results of 
Problems 14.61 and 14.62 to determine which answer below is closest to the 
gauge pressure at position B in the tube carrying the glucose to the needle.
(a) 1010 N>m2 (b)  1410 N>m2 (c)  1980 N>m2

(d) 2800 N>m2 (e)  4620 N>m2
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440  CHAPTER 14 Fluids in Motion

64. Suppose that there is no Poiseuille resistive friction pressure decrease from 
the top of the glucose solution in the open bag (position A in Figure 14.12a) 
through the tube and down to position C near the entrance to the needle. 
Which answer below is closest to the minimum height of the top of the bag 
in order for the glucose to flow down from the tube and through the needle 
into the blood? Remember that the pressure at position A is atmospheric 
pressure, which is zero gauge pressure.
(a) 0.04 m (b)  0.08 m (c)  0.14 m
(d) 0.27 m (e)  0.60 m

65. Suppose there is a Poiseuille resistive friction pressure decrease from the 
top of the glucose solution (position A in Figure 14.12a) through the tube 
and down to position C near the entrance to the needle. How will this affect 
the placement of the bag relative to the arm?
(a) The bag will need to be higher.
(b) The bag can remain the same height above the arm.
(c) The bag can be placed lower relative to the arm.
(d) Too little information is provided to answer the question.

 The human circulatory system In the human circulatory system, depicted 
in Figure 14.13, the heart’s left ventricle pumps about 80 cm3 of blood into the 
aorta every second. The blood then moves into a larger and larger number of 
smaller radius vessels (aorta, arteries, arterioles, and capillaries). After the cap-
illaries, which deliver nutrients to the body cells and absorb waste products, the 
vessels begin to combine into a smaller number of larger radius vessels (venules, 
small veins, large veins, and finally the vena cava). The vena cava returns blood 
to the heart (see Table 14.5).

A working definition of the resistance R to flow by a group of vessels is the 
ratio of the gauge pressure drop DP across those vessels divided by the flow rate 
Q through the vessels:

 R =
DP
Q

 (14.12)

The gauge pressure drop across the whole system is (100 mm Hg – 0), and the 
total resistance is

Rtotal =
DPtotal

Q
=

100 mm Hg

80 cm3>s
= 1.25 

mm Hg

cm3>s

The gauge pressure drop across the whole system is the sum of the drops across 
each type of vessel:

DPtotal = DPaorta + DParteries + DParterioles + DPcapillaries + . . . + DPvena cava

Now rearrange and insert Eq. (14.12) into the above for the pressure drop across 
each part:

QRtotal = QRaorta + QRarteries + QRarterioles + QRcapillaries + . . . + QRvena cava

Canceling the common flow rate through each group of vessels, we have an 
 expression for the total resistance of the circulatory system:

Rtotal = Raorta + Rarteries + Rarterioles + Rcapillaries + . . . + Rvena cava

The measured gauge pressure drop across the arterioles is about 50 mm Hg, and 
the arteriole resistance is

Rarterioles =
DParterioles

Q
=

50 mm Hg

80 cm3>s
= 0.62 

mm Hg

cm3>s

or about 50% of the total resistance. The next most resistive group of vessels 
is the capillaries, at about 25% of the total resistance. These percentages vary 
significantly from person to person. A person with essential hypertension has 
arterioles and capillaries that are reduced in radius. The resistance to blood flow 
increases dramatically (the resistance has a 1>r4 dependence). The blood pres-
sure has to be greater (for example, double the normal value) in order to produce 
reasonable flow to the body cells. Even with the increased pressure, the flow rate 
may still be lower than normal.

66. The capillaries typically produce about 25% of the resistance to blood flow. 
Which pressure drop below is closest to the pressure drop across the group 
of capillaries?
(a) 5 mm Hg (b)  15 mm Hg (c)  25 mm Hg
(d) 35 mm Hg (e)  45 mm Hg

67. We found that the arteriole resistance to fluid flow was about 
0.62 mm Hg>1cm3>s2. By what factor would you expect the resistance of 
all the arterioles to change if the radius of each arteriole decreased to 80% 
of the original value?
(a) 1.3 (b)  1.6 (c)  2.4
(d) 0.4 (e)  0.6

68. Why is the resistance to fluid flow through unobstructed arteries relatively 
small compared to resistance to fluid flow through the arterioles and 
 capillaries?
(a) The arteries are nearer the heart.
(b) There is a relatively small number of arteries.
(c) The artery radii are relatively large.
(d) b and c
(e) a, b, and c

69. The huge number of capillaries and venules is needed to
(a) provide nutrients (such as O2) and remove waste products from all of 

the body cells.
(b) distribute water uniformly throughout the body.
(c) reduce the resistance of the circulatory system.
(d) b and c
(e) a, b, and c

70. Which number below best represents the ratio of the resistance of a single 
capillary to the resistance of a single arteriole, assuming they are equally 
long?
(a) 40 (b)  6 (c)  2.5
(d) 0.4 (e)  0.026
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FIGURE 14.13 A schematic representation of 
the circulatory system including the pressure 
variation across different types of vessels.

TABLE 14.5 The different types of vessels in the circulatory system

Vessel type Number of vessels Approximate radius (mm)

Aorta 1 5

Large arteries 40 2

Smaller arteries 2400 0.4

Arterioles 40,000,000 0.01

Capillaries 1,200,000,000 0.004

Venules 80,000,000 0.02

Small veins 2400 1

Large veins 40 3

Vena cava 1 6

The flow rate Q of blood through the arteries equals the flow rate through 
the  arterioles, which equals the flow rate through the capillaries, and so forth. 
The average blood gauge pressure in the aorta is about 100 mm Hg. The pressure 
drops as blood passes through the different groups of vessels and is approxi-
mately 0 mm Hg when it returns to the heart at the vena cava.
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