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Back pain is a major health problem. In 2010 in the United States, the medical 
costs related to back pain were around 80 billion dollars a year, about the same as 
the yearly cost of treating cancer. Back pain often results from incorrect  lifting, 
which compresses the disks in the lower back, causing nerves to be pinched. 
 Understanding the physics principles underlying lifting can help us develop 
 techniques that minimize this compression and prevent injuries.

8

Extended Bodies at Rest

BE SURE YOU KNOW HOW TO:
 ● Define the point-like model for an 
object (Section 2.2).

 ● Draw a force diagram for a system 
(Section 3.1).

 ● Use the component form of 
 Newton’s second law (Section 4.2).

 ● Why is it best to lift heavy objects 
with your knees bent and the object 
near your body?

 ● Why are doorknobs located on the 
side of the door opposite the hinges?

 ● Why is the force that your biceps 
muscle exerts on your forearm when 
lifting a barbell about seven times 
stronger than the force that Earth 
 exerts on it?

SO FAR IN THIS BOOK we have primarily been modeling moving objects 
as point-like with no internal structure. This method is appropriate when the 
shapes of objects do not affect the consequences of their interactions with 
each other—for example, an elevator moving up a shaft or an apple  falling 
into a pile of leaves. However, objects in general and the human body in 
particular are extraordinarily complex, with many internal parts that rotate 
and move relative to one another. To study the body and other complex 
 structures, we need to develop a new way of modeling objects and analyzing 
their interactions.
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218  CHAPTER 8 Extended Bodies at Rest

8.1 Extended and rigid bodies
In earlier chapters we focused on situations in which real objects that have nonzero 
dimensions could be reasonably modeled as point-like. Such modeling is possible when 
an object moves as a whole from one location to another, without turning. Such  motion 
is called translational motion.

In this chapter we will be analyzing objects whose size and shape matter. We 
will  start with the simplest case—objects at rest. (In Chapter 9 we will investigate 
their   motion.) We’d like, for example, to understand how the contemporary dancers 
in  Figure 8.1 manage to maintain their unusual balance. Where should each force be 
 exerted and how large should their magnitudes be in order for the dancers to remain 
stable? To answer these questions, we need a new model for extended objects and a 
new method for analyzing the forces that objects exert on each other. Our first task is to 
develop this new model for objects.

FIGURE 8.1 The point-like model of an  object 
is not useful when we try to analyze the 
 balance of these dancers.

Rigid body A rigid body is a model of a real extended object. When we model an 
extended object as a rigid body, we assume that the object has a nonzero size but 
the distances between all parts of the object remain the same (the size and shape 
of the object do not change).

Many bones in your body can be reasonably modeled as rigid bodies, as can 
many everyday objects—buildings, bridges, streetlights, and utility poles. However, 
many  objects cannot be modeled as rigid bodies. Objects that cannot be modeled as 
rigid  bodies include ones that contain liquid or moving interior parts, such as water 
 balloons or boxes of loose candy. In this chapter we will investigate what conditions are 
 necessary for a rigid body to remain at rest.

Cardboard

Pencil

(a)

(b)

The cardboard sits at rest with two 
forces exerted on it.

The cardboard tips if supported on 
the bottom off to the side.

S
NT on B

S
FE on B

y

Cardboard

FIGURE 8.2 The cardboard is stable in (a) but 
not in (b). The place where the supporting 
force is exerted on the board matters.

Rigid bodies
Notice that at the instant shown in the photo the various parts of the dancers’ bodies 
are not moving with respect to each other. They are acting as a single rigid object. This 
 observation motivates a new model for an extended object, in which the size of the 
object is not zero (it is not a point-like object), but parts of the object do not move with 
respect to each other. In physics, this model is called a rigid body.

Center of mass
Let’s start with some simple experiments. Place a piece of thin, flat cardboard on a 
very smooth table. If we consider the cardboard to be a point-like object, on a force 
diagram the upward normal force that the table exerts on the cardboard will balance the 
downward gravitational force that Earth exerts on the cardboard (Figure 8.2a)—the 
cardboard will not accelerate. Now, place the cardboard on a very small surface—like 
the eraser of a pencil. The cardboard tilts and falls off (Figure 8.2b). Does this result 
mean that the eraser cannot exert the same upward force on the cardboard that the 
table did, or is there some other explanation? The model of the point-like object cannot 
 explain the tilting, since point-like objects do not tilt. Perhaps we need to model the 
cardboard as a rigid body. Before we do this, let us learn a little more about rigid bodies 
in  Observational Experiment Table 8.1.
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8.1 Extended and rigid bodies  219

The analysis we did in Table 8.1 indicates that a rigid body possesses a special 
point. If a force exerted on that object points directly toward or away from that point, 
the object will not turn. We call this point the object’s center of mass. It is found ex-
perimentally that the center of mass is not necessarily located at the geometrical center 
of the object, but depends on the distribution of mass in the object.

8.1 Pushing a board so that it moves without turning
OBSERVATIONAL  
EXPERIMENT TABLE 

Observational experiment Analysis

Experiment 1. We push with a pencil eraser on the edge of a heart-
shaped piece of flat cardboard at different locations such that for each 
push the cardboard moves on a smooth surface without turning. We 
also push against the cardboard at points where it turns as it moves.

Heart does not
turn as it moves.

Heart turns as
it moves.

We draw lines across the top of the cardboard from the places and in 
the directions that the cardboard did not turn as it moved. The lines 
along which the forces are exerted all cross at one point.

Experiment 2. We now place a heavy object on the cardboard and re-
peat the experiment, each time pushing at different locations along the 
edge, trying to find the direction of pushing so that for each push the 
cardboard moves without turning.

Cardboard heart
moves without
turning.

Heavy object

The lines along which the forces are exerted all cross at one point. This 
point is located somewhere between the point in experiment 1 and the 
position of the added object in experiment 2.

Pattern

1.  In both experiments, all of the lines along which we had to push to move the cardboard without it turning pass through a common point  
on the cardboard.

2. Pushing at the same locations in other directions causes the cardboard to turn as it moves.

Center of mass (qualitative definition) The center of mass of an object is a 
point where a force exerted on the object pointing directly toward or away from 
that point will not cause the object to turn. The location of this point depends on 
the mass distribution of the object.

TIP Although the location of the center 
of mass depends on the mass 

distribution of the object, the mass of the 
object is not necessarily evenly distributed 
around the center of mass. We will learn more 
about the properties of the center of mass; 
we just want to caution you against taking the 
name of this point literally.

VIDEO
OET 8.1
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220  CHAPTER 8 Extended Bodies at Rest

Where is the gravitational force  
exerted on a rigid body?
At the beginning of the chapter we found that we could not balance cardboard on the 
eraser of a pencil. Why did the cardboard fall off? Imagine drawing the forces exerted 
on the cardboard. The cardboard interacts with two objects: the eraser and Earth. The 
eraser exerts an upward normal force on the cardboard at the point where it touches it. 
Earth exerts a downward gravitational force on every part of the cardboard. Is it possi-
ble to simplify the situation and to find one location at which we can assume that the 
entire gravitational force is exerted on the cardboard?

Let us go back to the heart-shaped cardboard from Experiment 1 in Table 8.1. If we 
place the eraser exactly under the cardboard’s center of mass, the cardboard does not 
tip over and fall (Figure 8.3). If the cardboard does not tip, it means that all forces 
exerted on it, including the force exerted by Earth and the force exerted by the eraser, 
pass through the center of mass. The normal force exerted by the eraser passes through 
the place where it contacts the cardboard—below the center of mass (indicated on the 
figure with a checked circle).

Earth exerts a small force on each small part of the board, but we can assume that 
the total force is exerted exactly at the center of mass. That is why sometimes the 
 object’s center of mass is called the object’s center of gravity. Note that the center of 
gravity is located at the same spot as the center of mass only when the object is so small 
that we can neglect the change of g throughout the object. For example, if you think of 
a large spaceship close to Earth, the value of g at the points closer to Earth is larger than 
at the points that are farther.

When we model something as a point-like object, we model it as if all of the 
 object’s mass is located at its center of mass. Likewise, we can apply what we know 
about translational motion for point-like objects to rigid bodies, as long as we apply the 
rules to their centers of mass. When multiple forces are exerted on a rigid body, the 
center of mass of the rigid body accelerates translationally according to Newton’s 
second law ua 5 S

u
F ,m.

REVIEW QUESTION 8.1 You have an oval framed painting. How do you determine 
where you should insert a single nail into the frame so that the painting is correctly 
oriented in both the vertical and horizontal directions?

8.2 Torque: a new physical quantity
We learned in the previous section that the turning effect of an individual force depends 
on where and in which direction the force is exerted on an object. The translational 
acceleration of the object’s center of mass is still determined by Newton’s second law, 
independently of where the force is exerted. In this section we will learn about the turn-
ing ability of a force that an object exerts on a rigid body.

Axis of rotation
When objects turn around an axis, physicists say that they undergo rotational motion. 
The axis may be a fixed physical axis, such as the hinge of a door, or it may not, as in 
the case of a spinning top. In this chapter we will focus on the conditions under which 
objects that could potentially rotate do not do so.

Consider a door. When you push on the doorknob perpendicular to the door’s sur-
face (

u
F2 in Figure 8.4), it rotates easily about the door hinges. We call the imaginary 

line passing through the hinges the axis of rotation. You know from experience that 
pushing a door at or near the axis of rotation (

u
F1 in Figure 8.4) is not as effective as 

Center of mass

The heart does not tip if supported under
its center of mass.

We can assume
that Earth exerts
gravitational force
entirely at the
center of mass.

S
NP on H

S
FE on H

y

FIGURE 8.3 Balancing cardboard.

S
F1 S

F2

S
F3

F1  and F3  do not rotate the door,
whereas F2  moves it easily.

S S

S

Axis of rotation

FIGURE 8.4 Different forces have different 
effects in turning a door about its axis of 
rotation.
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8.2 Torque: a new physical quantity  221

pushing the doorknob. You also know that the harder you push near the knob, the more 
rapidly the door starts moving. Lastly, pushing on the outside edge of the door toward 
the axis of rotation (

u
F3 in Figure 8.4) does not move the door at all.

These observations suggest that three factors affect the turning ability of a force:  
(1) the place where the force is exerted, (2) the magnitude of the force, and (3) the  
direction in which the force is exerted. Next, let’s construct a quantitative expression 
for this turning ability.

The role of position on the  
turning ability of a force
In order to quantify the turning ability of a force, we take a 0.10-kg meter stick and 
suspend it at its center of mass from spring scale 2 (Figure 8.5); 

u
F2 is the force exerted 

on the meter stick by scale 2 at the point of suspension. Spring scale 1 pulls perpendic-
ularly on the stick, exerting a downward force 

u
F1 at different locations on the left side, 

and scale 3 exerts a downward perpendicular force 
u
F3 at different locations on the right 

side. Earth exerts a 1.0-N force 
u
FE on M on the stick’s center of mass, which is the point 

of suspension.
When either scale 1 or scale 3 pulls alone on the stick, the stick rotates (when scale 

1 pulls on the stick, it rotates counterclockwise; when 3 pulls, it rotates clockwise). If 
we pull equally on scales 1 and 3 (

u
F1 =

u
F3) but the scales are located at different dis-

tances from the axis of rotation, the stick rotates (Figure 8.6a). We can use trial and 
error to find the combinations where the scales can be placed and pulled such that the 
stick does not rotate. For example, if scale 1 is twice as far from the axis of rotation and 
pulls half as hard as scale 3, the stick remains in equilibrium (Figure 8.6b). Similarly, if 
scale 1 is three times farther from the axis of rotation and exerts one-third of the force 
compared to scale 3, the stick remains in equilibrium (Figure 8.6c). When the stick 
does not rotate and does not move translationally, it is in a state of static equilibrium.

Scale 2 supports 
meter stick at 
center of mass.

We pull down on scales 1 and 3, exerting 
different forces at different places.

Axis of 
rotation

2

1 3

FIGURE 8.5 An experiment to determine a 
condition necessary for multiple forces to keep 
a meter stick in a horizontal position.

(c)

Stick does not rotate.

l1 l3 5 l1 / 2 l3 5 l1 / 3

F2 5 41 N

F1 5 10 N F3 5 30 N 5 3F1

(b)

Stick does not rotate.

l1

F1 5 10 N

F2 5 31 N

F1 5 10 N F3 5 20 N 5 2F1

With equal forces
pulling at different
distances, the
stick rotates.

(a) F2 5 21 N

F3 5 10 N

2 2 2

1
1 1

3
3 3But the stick can be 

stable with unequal 
forces pulling at
appropriate different
distances.

The stick is again 
stable with an even 
bigger force closer 
to the pivot point.

FIGURE 8.6  (a) The meter stick does not balance even though equal downward forces are exerted 
on each side. (b) and (c) A greater force on one side nearer the pivot point balances a smaller 
force on the other side farther from the pivot point.

If we explore more situations in which the stick is not rotating, we find that when 
we have two springs pulling perpendicular to the stick, the stick remains in static 
 equilibrium when the product of the magnitude of the force exerted by the scale on the 

Static equilibrium An object is said to be in static equilibrium when it remains 
at rest (does not undergo either translational or rotational motion) with respect to a 
particular observer in an inertial reference frame.
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222  CHAPTER 8 Extended Bodies at Rest

stick (F1 or F3 in our experiment) and the distance between where the force is exerted 
and the axis of rotation (l 1 or l3 in our experiment) is the same for both forces:

F1 l1 = F3 l3

In other words, the turning ability of the force on the left cancels the turning ability of 
the force on the right, and the object is in static equilibrium.

The role of magnitude on the  
turning ability of a force
In addition, we notice that independently of whether the stick rotated or not, the read-
ing of scale 2, F2, supporting the stick always equals the sum of the readings of scales 1 
and 3, F1 + F3, plus the magnitude of the force exerted by Earth on the stick FE on S. In 
other words, in all cases the sum of the forces exerted on the stick was zero (SFy = 0). 
This finding is consistent with what we know from Newton’s laws—an object does not 
accelerate translationally if the sum of the forces exerted on it is zero. If it is originally 
at rest and does not accelerate translationally, then it remains at rest.

However, as we have seen from the experiment with the cardboard on the eraser, 
this sum-of-forces-equals-zero rule does not guarantee the rotational stability of rigid 
bodies (see Figure 8.2). Even when the sum of the forces exerted on the cardboard was 
zero, it could still start turning.

Another simple experiment helps illustrate this idea. Take a book with a glossy 
cover, place it on a smooth table (to minimize friction), and push it, exerting the same 
magnitude, oppositely directed force on each of two corners (as shown in Figure 8.7a). 
The force diagram in Figure 8.7b shows that the net force exerted on the book is zero—
there is no translational acceleration. However, the book starts turning. The forces ex-
erted by Earth and the table on the book pass through the book’s center of mass; thus 
they do not cause turning. But the forces that you exert on the corners of the book do 
cause it to turn. Notice that these forces are of the same magnitude and are exerted at 
the same distance from the center of mass. You can imagine that there is an invisible 
axis of rotation passing through the center of mass perpendicular to the desk’s surface. 
You would think that the turning effect caused by each force around this imaginary axis 
is the same; thus the two turning effects should cancel, as they did for scales 1 and 3 in 
the experiment described earlier. However, this does not happen. The fact that the book 
turns tells us that not only are the magnitude and placement of the force on the object 
important to describe the turning ability of the force, but the direction in which this 
force causes turning (for example, clockwise or counterclockwise around an axis of 
rotation) is also important.

By convention, physicists call counterclockwise turning about an axis of rotation 
positive and clockwise turning negative. So far, this is what we know about the new 
quantity that characterizes the turning ability of a force:

(a) It is equal to the product of the magnitude of the force and the distance the force is 
exerted from the axis of rotation.

(b) It is positive when the force tends to turn the object counterclockwise and negative 
when the force tends to turn the object clockwise.

(c) When one force tends to rotate an object counterclockwise and the other force  
tends to rotate an object clockwise, their effects cancel if 1Fcounterclockwise l12 +1-Fclockwise l22 = 0. In this case the object does not rotate.

Let’s apply what we have devised so far to check whether this new quantity is use-
ful for explaining other situations. Here is another simple experiment that you can do at 
home. Place a full milk carton or something of similar mass into a grocery bag. The bag 
with the milk carton by itself is not too heavy and you can easily lift it with one hand. 
Now hang the grocery bag from the end of a broomstick (Figure 8.8a). Try to support 
it by holding only the handle end of the broomstick with your hands close together. It is 
very difficult. Why?

Side view

(a)

(b)

The equal and opposite forces that you exert on 
the book at its corners cause the book to rotate. 

S
FY on B1

S
FY on B1

S
FY on B2

S
FY on B2

S
NT on B

S
FE on B

y

x

FIGURE 8.7  The turning effect of a force must 
depend on more than F and l.
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8.2 Torque: a new physical quantity  223

The broomstick, the object of interest, can turn around an axis through the hand that 
is closest to you. The bag exerts a force on the broomstick far from this axis of rotation. 
This means that lBag, a quantity that we must find in order to determine the turning 
 ability of the force exerted by the bag on the broomstick, is very large  (Figure 8.8b). 
Your other hand, which is very close to the axis of rotation (distance lHand), must 
 balance the effect of the bag. But since lHand is so small, the force your hand exerts must 
be very large. The outcome of this experiment agrees with what we learned so far about 
the turning ability of a force.

Holding the broomstick perpendicular to your body is quite difficult. However, if 
you hold the broomstick at an angle above the horizontal (Figure 8.8c), you find that 
the bag becomes easier to support. Why? Perhaps this has to do with the direction the 
force is exerted relative to the broomstick (see Figure 8.8d).

y

x

(a)

(b)

It is very difficult to 
support the broomstick.

lHand

lBag

S
FHand on Stick

S
FBag on Stick

(c)

(d)

Tilting the broomstick 
up makes it easier 
to hold.

lHand

S
FHand on Stick

S
FBag on Stick

New
 l Bag

Axis of 
rotation

u

FIGURE 8.8 Holding a bag at the end of a stick 
is more difficult when the stick is horizontal 
than when the stick is tilted up.

Scale 1 has 
to pull harder 
as the angle u gets smaller.

u
90°

F2
F1

0.50 m 0.50 m

y

x

1
2

FIGURE 8.9  An experiment to determine the angle 
dependence of the turning ability caused by a force.

TABLE 8.2 Magnitude, location, and direction of force and its turning ability

Magnitude 
of 

u
F1

Distance to the 
axis of rotation

Angle U between  
u
F1 and the stick Turning ability produced by 

u
F2

10.0 N 0.50 m 908 -110.0 N210.50 m2 = -5.0 N # m

12.6 N 0.50 m 538 -110.0 N210.50 m2 = -5.0 N # m

14.2 N 0.50 m 458 -110.0 N210.50 m2 = -5.0 N # m

20.0 N 0.50 m 308 -110.0 N210.50 m2 = -5.0 N # m

The role of angle on the  
turning ability of a force
Our current mathematical model of the physical quantity that characterizes the turning 
ability of the force ({Fl) takes into account the direction in which an exerted force 
can potentially rotate an object (clockwise or counterclockwise) but does not take into 
account the actual direction of the force. However, our experiment with the  broomstick 
indicates that the angle at which we exert a force relative to the object affects the 
 turning ability of the force. We know from experience that pushing on a door on its 
outside edge directly toward the hinges does not cause it to rotate. The direction of the 
push must matter. How can we improve our model for the physical quantity to take the 
direction of the force into account?

To investigate this question we can change our experiment with the meter stick 
slightly by making scale 1 pull on the stick at an angle other than 908 (Figure 8.9). Scale 
2, on the far right end of the meter stick, 0.50 m from the suspension point, will exert a 
constant force of 10.0 N downward at a 908 angle. Scale 1 on the far left end of the stick 
will pull at different angles u so that the meter stick remains horizontal. The results are 
shown in Table 8.2. In all cases the stick is horizontal—therefore, the  turning ability of 
the force on the right is balanced by the turning ability of the force on the left.

M08_ETKI1823_02_SE_C08.indd   223 22/09/17   2:00 PM



224  CHAPTER 8 Extended Bodies at Rest

where ƒ1u2 is some function of the angle u.
Consider the last row of Table 8.2. The force exerted by scale 1 is 0.50 m from the 

axis of rotation 1l = 0.50 m2, and the scale exerts a 20@N force F1 on the stick at a 308 
angle relative to the stick. This force produces the counterclockwise +5.0 N # m effect 
needed to balance the -5.0 N # m clockwise effect of scale 2. What value would ƒ1u2 
have to be to get this rotational effect?

 +5.0 N # m = 120.0 N210.5 m2 ƒ13082
or ƒ13082 must be 0.50. Recall that sin 308 = 0.50. Maybe the function ƒ1u2 is the sine 
function, that is, t= Fl sin u. Is this consistent with the other rows in Table 8.2?

 +110.0 N210.5 m21sin 9082 = +5.0 N # m 11.002 = +5.0 N # m

 +112.6 N210.5 m21sin 5382 = +6.3 N # m 10.802 = +5.0 N # m

 +114.2 N210.5 m21sin 4582 = +7.1 N # m 10.712 = +5.0 N # m

This expression (t= Fl sin u) is the mathematical definition of the new physical quan-
tity that characterizes the ability of a force to turn (rotate) a rigid body. This physical 
quantity is called a torque. The symbol for torque is t, the Greek letter tau.

Using the data in the table, we see the effects of the magnitude and the angle of 
force 

u
F1 on its turning ability: the smaller the angle between the direction of the force 

and the stick, the larger the magnitude of the force that is necessary to produce the 
same turning ability. Thus we find that there are four factors that affect the turning 
ability of a force: (1) the direction (counterclockwise or clockwise) that the force can 
potentially rotate the object, (2) the magnitude of the force F, (3) the distance l of 
the point of  application of the force from the axis of rotation, and (4) the angle u that 
the force makes relative to a line from the axis of rotation to the point of application 
of the force. If we combine these four factors, the physical quantity characterizing the 
turning ability of a force takes a form such as

Torque T produced by a force The torque produced by a force exerted on a rigid 
body about a chosen axis of rotation is

 t= {Fl sin u (8.1)

where F is the magnitude of the force, l is the magnitude of the distance between 
the point where the force is exerted on the object and the axis of rotation, and u 
is the angle that the force makes relative to a line connecting the axis of rotation 
to the point where the force is exerted (see Figure 8.10).

(a)

(b)

Write an expression for the distance l from the
axis of rotation to the place the force is exerted.

Draw the
angle u.

The rope exerts a force on
the beam that produces a torque
about the axis of rotation.

The beam is
the system.

l

l s
in
u

Draw the force
arrow T.

S

S
T

u

Axis of 
rotation

FIGURE 8.10 A method to determine the 
torque (turning ability) produced by a force.

Figure 8.10 illustrates the method for calculating the turning ability (torque) due to 
a particular force. In this case, we are calculating the torque due to the force that the 
slanted rope exerts on the end of a beam that supports a load hanging from the beam. 
The torque is positive if the force has a counterclockwise turning ability about the axis 
of rotation, and negative if the force has a clockwise turning ability. The SI unit for 
torque is newton # meter, N # m (the British system unit is lb # ft). Note that the expres-
sion l sin u gives us the shortest distance from the axis of rotation to the line along 
which the force producing the torque is exerted.

TIP Notice that the units of torque 1N # m2 are the same as the units of energy1N # m = J2. Torque and energy are very different quantities. We will  
always refer to the unit of torque as newton ∙ meter 1N # m2 and the unit of energy  
as joule 1J2.

{Flƒ1u2
Magnitude Distance

AngleCounterclockwise (CCW) or 
clockwise (CW)
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8.2 Torque: a new physical quantity  225

To decide the sign of the torque that a particular force exerts on a rigid body about 
a particular axis, pretend that a pencil is the rigid body. Hold it with two fingers at a 
place that represents the axis of rotation (Figure 8.11) and exert a force on the pencil 
representing the force whose torque sign you wish to determine. Does that force cause 
the pencil to turn counterclockwise (a +  torque) or clockwise (a - torque) about the 
axis of rotation?

In this chapter we treat torque as a scalar quantity that can be positive or negative. 
The sign of the torque indicates the specific direction of rotation (compare this to work, 
the sign of which means adding or subtracting). The directional meaning of the sign 
hints that torque has a vector nature. You will learn more about the vector nature of 
torque in Chapter 9.

 Torque due to string 3: t3 = +T1l>22sin 1508 = +0.25 Tl

 Torque due to string 4: t4 = +1T>22l sin 908 = +0.50 Tl

 Torque due to string 5: t5 = +Tl sin 08 = 0

Solve and evaluate Notice that the angle used for the torque for 
the force exerted by rope 3 was 1508 and not 608—the force makes 
a 1508 angle relative to a line from the pivot point to the place where 
the string exerts the force on the beam. String 5 exerts a force parallel 
to the line from the pivot point to the place where it is exerted on the 
beam; as a result, torque 5 is zero. The rank order of the torques is 
t2 = t4 7 t1 7 t3 7 t5.

Try it yourself Determine the 
torque caused by the cable pulling 
horizontally on the inclined draw-
bridge shown below. The force that 
the cable exerts on the bridge is 
5000 N, the bridge length is 8.0 m,  
and the bridge makes an angle of 
508 relative to the vertical support 
for the cable system.

t=+15000 N218.0 m2sin 408=+26,000 N#m. Note that we did not 
use 508 in our calculation. Why?Answer

QUANTITATIVE EXERCISE 8.1 Rank the magnitudes of the torques

Suppose that five strings pull one at a time on a horizontal beam that 
can pivot about a pin through its left end, which is the axis of rotation. 
The magnitudes of the tension forces exerted by the strings on the beam 
are either T or T>2. Rank the magnitudes of the torques that the strings 
exert on the beam, listing the largest magnitude torque first and the 
smallest magnitude torque last. Indicate if any torques have equal mag-
nitudes. Try to answer the question before looking at the answer below.

60°
60°

Axis of 
rotation

l/2

l

T
T

T

T

T/21
2

3 4

5

Represent mathematically A mathematical expression for the 
torque produced by each force is shown below. To understand why each 
torque is positive, imagine in what direction each string would turn the 
beam about the axis of rotation if that were the only force exerted on it. 
You will see that each string tends to turn the beam counterclockwise 
(except string 5).

 Torque due to string 1: t1 = +T1l>22sin 608 = +0.43 Tl

 Torque due to string 2: t2 = +T1l>22sin 908 = +0.50 Tl

50°

Axis of rotation

Axis of rotation

S
F

Negative 
torque

CW

S
F

Positive 
torque

CCW

S
F

Negative 
torque

CCW

S
F

Positive 
torque

CW

Axis of rotation

FIGURE 8.11 A method to determine the sign of a torque.
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226  CHAPTER 8 Extended Bodies at Rest

REVIEW QUESTION 8.2 Give an example of a situation in which (a) a torque produced 
by a force is zero with respect to one choice of axis of rotation but not zero with respect 
to another; (b) a force is not exerted at the axis of rotation, but the torque produced by 
it is zero anyway; and (c) several forces produce nonzero torques on an object, but the 
object does not rotate.

Note that the force exerted by the painter’s feet on the ladder has the 
same magnitude as the force mg that Earth exerts on the painter, but it is 
not the same force, as it is exerted on a different object and is a contact 
force and not a gravitational force. That force tends to rotate the lad-
der clockwise about the axis of rotation (a negative torque). The force 
makes a 378 angle relative to a line from the axis of rotation to the place 
where the force is exerted.

(b) We now choose the axis of rotation parallel to the wall at the top of 
the ladder where it touches the wall. The torque produced by the force 
exerted by the painter’s feet on the ladder is

 t= +FP on Ll sin u = +1mpg2l sin u

 = +175 kg219.8 N>kg213.6 m2sin 1438

 = +1600 N # m

(a) The torque will be 0 at the bottom, because the normal force passes 
through the axis. (b) About the axis at the top of the ladder, the torque is 
t = -16.0 m2N Floor on Ladder sin 378. Note that the floor tends to push the 
ladder clockwise about an axis through the top of the ladder. The normal 
force makes a 378 angle relative to a line from the top axis to the place 
where the force is exerted.Answer

EXAMPLE 8.2 A painter on a ladder

A 75@kg painter stands on a 6.0@m-long 20@kg ladder tilted at 538 
 relative to the ground. He stands with his feet 2.4 m up the ladder. 
 Determine the torque produced by the force exerted by the painter on 
the ladder for two choices of axis of rotation: (a) an axis parallel to the 
base of the ladder where it touches the ground and (b) an axis parallel 
to the top ends of the ladder where it touches the wall of the house.

Sketch and translate A sketch of the situation with the known 
 information is shown below. The ladder is our system.

Axis (b) is 
parallel to the 
top of the ladder.

Axis (a) is
parallel to the
base of the ladder.

Simplify and diagram Four objects interact with the ladder: Earth, 
the painter’s feet, the wall, and the ground. Our interest in this problem 
is only in the torque that the painter’s feet exert on the ladder. Thus, we 
diagram for the ladder and the downward force 

u
FP on L that the painter’s 

feet exert on the ladder. The diagrams are for the two different axes of 
rotation.

S
FP on L causes a clockwise 
rotation about the axis of 
rotation at the bottom of the 
ladder (negative torque).

Represent mathematically We use Eq. (8.1) for the torque caused 
by the force that the painter’s feet exert on the ladder.

Solve and evaluate (a) For the first calculation, we choose the axis 
of rotation at the place where the feet of the ladder touch the ground. 
The torque produced by the force exerted by the painter’s feet on the 
ladder is

 t= -FP on Ll sin u = -1mpg2l sin u

 = -175 kg219.8 N>kg212.4 m2sin 378 = -1100 N # m

S
FP on L causes a counterclockwise 
rotation about the axis of 
rotation at the top of the ladder 
(a positive torque).

When we choose the axis of rotation at the top of the ladder, the down-
ward force exerted by the painter’s feet on the ladder tends to rotate the 
ladder counterclockwise about the axis at the top (a positive torque). 
This force makes a 1438 angle with respect to a line from the axis of 
 rotation to the place where the force is exerted.

Note that the torque depends on where we place the axis of rotation. 
You cannot do torque calculations without carefully defining the axis of 
rotation.

Try it yourself Write an expression for the torque produced by the 
upward normal force exerted by the floor on the ladder about the same 
two axes: (a) at the base of ladder and (b) at the top of the ladder.
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8.3 Conditions of equilibrium  227

8.3 Conditions of equilibrium
We can combine our previous knowledge of forces and our new knowledge of 
torque to determine under what conditions rigid bodies remain in static  equilibrium, 
that is, at rest. Recall that we defined static equilibrium as a state in which  
an object remains at rest with respect to a particular observer in an inertial refer-
ence frame.

It is possible for an object to be at rest briefly. For example, a ball thrown  
upward stops for an instant at the top of its f light, but it does not remain at rest. 
Thus, the word remains is important in the expression “remains at rest”—the  
object has to stay where it is. The words “with respect to an observer in an  
inertial reference frame” are also an important part of the definition of static  
equilibrium. Recall from the chapter on Newtonian mechanics (Chapter 3) that if an 
observer is not in an inertial reference frame, an object can accelerate with respect 
to the observer even if the sum of the forces exerted on it is zero. In this chapter 
we will only consider observers who are at rest with respect to Earth, since that is 
the most common point of view for observing real-life situations involving static 
equilibrium.

We again suspend the same 0.1-kg meter stick from spring scale 2, as shown in 
 Figure 8.12. However, the suspension point is no longer at the center of mass of the 
meter stick. You and your friend again pull on the stick at different positions with spring 
scales 1 and 3. When pulled as described in Observational Experiment Table 8.3, the 
stick does not rotate. Pulling at other positions while exerting the same forces, or pull-
ing at the same positions while exerting different forces, causes the stick to rotate. We 
need to find a pattern in the combinations of forces and torques exerted on the meter 
stick that keep the stick in static equilibrium.

For most situations that we analyze in this chapter, we assume that the objects  rotate 
in the x-y plane and that the axis of rotation goes through the origin of the coordinate 
system and is perpendicular to the x-y plane. Pulling down 

at 1 and 3

Scale 2 supports 
the stick, but not at 
its center of mass.

1 3

2

FIGURE 8.12 Multiple objects exert forces on 
a meter stick.

OBSERVATIONAL  
EXPERIMENT TABLE 8.3 Meter stick in static equilibrium

Observational experiment Analysis

Experiment 1. Three spring scales and Earth exert forces on a meter 
stick at locations shown below. Examine the forces and torques exerted 
on the stick. Choose the axis of rotation at the place where the string 
from scale 2 supports the stick. This choice determines the distances in 
the torque equations for each force.

SFy = 1-6.0 N2 + 9.0 N + 1-1.0 N2 + 1-2.0 N2 = 0

Counterclockwise torques:

t1 = 1F121l12 = 16.0 N210.20 m2 = 1.2 N # m

Clockwise torques:

 t2 = 1F221l22 = 19.0 N2102 = 0

 tE = -1FE on S21lCM2 = -11.0 N210.2 m2 = -0.2 N # m

 t3 = -1F321l32 = -12.0 N210.50 m2 = -1.0 N # m

 St= t1 + t2 + tE + t3

 = +1.2 N # m + 0 - 0.2 N # m - 1.0 N # m =  0

Center of mass

0.2 m
0.2 m 0.5 m

FE on S (1 N)

F1 (6 N)

F2 (9 N)

F3  (2 N)

(continued)

VIDEO
OET 8.3

M08_ETKI1823_02_SE_C08.indd   227 22/09/17   2:00 PM



228  CHAPTER 8 Extended Bodies at Rest

The first pattern in both experiments is familiar to us. It is simply Newton’s sec-
ond law applied to the vertical axis of the meter stick for the case of zero translational 
acceleration. Because the sum of the vertical forces exerted on the meter stick is zero, 
there is no vertical acceleration. We had no horizontal forces, so the meter stick could 
not accelerate horizontally. The second pattern shows that in both cases the net torque 
is zero and the meter stick does not start turning.

We can now summarize these conclusions as follows:

Condition 1. Translational (force) condition of static equilibrium An object 
modeled as a rigid body is in translational static equilibrium with respect to a particular 
observer if it is at rest with respect to that observer and the components of the sum of 
the forces exerted on it in the perpendicular x- and y-directions are zero:

 SFon O x = F1 on O x + F2 on O x + . . . + Fn on O x = 0 (8.2x)

 SFon O y = F1 on O y + F2 on O y + . . . + Fn on O y = 0 (8.2y)

The subscript n indicates the number of forces exerted by external objects on the 
rigid body.

Condition 2. Rotational (torque) condition of static equilibrium A rigid body is 
in turning or rotational static equilibrium if it is at rest with respect to the observer and 
the sum of the torques St (positive counterclockwise torques and negative clockwise 
torques) about any axis of rotation produced by the forces exerted on the object is zero:

 St= t1 + t2 + . . . + tn = 0 (8.3)

Observational experiment Analysis

Experiment 2. Three spring scales and Earth exert forces on a meter 
stick at locations shown below. Examine the forces and torques exerted 
on the stick. Choose the axis of rotation at the place where the string 
from scale 2 supports the stick.

SFy = -3.0 N + 1-1.0 N2 + 13 N + 1-9.0 N2 = 0

Counterclockwise torques:

t1 = 1F121l12 = 13.0 N210.50 m2 = 1.5 N # m

tE = 1FE on S21lCM2 = 11.0 N210.3 m2 = 0.3 N # m

Clockwise torques:

 t2 = 1F221l22 = 113 N2102 = 0

 t3 = -1F321l32 = -19.0 N210.20 m2 = -1.8 N # m

 St= t1 + tE + t2 + t3

 = +1.5 N # m + 0.3 N # m + 0 - 1.8 N # m = 0

Patterns

 ● In both cases the net force exerted on the meter stick in the vertical direction is zero: SFy = 0.
 ● In both cases the sum of the torques exerted on the meter stick equals zero: St= 0.

Center of mass

0.2 m0.3 m
0.5 m

FE on S (1 N)

F1 (3 N)

F2 (13 N)

F3 (9 N)

TIP Notice that you cannot determine 
the torque produced by a force 

without specifying the point at which the 
force is exerted on the object relative to the 
axis of rotation.

TIP Remember that all the gravitational 
forces exerted by Earth on the 

different parts of the rigid body can be 
combined into a single gravitational force 
being exerted on the center of mass of the 
rigid body.
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equal zero, as should the sum of the torques around the axis of rotation. 
The gravitational force exerted by Earth and the normal force exerted 
by the brick on the stick both have clockwise turning ability around the 
axis of rotation and produce negative torques. The force exerted by the 
right scale on the stick has counterclockwise turning ability and pro-
duces a positive torque. The force exerted by the left scale on the stick 
produces zero torque since it is exerted at the axis of rotation. The two 
conditions of equilibrium are then the following:

Translational (force) condition 1SFy = 02:1-FE on S2 + 1-FB on S2 + NRS on S + NLS on S = 0

Rotational (torque) condition 1St= 02:

-FE on S10.50 m2 - FB on S10.40 m2 + NRS on S11.00 m2 = 0

Since none of the forces have x-components, we didn’t apply the  
x-component form of the force condition of equilibrium.

Earth exerts a downward gravitational force on the brick of 
 magnitude:

FE on B = m  B 

g = 15.0 kg219.8 N>kg2 < 50 N

Thus, the stick must exert a balancing 50-N upward force on the brick. 
According to Newton’s third law 1u

FB on S = -
u
FS on B2, the brick must 

exert a downward 50-N force 
u
FB on S on the stick.

Solve and evaluate We have two equations with two unknowns 
(NRS on S and NLS on S). We first use the torque equilibrium condition to 
determine the magnitude of the force exerted by the right scale on the 
stick (we use 10 N>kg instead of 9.8 N>kg for simplicity):

- 310.10 kg2110 N>kg2410.50 m2
-  315.0 kg2110 N>kg2410.40 m2 + NRS on S11.00 m2 = 0

or NRS on S = 20.5 N

We can use this result along with the force equilibrium condition 
 equation to determine the magnitude of the force exerted by the left 
scale on the stick.

-10.10 kg2110 N>kg2 - 15.0 kg2110 N>kg2
+ 20.5 N + NLS on S = 0

or NLS on S = 30.5 N

These predictions make sense because the sum of these two upward 
forces equals the sum of the two downward forces that Earth and 
the brick exert on the meter stick. Also, the force on the left end is 
greater because the brick is positioned closer to it, which sounds very 
 reasonable. Performing this experiment, we find that the outcome 
matches the predictions.

Using a different axis of rotation Remember that we had the 
 freedom to choose whatever axis of rotation we wanted. Let’s try it 
again with the axis of rotation at 40 cm from the left side, the  location 
of the brick. See the force diagram on the next page. The force  condition 

EXAMPLE 8.3 Testing the conditions of static equilibrium

Place the ends of a standard meter stick on two scales, as shown below. 
The scales each read 0.50 N. From this, we infer that the mass of the 
meter stick is about 0.10 kg (the gravitational force that Earth exerts on 
the meter stick would be 10.10 kg219.8 N>kg2 = 1.0 N). Predict what 
each scale will read if you place a 5.0-kg brick 40 cm to the right of the 
left scale.

Scale 1: 0.5 N Scale 2: 0.5 N

Sketch and translate A labeled sketch of the situation is shown 
below. We choose the stick as the system of interest and use a 
 standard x-y coordinate system. We choose the axis of rotation at the 
place where the left scale touches the stick. By doing this, we are mak-
ing the torque produced by the normal force exerted by the left scale on 
the stick zero—that force is exerted exactly at the axis of rotation. With 
this choice, we remove one of the unknown quantities from the torque 
condition of equilibrium and will be able to use that condition to find 
the force  exerted by the right scale on the meter stick.

Axis of 
rotation

Simplify and diagram We model the meter stick as a rigid body with 
a uniform mass distribution (its center of mass is at the midpoint of the 
stick). We model the brick as a point-like object, and assume that the 
scales push up on the stick at the exact ends of the stick. We then draw 
a force diagram showing the forces exerted on the stick by Earth, the 
brick, and each of the scales. As noted, the left end of the stick has been 
chosen as the axis of rotation.

Axis of 
rotation

Analyzing the situation with the axis of 
rotation on the left side of the meter stick

Represent mathematically According to the conditions of static 
equilibrium, the sum of the forces exerted on the meter stick should (continued)
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230  CHAPTER 8 Extended Bodies at Rest

of  equilibrium will not change since it does not depend on the choice of 
the axis of rotation:

 1-FE on S2 + 1-FB on S2 + NRS on S + NLS on S = 0

Axis of 
rotation

The axis of rotation is now
at the 0.4-m position.

The torque condition will change:

 3-FE on S 10.10 m24 + 3-NLS on S 10.40 m24
  + NRS on S10.60 m2 = 0

Now we have two unknowns in each of the two equations and have to 
solve them simultaneously to determine the unknowns. This will be 
somewhat harder than when we chose the axis of rotation at the left end 
of the stick. Let’s solve the force condition equation for NRS on S and 
substitute the result into the torque condition equation:

 NRS on S = FE on S + FB on S - NLS on S

 1  -FE on S10.10 m2 - NLS on S10.40 m2
    + 1FE on S + FB on S - NLS on S210.60 m2 =  0

Combining the terms with NLS on S on one side, we get

NLS on S10.40 m + 0.60 m2 = FE on S10.50 m2 +  FB on S10.60 m2
= 11.0 N210.50 m2 + 150 N210.60 m2 = 30.5 N # m

or NLS on S = 30.5 N. Substituting back into the force condition equa-
tion, we find that

NRS on S = 1.0 N + 50.0 N - 30.5 N = 20.5 N

These are the same results we obtained from the original choice of the 
axis of rotation. The choice of the axis of rotation does not affect the re-
sults. This makes sense, in the same way that choosing a coordinate sys-
tem does not affect the outcome of an experiment. The concepts of axes 
of rotation and coordinate systems are mental constructs and should not 
affect the outcome of actual experiments.

Try it yourself A uniform meter stick with a 50-g object on it is 
positioned as shown below. The stick extends 30 cm over the edge of 
the table. If you push the stick so that it extends slightly farther over 
the edge, it tips over. Use this result to determine the mass of the 
meter stick.

50 g
mStick 5 ?

30 cm

75 g.Answer

8.4 Center of mass
Many extended bodies are not rigid—the human body is a good example. A high 
jumper crossing the bar is often bent into an inverted U shape (Figure 8.13). Why does 
this shape allow her to jump higher? At the moment shown in the photo, her legs, arms, 
and head are below the bar as the trunk of the body passes over the top. As each part 
of the body passes over the bar, the rest of the body is at a lower elevation so that her 
center of mass is always slightly below the bar. The high jumper does not have to jump 
as high because she is able to reorganize her body’s shape so that her center of mass 
passes under or at least not significantly over the bar.

Without realizing it, we change the position of our center of mass with respect to 
other parts of the body quite often. Try this experiment. Sit on a chair with your back 
straight and your feet on the floor in front of the chair (see Figure 8.14a). Without 
using your hands, try to stand up; you cannot. No matter how hard you try, you cannot 
raise yourself to standing from the chair if your back is vertical.

Why can’t you stand? The center of mass of an average person when sitting upright 
is near the front of the abdomen. Figure 8.14 explains how the location of the center of 

FIGURE 8.13 Where is the jumper’s center  
of mass?

REVIEW QUESTION 8.3 You read the following sentence in a book: “In problem solv-
ing, put the axis at the place on the rigid body where the force you know the least about 
is exerted.” Explain why this hint is helpful.
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mass with respect to your feet affects whether the torques exerted on you by the two 
forces are able to rotate you in the desired direction.

Calculating center of mass
How do we know that the center of mass of a sitting person is near the abdomen? In 
Section 8.1 we determined the location of an object’s center of mass by investigating 
the directions along which one needs to push the object so it does not turn while being 
pushed on a flat smooth surface. When pushing in this way at different locations on 
the object, we found that lines drawn along the directions of these pushing forces all 
intersected at one point: the center of mass. This is a difficult and rather impractical 
way to find the center of mass of something like a human. Another method that we 
investigated consisted of balancing the object on a pointed support. This is also not 
very practical with respect to humans. Is there a way to predict where an object’s center 
of mass is without pushing or balancing it? Our goal here is to develop a theoretical 
method that will allow us to determine the location of the center of mass of a complex 
object, such as the uniform meter stick with two apples shown in Figure 8.15. In the 
next example, we start with an object that consists of three other objects: two people of 
different masses and a uniform seesaw whose supporting fulcrum (point of support) can 
be moved. To determine the location of the center of mass of a system involving two 
people and a uniform beam, we find a place for the fulcrum to support the seesaw and 
the two people so that the system remains in static equilibrium.

(a) (b) (c)

You sit on a chair with back straight
and feet on the floor. Your center of
mass is over the chair.

Bending forward so that your center
of mass is in front of the floor’s
normal force causes a clockwise
torque so that you can stand.

S
FE on P

S
FE on P

S
NF on P

S
NF on P

With your back straight as you lift 
yourself from the chair, the normal force 
exerted by the floor on your feet causes 
a counterclockwise torque about the 
center of mass. You fall backward.

FIGURE 8.14 Getting out of a chair without using your hands.

Heavier
apple

Lighter
apple

Adjust the position of the fulcrum supporting the
seesaw until the system is in static equilibrium.

FIGURE 8.15 Where is the center of mass 
of the meter stick with two apples?

sum of all torques exerted on the system is zero. This position is the 
center of mass of the three-object system.

EXAMPLE 8.4 Supporting a seesaw with two people

Find an expression for the position of the center of mass of a system 
that consists of a uniform seesaw of mass m1 and two people of masses 
m2 and m3 sitting at the ends of the seesaw beam (m2 7 m3).

Sketch and translate The figure at right shows a labeled sketch 
of the situation. The two people are represented as blocks. We choose 
the seesaw and two blocks as the system and construct a mathematical 
equation that lets us calculate the center of mass of that system. We 
place the x-axis along the seesaw with its origin at some arbitrary po-
sition on the left side of the seesaw. The center of mass of the seesaw 
beam is at x1 and the two blocks rest at x2 and x3. At what position x 
should we place the fulcrum under the seesaw so that the system does 
not rotate—so that it remains in static equilibrium? At this position, the (continued)
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In Example 8.4 we arrived at an expression for the location of the center of mass 
of a three-object system where all objects were located along one straight line. We can 
apply the same method to a system whose masses are distributed in a two-dimensional 
x-y plane. For such a two-dimensional system, we get the following:

Simplify and diagram We model the seesaw as a rigid body and 
model each of the people blocks as point-like objects. Assume that the 
fulcrum does not exert a friction force on the seesaw. As you can see in 
the force diagram, we know the locations of all forces except the normal 
force exerted at the fulcrum. We will calculate the unknown position xcm 
of the fulcrum so the seesaw with two people on it balances—so that it 
satisfies the second condition of equilibrium.

We know the locations 
of all forces relative to 
the fulcrum position.

Represent mathematically Apply the torque condition of equi-
librium with the axis of rotation going through the unknown fulcrum 
position xcm. Then determine the torques around this axis produced by 
the forces exerted on the system. The gravitational force exerted by 
Earth on the center of mass of the seesaw has magnitude m1g, is exerted 
a distance x1 - xcm from the axis of rotation, and has clockwise turning 
ability. The gravitational force exerted by Earth on block 2 has magni-
tude m2g, is exerted a distance xcm - x2 from the axis of rotation, and 
has counterclockwise turning ability. The gravitational force exerted 
by Earth on block 3 has magnitude m3g, is exerted a distance x3 - xcm 
from the axis of rotation, and has clockwise turning ability. The torque 
condition of equilibrium for the system becomes

m2g1xcm - x22 - m1g1x1 - xcm2 - m3g1x3 - xcm2 = 0

Solve and evaluate Divide all terms of the equation by the gravi-
tational constant g and collect all terms involving x on one side of the 
equation to get

m2xcm + m1xcm + m3xcm = m2x2 + m1x1 + m3x3

or

xcm1m2 + m1 + m32 = m2x2 + m1x1 + m3x3

Divide both sides of the equation by 1m2 + m1 + m32 to obtain an 
expression for the location of the center of mass of the three-object 
 system:

xcm =
m1x1 + m2x2 + m3x3

m1 + m2 + m3

Let’s evaluate this result. The units of x are meters. Next check 
some limiting cases to see if the result makes sense. Imagine that 
there are no people sitting on the seesaw 1m2 = m3 = 02. In this case, 

xcm =
m1x1

m1
= x1. The center of mass of the seesaw-only system is at 

the center of mass of the seesaw x1, as it should be since we assumed its 
mass was uniformly distributed. Finally, if we increase the mass of one 
of the people on the seesaw, the location of the center of mass moves 
closer to that person.

0.8 m from the left end of the beam.Answer

Try it yourself Where is the center of mass of a 3.0-kg, 2.0-m-long 
uniform beam with a 0.5-kg object on the right end and a 1.5-kg 
 object on the left?

Center of mass (quantitative definition) If we consider an object as consist-
ing of parts 1, 2, 3, . . . n whose centers of masses are located at the coordinates 1x1, y12; 1x2, y22; 1x3, y32; . . . 1xn, yn2, then the center of mass of this whole object 
is at the following coordinates:

 xcm =
m1x1 + m2x2 + m3x3 + . . . + mnxn

m1 + m2 + m3 + . . . + mn

 ycm =
m1y1 + m2y2 + m3y3 + . . . + mnyn

m1 + m2 + m3 + . . . + mn
 

(8.4)

You can think of the position of the center of mass of an object of mass M as a 
weighted average of the positions of parts 1, 2, 3, etc. (m1, m2, m3 . . . mn etc.), or

xcm =
m1

M
 x1 +

m2

M
 x2 +

m3

M
 x3 + . . . +

mn

M
 xn

ycm =
m1

M
 y1 +

m2

M
 y2 +

m3

M
 y3 + . . . +

mn

M
 yn
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Using Eq. (8.4) for an object with a continuous mass distribution is difficult and 
involves calculus. For example, in the first section we found the position of the center 
of mass of a cardboard heart empirically. Now we can calculate its position mathemat-
ically (Figure 8.16). We subdivide the cardboard into many tiny sections and insert 
the mass and position of each section into Eq. (8.4), and then add all the terms in the 
numerator and denominator together to determine the center of mass of the cardboard. 
For example, section 15 would contribute a term m15x15 in the numerator of the xcm 
equation and a term m15 in the denominator. Usually, you will be given the location of 
the center of mass of such continuous mass distributions.

Knowledge of the center of mass helps you answer many questions: Why if you 
walk with a heavy backpack do you fall more easily? Why does a baseball bat have an 
elongated, uneven shape? Why do ships carry heavy loads in the bottom rather than 
near the top of the ship?

Mass distribution and center of mass
The term “center of mass” is deceiving. It might make you think that the center of 
mass of an object is located at a place where there is an equal amount of mass on each 
side. However, this is not necessarily the case. Consider again a uniform seesaw (see 
 Figure 8.17a). Suppose that the mass of the seesaw is 20 kg, the length is 3.0 m, the 
mass of the person on the left end (m1) is 60 kg, and the mass of the person on the right 
end (m3) is 20 kg. Where is the center of mass of this two-person seesaw system, and 
how much mass is on the left side and the right side of the center of mass?

To find the center of mass, we need a coordinate system with an origin. The origin 
can be anywhere; we will put it at the location of the more massive person on the left 
side. The center of mass is then

 xcm =
m1x1 + m2x2 + m3x3

m1 + m2 + m3

 =
160 kg * 0 m2 + 120 kg * 1.5 m2 + 120 kg * 3.0 m2

60 kg + 20 kg + 20 kg
= 0.9 m

The seesaw will balance about a fulcrum located 0.9 m from m1 and 2.1 m from 
m2 (see Figure 8.17b). We see that the masses are not equal. The mass on the left side 
of the center of mass is much greater than on the right side—66 kg versus 34 kg. The 
larger mass on the left is a shorter distance from the center of mass than the smaller 
masses on the right, which on average are farther from the center of mass. However, 
the product of mass and distance on each side balances out, causing torques of equal 
magnitude. We could rename the center of mass as “the center of torque” to reflect the 
essence of the concept, but since this is not the term used in physics, we will continue 
to use the term center of mass.

REVIEW QUESTION 8.4 Jade says that the mass of an object is evenly distributed 
around the location of its center of mass. Do you agree with her? If you disagree, how 
would you convince her of your opinion?

8.5  Skills for analyzing situations using 
equilibrium conditions

We often use the equations of equilibrium to determine one or two unknown forces 
if all other forces exerted on an object of interest are known. Consider the muscles of 
your arm when you lift a heavy ball or push down on a desktop (Figure 8.18). When 

(x15 , y15 )

ycm 5
m1y1 1 ... 1 m15 y15  1 ... 1 m22y22

m1 1 ... 1 m15  1 ... 1 m22

xcm 5
m1x1 1 ... 1 m15 x15  1 ... 1 m22x22

m1 1 ... 1 m15  1 ... 1 m22

y

x

m1

m5 m6 m7 m8 m9 m10

m11 m12 m13 m14 m16

m17 m20

m21 m22

m18 m19

m2 m3 m4

FIGURE 8.16  Finding the center of mass of a 
continuous mass distribution.

(a) Where is the center of mass of 
the two-person seesaw system?

x

y

m1 5 60 kg

x1 5 0 x3 5 3.0 m

m3 5 20 kg

m2 5 20 kg

(b) Note that there is more mass on the left side 
of the center of mass than on the right side.

60 kg

0.9 m 2.1 m

20 kg

20 kg

cm of seesaw

cm of whole system

The whole system 
will balance here.

FIGURE 8.17  The masses on each side of a 
system’s center of mass are unequal.

Triceps 
contracts to 
push down.

Biceps 
contracts 
to lift.

FIGURE 8.18 Muscles in the upper arm lift and 
push down on the forearm.
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234  CHAPTER 8 Extended Bodies at Rest

you hold a ball in your hand, your biceps muscle tenses and pulls up on your forearm 
in front of the elbow joint. When you push down with your hand on a desk, your triceps 
muscle tenses and pulls up on a protrusion of the forearm behind the elbow joint. The 
equations of equilibrium allow you to estimate these muscle tension forces—see the 
next example, which describes a general method for analyzing static equilibrium prob-
lems. The right side of the table applies the general strategies to the specific problem 
provided.

Applying static equilibrium conditions

Using the biceps muscle to lift

Imagine that you hold a 6.0-kg lead ball in your hand with your arm bent. The ball is 
0.35 m from the elbow joint. The biceps muscle attaches to the forearm 0.050 m from the 
elbow joint and exerts a force on the forearm that allows it to support the ball. The center 
of mass of the 12-N forearm is 0.16 m from the elbow joint. Estimate the magnitude of (a) 
the force that the biceps muscle exerts on the forearm and (b) the force that the upper arm 
exerts on the forearm at the elbow.

We choose the axis of rotation to be where the upper arm bone (the humerus) presses on 
the  forearm at the elbow joint. This will eliminate from the torque equilibrium equation 
the unknown force that the upper arm exerts on the forearm.

We choose the system of interest to be the forearm and hand.

Model the system as a rigid  
body and draw a force   
diagram for the forearm  
and hand.

 St= 01FUA on FA2102 + 1FBiceps on FA21LBiceps sin 9082 + 1-FE on FA1L cm sin 90822
 + 1-FBall on FA1LBall sin 90822 = 0

SFy = 01-FUA on FA2 + FBiceps on FA + 1-FE on FA2 + 1-FBall on FA2 = 0

Sketch and translate
 ● Construct a labeled sketch of the sit-
uation; mark knowns and unknowns. 
Choose an axis of rotation.

 ● Choose a system for analysis.

PROBLEM-SOLVING 
STRATEGY 8.1 

Simplify and diagram
 ● Decide whether you will model the 
system as a rigid body or as a point-
like object.

 ● Construct a force diagram for the 
system. Include the chosen co-
ordinate system and the axis of 
rotation (the origin of the coordinate 
 system).

Represent mathematically
 ● Use the force diagram to apply 
the conditions of equilibrium.

EXAMPLE 8.5 
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8.5 Skills for analyzing situations using equilibrium conditions  235

Standing on your toes
Most injuries to the Achilles tendon occur during abrupt movement, such as jumps 
and lunges. However, we will analyze what happens to your Achilles tendon in a less 
stressed situation.

Substitute sin 908 = 1.0 and rearrange the torque equation to find FBiceps on FA.

 FBiceps on FA = 31FE on FA21L cm2 + 1FBall on FA21LBall24 >LBiceps

 = 3112 N210.16 m2 + 159 N210.35 m24 >10.050 m2 = 450 N

Use the force equation to find FUA on FA:

 FUA on FA = FBiceps on FA - FE on FA - FBall on FA

 = 450 N - 12 N - 59 N = 380 N

The 450-N force exerted by the biceps on the forearm is much greater than the 59-N force 
exerted by the ball on the forearm. This difference occurs because the force exerted by the 
biceps is applied much closer to the axis of rotation than the force exerted by the lead ball.

If the center of mass of the forearm were farther from the elbow, the biceps would 
have to exert an even larger force.

A longer LBiceps in the torque equilibrium equation would mean that the bi-
ceps muscle would need to exert a smaller force on the forearm when lifting 
something.

Solve and evaluate
 ● Solve the equations for the quantities 
of interest.

 ● Evaluate the results. Check to see 
if their magnitudes are reasonable 
and if they have the correct signs 
and units. Also see if they have the 
 expected values in limiting cases.

EXAMPLE 8.6 

horizontal. The gravitational 
force exerted on the foot by 
Earth is quite small com-
pared with the other forces 
that are being exerted on it, 
so we will ignore it. A force 
diagram for the foot is shown 
at right. When you are stand-
ing on the ball and toes of 
both feet, the floor exerts an upward force on each foot equal to half 
the magnitude of the gravitational force that Earth exerts on your entire 

body: FFloor on Foot =
mBodyg

2
. The Achilles tendon pulls up on the heel of 

the foot, exerting a force TTendon on Foot. The tibia bone in the lower leg 
pushes down on the ankle joint exerting a force FBone on Foot.

Represent mathematically Let’s apply the conditions of equilib-
rium to this system. Note that the distance from the toes to the joint 
LFloor is somewhat longer than the distance from the joint to the Achilles 
tendon attachment point LTendon. The torque condition of equilibrium 
becomes

+ 3TTendon on Foot1LTendon24 + FBone on Foot 102 -
mBodyg

2
 1LFloor2 = 0

1 TTendon on Foot =
mBodyg

2
 a LFloor

LTendon
 b

Standing with slightly elevated heel

Suppose you stand on your toes with your heel slightly off the ground. 
In order to do this, the larger of the two lower leg bones (the tibia) ex-
erts a force on the ankle joint where it contacts the foot. The Achilles 
tendon simultaneously exerts a force on the heel, pulling up on it in 
order for the foot to be in static equilibrium. What is the magnitude of 
the force that the tibia exerts on the ankle joint? What is the magnitude 
of the force that the Achilles tendon exerts on the heel?

Sketch and translate First 
we sketch the foot with the 
Achilles tendon and the tibia. 
We choose the foot as the sys-
tem of interest. Three forces 
are exerted on the foot: the 
tibia is pushing down on the 
foot at the ankle joint; the 
floor is pushing up on the ball 
of the foot and the toes; and 
the Achilles tendon is pulling 
up on the heel. We choose the 
axis of rotation as the place 
where the tibia presses against the foot.

Simplify and diagram Model the foot as a very light rigid body. 
The problem says that the foot is barely off the ground, so we will 
 neglect the angle between the foot and the ground and consider the foot 

Axis of
rotation

(continued)

Try it yourself How would the force exerted by the biceps on the forearm change if 
the biceps were attached to the forearm farther from the elbow?

Answer
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236  CHAPTER 8 Extended Bodies at Rest

Lifting from a bent position
Back problems often originate with improper lifting techniques—a person bends over 
at the waist and reaches to the ground to pick up a box or a barbell. In Figure 8.19, the 
barbell pulls down on the woman’s arms far from the axis of rotation of her upper body 
about her hip area. This downward pull causes a large clockwise torque on her upper 
body. To prevent her from tipping over, her back muscles must exert a huge force on the 
backbone, thus producing an opposing counterclockwise torque. This force exerted by 
the back muscles compresses the disks that separate vertebrae and can lead to damage 
of the disks, especially in the lower back. We can use the equilibrium equations to esti-
mate the forces and torques involved in such lifting.

An increase of at least 500 N (110 lb).Answer

Now, apply the y-scalar component of the force condition of  equilibrium:

SFy = TTendon on Foot + 1-FBone on Foot2 +
mBodyg

2
= 0

1 FBone on Foot = TTendon on Foot +
mBodyg

2

Solve and evaluate The distance from the place where the bone 
contacts the foot to where the floor contacts the foot is about 5 times 
longer than the distance from the bone to where the tendon contacts the 
foot. Consequently, the force that the Achilles tendon exerts on the foot 
is about

TTendon on Foot =
mBodyg

2
 a LFloor

LTendon
b =

mBodyg

2
 152 =

5
2

 mBodyg

or two and a half times the gravitational force that Earth exerts on the 
body. Using g = 10 N>kg for a 70-kg person, this force will be about 
1750 N. That’s a very large force for something as simple as standing 

with your heel slightly elevated! The force exerted on the joint by the 
leg bone would be

 FBone on Foot = TTendon on Foot + amBodyg

2
b

 = 1750 N + 350 N = 2100 N

This force is three times the weight of the person! The forces are much 
greater when moving. Thus, every time you lift your foot to walk, run, 
or jump, the tendon tension and joint compression are several times 
greater than the gravitational force that Earth exerts on your entire body.

Try it yourself Estimate the increase in the magnitude of the force 
exerted by the Achilles tendon on the foot of the person in this exam-
ple if his mass were 90 kg instead of 70 kg.

FIGURE 8.19  A bad way to lift.

EXAMPLE 8.7 

want to focus on the force it exerts on the backbone. The hinge where 
the upper body meets the lower body is the axis of rotation.

Simplify and diagram We next draw a force diagram for the upper 
body. The gravitational force that Earth exerts on the upper body FE on B 
at its center of mass is Mg = 133 kg219.8 N>kg2 = 323 N173 lb2.  
The barbell exerts a force on the upper body equal to mg = 118 kg2 *19.8 N>kg2 = 176 N140 lb2. Because of our choice of axis of rotation, 
the force exerted by the disk on the upper body FD on B will not produce 
a torque. The gravitational force exerted by Earth on the upper body and  

Lifting incorrectly from a bent position

Estimate the magnitude of the force that the back muscle in the wom-
an’s back in Figure 8.19 exerts on her backbone and the force that her 
backbone exerts on the disks in her lower back when she lifts an 18-kg 
barbell. The woman’s mass is 55 kg. Model the woman’s upper body as 
a rigid body.

 ● The back muscle attaches two-thirds of the way from the bottom of 
her l = 0.60 m backbone and makes a 128 angle relative to the hori-
zontal backbone.

 ● The mass of her upper body is M =  33 kg centered at the middle of 
the backbone and has uniform mass distribution. The axis of rotation 
is at the left end of the backbone and represents one of the disks in 
the lower back.

Sketch and translate 
The figure at right is our mechanical model of a person lifting a barbell. 
We want to estimate the magnitudes of the force TM on B that the back 
muscle exerts on the backbone and the force FD on B that the disk in the 
lower back exerts on the backbone. The force that the disk exerts on the 
bone is equal in magnitude to the force exerted by the backbone on the 
disk. The upper body (including the backbone) is the system of interest, 
but we consider the back muscle to be external to the system since we 
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8.6 Stability of equilibrium  237

To lift correctly, keep your back more vertical with the barbell close to your body, 
as in Figure 8.20. Bend your knees and lift with your legs. With this orientation, the 
back muscle exerts one-third of the force that is exerted when lifting incorrectly. The 
disks in the lower back undergo one-half the compression they would experience from 
lifting incorrectly.

REVIEW QUESTION 8.5 You are trying to hold a heavy dumbbell in one hand so that 
your arm is perpendicular to your body. Why is it easier to hold it with a bent arm than 
with a straight arm?

8.6 Stability of equilibrium
Often, objects can remain in equilibrium for a long time interval—you can sit comfort-
ably for a long time on a living room couch without tipping. But sometimes equilibrium 
is achieved for only a short time interval—think of sitting on a chair and tilting it back-
ward too far onto its rear legs.

The magnitude of the force exerted on the vertebral disk is 
equivalent to two linemen 12*275 lb=550 lb2 standing on 
the 1-inch-diameter disk.

Answer

the force that the barbell exerts on the upper body have clockwise 
 turning ability, while the tension force exerted by the back muscles on 
the upper body has counterclockwise turning ability.

Represent mathematically The torque condition of equilibrium for 
the upper body is

 St= +1FD on B2102 + 3-1Mg21l>22 sin 9084
    + 1TM on B212l>32 sin 128 + 3-1FBarb on B21l2 sin 9084

 = 0

The x- and y-component forms of the force condition of equilibrium for 
the backbone are

 SFx = FD on B x + 1-TM on B cos 1282 = 0 

 SFy = FD on B y + TM on Bsin 128 + 1-mg2 + 1-Mg2 = 0

where FD on B x and FD on B y are the scalar components of the force that 
the disk exerts on the upper body.

Solve and evaluate We can solve the torque equation immediately to 
determine the magnitude of the force that the back muscle exerts on the 
backbone:

TM on B =
1Mg21l>221sin 9082 + 1mg21l2 sin 908

 12l>321sin 1282

Note that the backbone length l in the numerator and denominator of all 
of the terms in this equation cancels out. Thus,

 TM on B =
1Mg211>221sin 9082 + 1mg2112 sin 90812>321sin 1282

 =
1323 N210.50211.02 + 1176 N211211.0210.667210.2082

 = 2432 N 1547 lb2
We then find FD on B x from the x-component force equation:

 FD on B x = +TM on B cos 128

 = +12432 N2 cos 128 = +2380 N

and FD on B y from the y-component force equation:

 FD on B y = +Mg + mg - TM on B sin 128

 = +323 N + 176 N - 12432 N21sin 1282 = -7 N

Thus, the magnitude of FD on B is

FD on B = 212380 N22 +  1-7 N22 = 2380 N 1540 lb2
The direction of 

u
FD on B can be determined using trigonometry:

tan u =
FD on B y

FD on B x
=

-7 N
2380 N

= -0.0029

or u = 0.178 below the horizontal. We’ve found that the back muscles 
exert a force more than four times the gravitational force that Earth 
 exerts on the person and that the disks of the lower back are compressed 
by a comparable force.

Try it yourself Suppose that a college football lineman stands on top 
of a 1-inch-diameter circular disk. How many 275-lb linemen, one on 
top of the other, would exert the same compression force on the disk 
as that exerted on the woman’s disk when she lifts the 40-lb barbell?

Muscle

Barbell

Backbone

FIGURE 8.20 A better way to lift things.
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238  CHAPTER 8 Extended Bodies at Rest

Equilibrium and tipping objects
You have probably observed that it is easier to balance and avoid falling while standing 
in a moving bus or subway train if you spread your feet apart in the direction of motion. 
By doing this you are increasing the area of support, the area of contact between an 
object and the surface it is supported by. To understand area of support, consider two 
people riding the subway (see Figure 8.21).

In Figure 8.21a, the man’s feet are close together, whereas the woman’s feet are 
farther apart. When the train accelerates toward the right, as shown in Figure 8.21b, the 
two people tilt to the left. The man falls over because the gravitational force exerted by 
Earth on his body is outside the area of support provided by his feet. The woman recov-
ers because the gravitational force still points between her feet. These patterns lead us 
to a tentative rule about tipping:

For an object in static equilibrium, if a vertical line passing through the object’s 
center of mass is within the object’s area of support, the object does not tip. If 
the line is not within the area of support, the object tips.

If this is a general rule, then we can use it to predict the angle at which an object 
with a known center of mass will tip over (see Testing Experiment Table 8.4).

(a)  The train is at rest.

Falls Recovers

(b)  The train is accelerating.
Sa

FIGURE 8.21 Balancing on the subway.

TESTING  
EXPERIMENT TABLE 8.4 Testing our tentative rule about tipping

Testing experiment Prediction Outcome

Experiment 1. Place a full box of 
crackers on a flat but rough surface. 
Its center of mass is at its geometric 
center. The box’s height is 20 cm and 
the bottom surface is 13 cm * 6.5 cm.

Tilt the box along the 13-cm side a 
 little and release it.

Tilt the box at larger and larger angles. 
Predict the angle at which the box will 
tip.

1.  The center of mass of a full box  
of crackers is at its geometric 
center.

2.  When you release the slightly 
tilted box, it returns to the vertical 
position because of the torque due 
to the gravitational force exerted 
by Earth.

3.  When you tilt the box more and 
more, eventually the line defined 
by the gravitational force passes 
over the support point for the box 
at its bottom edge. Tilting the 
box more than this critical angle 
causes it to tip over.

4.  For a box with a side of 13 cm and a height of 20 cm, this 
angle will be uC = tan-1113 cm>20 cm2 = 338.

The box returns to the vertical 
 position.

The outcome matches the prediction.

uC

uC

VIDEO
TET 8.4
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We now know that an object will tip if it is tilted so that the gravitational force 
passes beyond its area of support. If the area of support is large or if the center of mass 
is closer to the ground, more tipping is possible without the object falling over—it is 
more stable. This idea is regularly used in building construction. Tall towers (like the 
Eiffel Tower) have a wide bottom and a narrower top. The Leaning Tower of Pisa does 
not tip because a vertical line through its center of mass passes within the area of sup-
port (Figure 8.22).

The equilibrium of a system is stable against tipping if the vertical line 
through its center of mass passes through the system’s area of support.

Equilibrium and rotating objects
Objects that can rotate around a fixed axis can also have either stable or unstable equi-
libria. Consider a ruler with several holes in it. If you hang the ruler on a nail using a 
hole near one end, it hangs as shown in Figure 8.23a. If you pull the bottom of the 
ruler to the side and release it, the ruler swings back and forth with decreasing maxi-
mum displacement from the equilibrium position, but eventually hangs straight down. 
This equilibrium position is called stable because the ruler always tries to return to that 
position if free to rotate. However, if you turn the ruler 1808 so that the axis of rotation 
is at the bottom of the ruler (see Figure 8.23b), it can stay in this position only if very 
carefully balanced. If disturbed, the ruler swings down and never returns. In this case 
the ruler is in unstable equilibrium.

Testing experiment Prediction Outcome

Experiment 2. Repeat the experiment, 
but this time replace the crackers with 
a wooden block of the same mass. The 
block takes up about half the space that 
the crackers of the same mass did.
Predict the angle at which the box  
will tip.

The center of mass should now 
be about one-fourth of the way 
from the bottom (if we neglect 
the mass of the box). The crit-
ical tilt angle should now be 
uC = tan-1113 cm>10 cm2 = 528.

The outcome matches the prediction 
within experimental uncertainty 
(about 18).

Conclusion

The outcomes are consistent with the predictions. We’ve increased our confidence in the tipping rule: for an object to be in static equilibrium,  
the line defined by the gravitational force exerted by Earth must pass within the object’s area of support. If it is not within the area of support,  
the object tips over.

uC
uC

FE on Tower

FIGURE 8.22 Because FE on Tower passes 
through the base of the tower, the Leaning 
Tower of Pisa does not tip over.

Nail

Nail

Nail
Any displacement has
no effect on the ruler.

(a) Stable equilibrium (b) Unstable equilibrium (c) Neutral equilibrium

If the bottom of 
this ruler is 
displaced from 
equilibrium and 
released, it returns 
to equilibrium.

If the top of this 
ruler is displaced a 
little, it tips over.

FIGURE 8.23 Stable, unstable, and neutral equilibrium.
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240  CHAPTER 8 Extended Bodies at Rest

The stability or lack of stability can be understood by considering the torque around 
the axis of rotation due to the force exerted by Earth on the object. In both positions a 
and b, the sum of the forces exerted on the ruler by Earth and by the nail is zero. The 
difference is that in the first case the center of mass is below the axis of rotation; in the 
second case it is above the axis of rotation. Torques produced by gravitational forces 
tend to lower the center of mass of objects. In other words, if it is possible for the object 
to rotate so that its center of mass becomes lower, it will tend to do so.

If we hang the ruler using the center hole (Figure 8.23c), it remains in whatever po-
sition we leave it. Both the force exerted by the nail and the gravitational force exerted 
by Earth produce zero torques. This is called neutral equilibrium.

The equilibrium of a system is stable against rotation if the  
center of mass of the rotating object is below the axis of rotation.

CONCEPTUAL EXERCISE 8.8 

Unstable
š�1HW�FORFNZLVH�WRUTXH
š�FP�DERYH�EDODQFH�SRLQW

Stable
š�1HW�WRUTXH�UHWXUQV
� WR�HTXLOLEULXP
š�FP�EHORZ�EDODQFH�SRLQW

Balancing a pencil

Is it possible to balance with stable equilibrium the pointed tip of a 
 pencil on your finger?

Sketch and translate The figure below shows a sketch of the 
 situation.

Simplify and diagram The forces exerted 
on the pencil are shown at right. The tip of 
the pencil is the axis of rotation. When the 
pencil is tilted by only a small angle, the line 
defined by the gravitational force exerted by 
Earth on the pencil is not within the area of 
support of the pencil (which is just the pencil 
tip). This equilibrium is unstable. Having the center of mass above  
the axis of rotation leads to this instability. To make it stable,  
we need to lower the center of mass to below the axis of rotation.  
We can do it by attaching a pocketknife to the pencil, as shown below. 
Notice that the massive part of the knife is below the tip of the pencil 
and so is the center of mass of the system. Then when the pencil tilts, 
the torque due to the gravitational force brings it back to the equilib-
rium position.

TIP Always try to understand new situations in terms of ideas we have already 
discussed. The trick of balancing the pencil by adding a pocketknife can be 

understood with the rules we expressed above: (1) the equilibrium is most stable when 
the center of mass of the system is in the lowest possible position or, equivalently, 
(2) when the gravitational potential energy of the system has the smallest value.

The rules we have learned about equilibrium and stability have many applications, 
 including circus tricks. Think about where the center of mass is located for the  bicycle 
and the two people shown in Figure 8.24. Another application  involves vending 
 machines.Center of mass is 

below balance point. 
Bicycle will not tip.

FIGURE 8.24 Balancing a bicycle on a high 
wire may not be as dangerous as it looks.

Axis of
rotation

M08_ETKI1823_02_SE_C08.indd   240 22/09/17   2:00 PM



8.6 Stability of equilibrium  241

EXAMPLE 8.9 

machine until the front legs are just barely off the floor. The force 
exerted by the person has a clockwise turning ability, while the gravita-
tional force has counterclockwise turning ability. The force exerted by 
the floor on the back legs does not produce a torque, since it is exerted 
at the axis of rotation.

-FP on MLP sin uP + FE on MLE sin uE + NF on M102 + ƒs F on M102 = 0

(b) We can apply the analysis in Table 8.4 for this situation:

uC = tan-1a depth

height
b

Solve and evaluate (a) Using the torque equation, we can find the 
normal force that the person needs to exert on the vending machine to 
just barely lift its front off the floor:

-FP on MLPa1.5 m
LP

b + 13700 N2LEa0.42 m
LE

b
+ NF on M102 + ƒs F on M102 = 0

or FP on M = 1000 N or 220 lb.

(b) We find that the critical tipping angle is

utipping = tan-1a depth

height
b = tan-1a0.84 m

1.83 m
b < 248

Both answers seem reasonable.

0 N. A vertical line through the center of mass passes through the axis 
of rotation, so the net torque about that axis is zero. However, this 
 equilibrium is unstable and represents a dangerous situation.

Answer

Tipping a vending machine

According to the U.S. Consumer Product Safety Commission, tipped 
vending machines caused 37 fatalities between 1978 and 1995 
(2.2 deaths per year). Why is tipping vending machines so dangerous? 
A typical vending machine is 1.83 m high, 0.84 m deep, and 0.94 m 
wide and has a mass of 374 kg. It is supported by a leg on each of the 
four corners of its base. (a) Determine the horizontal pushing force you 
need to exert on its front surface 1.5 m above the floor in order to just 
lift its front feet off the surface (so that it will be supported completely 
by its back two feet). (b) At what critical angle would it fall forward?

Sketch and translate  
(a) See the sketch of the 
situation at right. The axis 
of rotation is through the 
back support legs of the 
vending machine.

Simplify and diagram  
Model the vending 
 machine as a rigid body. 
Three objects exert forces on the 
vending machine (shown in the side 
view force diagram at right; the tilt is 
not shown since the vending machine 
is barely off the floor): the person 
exerting force 

u
FP on M on the machine, 

Earth exerting gravitational force 
u
FE on M, and the floor exerting a force 
on the machine that we represent  
with two vector  components: normal 
force 

u
NF on M and static friction force 

u
ƒs F on M on the machine.

Represent mathematically  
(a) We use the torque  condition  
of equilibrium to analyze the  
force needed to tilt the vending  

Try it yourself Determine how hard you need to push against the 
vending machine to keep it tilted at a 258 angle above the horizontal.

The chance of being injured by a tipped vending machine is small since a large 
force must be exerted on it to tilt it up, and it must be tilted at a fairly large angle 
 before it reaches an unstable equilibrium. A more common danger is falling bookcases 
in regions subject to earthquakes. The base of a typical 2.5-m-tall bookcase is less than 
0.3 m deep. The shelves above the base that are filled with books are the same size as 
the base. If tilted by just

uC = tan-1a depth
height

b < tan-1a 0.15 m
1.25 m

b < 78

the bookcase can tip over. In earthquake-prone regions, people often attach a bracket to 
the top back of the bookcase and then anchor it to the wall.

REVIEW QUESTION 8.6 Why is a ball hanging by a thread in stable equilibrium, while 
a pencil balanced on its tip is in unstable equilibrium?

Find the angle u at which the vending machine 
will tip.
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Summary
Center of mass The gravitational force that Earth 
exerts on an object can be considered to be exerted en-
tirely on the object’s center of mass.

An external force pointing directly toward or away 
from the center of mass of a free object will not cause 
the object to turn or rotate. (Sections 8.1 and 8.4)

S
FE on B

  xcm =
m1x1 + m2x2 + m3x3 + g+  mnxn

m1 + m2 + m3 + g+  mn

  ycm =
m1y1 + m2y2 + m3y3 + g+  mnyn

m1 + m2 + m3 + g+  mn
 

Eq. (8.4)

A torque t around an axis of rotation is a physical 
quantity characterizing the turning ability of a force 
with respect to a particular axis of rotation. The torque 
is positive if the force tends to turn the object coun-
terclockwise and negative if it tends to turn the object 
clockwise about the axis of rotation. (Section 8.2) Axis of 

rotation

x
u

l

S
FC on B

y

 t= {Fl sin u Eq. (8.1)

Static equilibrium is a state in which a rigid body 
is at rest and remains at rest both translationally and 
 rotationally. (Section 8.3)

u

y

x
u

S
FC on B

S
FE on B

f

S
FP on B

Translational (force) condition:

  SFon O x = F1 on O x + g+  Fn on O x = 0 Eq. (8.2x)

  SFon O y = F1 on O y + g+  Fn on O y = 0 Eq. (8.2y)

Rotational (torque) condition:

 St= t1 + t2 + g+  tn = 0 Eq. (8.3)

The equilibrium of a system is stable against tipping 
as long as the line through its center of mass passes 
through the system’s area of support.

The equilibrium of a system is stable against rotating 
as long as the center of mass of the rotating object is 
below the axis of rotation. (Section 8.6)

 

Support

cm
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7. Constant force 
u
F2 is exerted on the lower arm of the object in  

Figure Q8.7. What is the magnitude of the force 
u
F1 such that the  

object is in equilibrium?

Multiple Choice Questions
1. A falling leaf usually flutters while falling. However, we have learned 

that the force that Earth exerts on an object is exerted at its center of mass 
and thus should not cause rotational motion. How can you resolve this 
 contradiction?
(a) A leaf is not a rigid body and the rule does not apply.
(b) There are other forces exerted on the leaf as it falls besides the force 

exerted by Earth.
(c) Some forces were not taken into account when we defined the center 

of mass.
2. You have an irregularly shaped flat object. To find its center of mass you 

can do which of the following?
(a) Find a point where you can put a fulcrum to balance it.
(b) Push the object in different directions and find the point of intersection 

of the lines of action of the forces that do not rotate the object.
(c) Separate the object into several regularly shaped objects whose center 

of masses you know, and use the mathematical definition of the center 
of mass to find it.

(d) All of the above
(e) a and b only

3. A hammock is tied with ropes between two trees. A person lies in it. Under 
what circumstances are its ropes more likely to break?
(a) If stretched tightly between the trees
(b) If stretched loosely between the trees
(c) The ropes always have equal likelihood to break.

4. Where is the center of mass of a donut?
(a) In the center of the hole
(b) Uniformly distributed throughout the donut
(c) Cannot be found

5. A physics textbook lies on top of a chemistry book, which rests on a table. 
Which force diagram below best describes the forces exerted by other 
 objects on the chemistry book (Figure Q8.5)?

Questions

6. What does it mean if the torque of a force is positive?
(a) The object exerting the force is on the right side of the axis of  

rotation.
(b) The object exerting the force is on the left side of the axis of  

rotation.
(c) The force points up.
(d) The force points down.
(e) None of these choices is necessarily correct.

(a) 26.68
(b) 18.48
(c) 14.08
(d) 9.48
(e) None of the above

P
C

(a)

S
FT on C

S
FE on P

(b)

S
FT on C

S
FP on C

(c)
S
FT on C

S
FE on C

S
FT on C

S
FE on C

(d)

S
FE on P

S
FP on C

FIGURE Q8.5

R

2R

S
F1 5 ?

S
F2

Axis of
rotation

FIGURE Q8.7

10 cm

10 cm

30 cm

30 cm

FIGURE Q8.10

(a) F1 = F2

(b) F1 = 22 F2

(c) F1 =
p

2
 F2

(d) F1 = 2F2

(e) F1 = 0

(f ) The object cannot be in equilibrium no matter how large the force F1 is.
8. Why do you tilt your body forward when hiking with a heavy backpack?

(a) The backpack pushes you down.
(b) Bending forward makes the backpack press less on your back.
(c) Bending forward moves the center of mass of you and the backpack 

above your feet.
9. What does it mean if the torque of a 10-N force is zero?

(a) The force is exerted at the axis of rotation.
(b) A line parallel to and passing through the place where the force is 

 exerted passes through the axis of rotation.
(c) Both a and b are correct.

10. What is the maximum angle to the horizontal you can tilt the candleholder 
in Figure Q8.10 before it tips over? The center of mass of the candleholder 
is marked on the figure.
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244  CHAPTER 8 Extended Bodies at Rest

11. Water starts dripping at a 
constant rate into an empty 
plastic can through a small 
opening at the top, as shown 
in Figure Q8.11. Which graph 
shows the correct qualitative 
dependence of the vertical 
 position of the center of mass 
of the water-can system (ycm) 
on the height of the water level 
in the can (ywater)?

Conceptual Questions
12. Is it possible for an object not to be in equilibrium when the net force 

 exerted on it by other objects is zero? Give an example.
13. Explain the meaning of torque so that a friend not taking physics can 

 understand.
14. Something is wrong with the orientation 

of the ropes shown in  Figure Q8.14. Use 
the first condition of equilibrium for the 
hanging pulley to help explain this error, 
and then redraw the sketch as you would 
expect to see it.

15. What are the two conditions of equilib-
rium? What happens if one or the other 
condition is not satisfied?

16. Give three examples of situations in which 
an object is starting to rotate even though 
the sum of the forces exerted on the object 
is zero.

17. The force that the body muscles exert on 
bones that are used to lift various objects 
is usually five to ten times greater than the 
gravitational force that Earth exerts on the object being lifted. Explain and 
give an example.

18. A ladder leans against a wall. Construct a force diagram showing the direc-
tion of all forces exerted on the ladder. Identify two interacting objects for 
each force.

19. Using a crowbar, a person can remove a nail by exerting little force, 
whereas pulling directly on the nail requires a large force to remove it (you 
probably can’t). Why? Draw a sketch to support your answer.

20. Is it more difficult to do a sit-up with your hands stretched in front of you 
or with them behind your head? Explain.

21. Sit on a chair with your feet straight down at the front of the chair. Keep-
ing your back perpendicular to the floor, try to stand up without leaning 
 forward. Explain why it is impossible to do it.

22. Can you balance the tip of a wooden ruler vertically on a fingertip? Why 
is it so difficult? Design a method to balance the ruler on your fingertip. 
 Describe any extra material(s) you will use.

23. Try to balance a sharp wooden pencil on your fingertip, point down. (Hint:  
A small pocketknife might help by lowering the center of mass of the  system.)

24. Design a device that you can use to successfully walk on a tightrope.
25. Explain why it is easier to keep your balance while jumping on two feet 

than while hopping on one.
26. A carpenter’s trick to keep nails from bending when they are pounded into a 

hard material is to grip the center of the nail with pliers. Why does this help?

ywater

ycm

H

H/2

0

(a)

H
ywater

ycm

H

H/2

0

(b)

H

ywater

ycm

H

H/2

0

(c)

H
ywater

ycm

H

H/2

0

(d)

H

ywater

ycm

H

H/2

0

(e)

H

m

FIGURE Q8.14

H

ywater

FIGURE Q8.11

2. Three 200-N forces are exerted on the beam shown in Figure P8.2.  
(a) Determine the torques about the axis of rotation on the left produced by 
forces 

u
F1 on B and 

u
F2 on B. (b) At what distance from the axis of rotation must 

u
F3 on B be exerted to cause a torque that balances those produced by 

u
F1 on B 

and 
u
F2 on B?

Below,  indicates a problem with a biological or medical focus. Problems 
 labeled  ask you to estimate the answer to a quantitative problem rather than 
derive a specific answer. Asterisks indicate the level of difficulty of the problem. 
Problems with no * are considered to be the least difficult. A single * marks moder-
ately difficult problems. Two ** indicate more difficult problems.

8.2 Torque: a new physical quantity
1. Determine the torques about the 

axis of rotation P produced by 
each of the four forces shown in 
Figure P8.1. All forces have mag-
nitudes of 120 N and are exerted a 
distance of 2.0 m from P on some 
unshown object O.

Problems

S
F1 on O

S
F4 on O

S
F3 on O

S
F2 on O

P

40°

FIGURE P8.1
1.5 m

?

50° 30°

90°1 m

S
F3 on B

S
F2 on B

S
F1 on B

Axis of rotation

FIGURE P8.2
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3. * A 2.0-m-long, 15-kg ladder is resting against a house wall, making a 308 
angle with the vertical wall. The coefficient of static friction between the 
ladder feet and the ground is 0.40, and between the top of the ladder and 
the wall the coefficient is 0. Make a list of the physical quantities you can 
determine or estimate using this information and calculate them.

4. Figure P8.4 shows two different situations where three forces of equal 
magnitude are exerted on a square board hanging on a wall, supported by 
a nail. For each case, determine the sign of the total torque that the three 
forces exert on the board.

12. * Lifting an engine You work in a machine shop and need to move a huge 
640-kg engine up and to the left in order to slide a cart under it. You use 
the system shown in Figure P8.12. How hard and in what direction do you 
need to pull on rope 2 if the angle between rope 1 and the horizontal is 
u1 = 608?

(a)

S
F

S
F

S
F

Axis of
rotation

(b)

S
F

S
F

S
F

Axis of
rotation

FIGURE P8.4

8.3 Conditions of equilibrium
5. Three friends tie three ropes in a knot and pull on the ropes in different 

directions. Adrienne (rope 1) exerts a 20-N force in the positive x-direction, 
and Jim (rope 2) exerts a 40-N force at an angle 538 above the negative 
 x-axis. Luis (rope 3) exerts a force that balances the first two so that the 
knot does not move. (a) Construct a force diagram for the knot. (b) Use 
equilibrium conditions to write equations that can be used to determine 
FL on K x and FL on K y. (c) Use equilibrium conditions to write equations that 
can be used to determine the magnitude and direction of 

u
FL on K.

6. Adrienne from Problem 8.5 now exerts a 100-N force 
u
FA on K that points 

308 below the positive x-axis, and Jim exerts a 150-N force in the negative 
y-direction. How hard and in what direction does Luis now have to pull the 
knot so that it remains in equilibrium?

7. * Kate joins Jim, Luis, and Adrienne in the rope-pulling exercise described 
in the previous two problems. This time, they tie four ropes to a ring. The 
three friends each pull on one rope, exerting the following forces: 

u
T1 on R 

(50 N in the positive y-direction), 
u
T2 on R (20 N, 258 above the negative 

 x-axis), and 
u
T3 on R (70 N, 708 below the negative x-axis). Kate pulls rope 4, 

exerting a force 
u
T4 on R so that the ring remains in equilibrium. (a) Construct 

a force diagram for the ring. (b) Use the first condition of equilibrium to 
write two equations that can be used to determine T4 on R x and T4 on R y.  
(c) Solve these equations and determine the magnitude and direction  
of 

u
T4 on R.

8. You hang a light in front of your 
house using an elaborate system to 
keep the 1.2-kg light in static equi-
librium (see Figure P8.8). What are 
the magnitudes of the forces that the 
ropes must exert on the knot connect-
ing the three ropes if u2 = 378 and 
u3 = 08? Rope 3 can be tied to the 
hook on the wall.

9. * Find the values of the forces the 
ropes exert on the knot if you replace 
the light in Problem 8.8 with a heav-
ier 12-kg object and the ropes make 
angles of u2 = 638 and u3 = 458 (see Figure P8.8).

10. Redraw Figure P8.8 with u2 = 508 and u3 = 08. Rope 2 is found to exert a 
100-N force on the knot. Determine m and the magnitudes of the forces that 
the other two ropes exert on the knot.

11. Determine the masses m1 and m2 of the two objects shown in Figure P8.11 
if the force exerted by the horizontal cable on the knot is 64 N.

m

Rope 3 Rope 2

Rope 1

u3 u2

FIGURE P8.8

Rope 1
Rope 2

640 kg

TY on 2 u2

u1

FIGURE P8.12

m1

m2

30°

FIGURE P8.11

13. * More lifting You exert a 630@N force on rope 2 in the previous prob-
lem (Figure P8.12). Write the two equations (x and y) for the first 
condition of equilibrium using the pulley as the object of interest for 
a force diagram. Calculate u1 and u2. You may need to use the identity 1sin u22 + 1cos u22 = 1.

14. Even more lifting A pulley system shown 
in Figure P8.14 will allow you to lift heavy 
objects in the machine shop by exerting a 
relatively small force. (a) Construct a force 
diagram for each pulley. (b) Use the equa-
tions of equilibrium and the force diagrams 
to determine T1, T2, T3, and T4.

15. * Tightrope walking A tightrope walker 
wonders if her rope is safe. Her mass is 
60 kg and the length of the rope is about 
20 m. The rope will break if its tension 
exceeds 6700 N. What is the smallest angle 
at which the rope can bend up from the 
horizontal on either side of her to avoid 
breaking?

16. * Lifting patients An apparatus to lift hos-
pital patients sitting at the sides of their beds 
is shown in Figure P8.16. At what angle above the horizontal does the rope 
going under the pulley bend while supporting the 78@kg person hanging 
from the pulley?

T1

T2

T3

T4

1000
kg

FIGURE P8.14

220
kg

78 kg

uu

FIGURE P8.16
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18. * You stand at the end of a uniform 
diving board a distance d from 
support 2 (similar to that shown 
in  Figure P8.18). Your mass is m
, and the distance between the 
two supports is a. What can you 
determine from this information? 
Make a list of physical quantities 
and show how you will determine 
them.

19. * You place a 3.0-m-long board 
symmetrically across a 0.5-m-wide 
chair to seat three physics students 
at a party at your house. If 70-kg Dan sits on the left end of the board 
and 50-kg Tahreen sits on the right end of the board, where should 54-kg 
Komila sit to keep the board stable? What assumptions did you make?

20. Car jack You’ve got a flat tire. To lift your car, you make a homemade 
lever (see Figure P8.20). A very light 1.6@m-long handle part is pushed 
down on the right side of the fulcrum and a 0.10-m-long part on the left 
side supports the back of the car. How hard must you push down on the 
handle so that the lever exerts an 8000@N force to lift the back of the car?

17. A father (80 kg), mother (56 kg), daughter (16 kg), and son (24 kg) try to 
occupy seats on the seesaw shown in Figure P8.17 so that the seesaw is in 
equilibrium. Can they succeed? Explain.

23.  Compare the two different designs of nutcracker shown in  
Figure P8.23 and decide which one is more efficient in cracking a nut. 
Estimate the forces exerted by each cracker on the nut when a 30-N force is 
exerted on each handle. Indicate any assumptions that you made. You will 
need a ruler to solve this problem.FIGURE P8.17

FIGURE P8.20

13

12

1

B

A

2

FIGURE P8.21

(a) (b)

FIGURE P8.23

?

20 cm

4 cm16 cm

Axis of
rotation

FIGURE P8.29

R
a

r

FIGURE P8.32

21. * Mobile You are building a toy 
mobile, copying the design shown 
in Figure P8.21. Object A has a 
1.0-kg mass. What should be the 
mass of object B? The numbers in 
Figure P8.21 indicate the relative 
lengths of the rods on each side of 
their supporting cords.

22. Another mobile You are building 
a toy mobile similar to that shown 
in Figure P8.21 but with different 
dimensions and replacing the ob-
jects with cups. The bottom rod is 
20 cm long, the middle rod is 15 cm 
long, and the top rod is 8 cm long. 
You put one penny in the bottom 
left cup, three pennies in the bottom right cup, eleven pennies in the middle 
right cup, and five pennies in the top left cup. (a) Draw a force diagram for 
each rod. (b) Determine the cord attachment points and lengths on each 
side for each rod. (c) What assumptions did you make in order to solve the 
problem?

24. Ray decides to paint the outside of his uncle’s house. He uses a 4.0-m-long 
board supported by vertical cables at each end to paint the second floor. 
The board has a mass of 21 kg. Ray (70 kg) stands 1.0 m from the left 
cable. What are the forces that each cable exerts on the board?

25. * A 2.0@m-long uniform beam of mass 8.0 kg supports a 12.0@kg bag of 
vegetables at one end and a 6.0@kg bag of fruit at the other end. At what 
distance from the vegetables should the beam rest on your shoulder to 
 balance? What assumptions did you make?

26. * A uniform beam of length l and mass m supports a bag of mass m1 at the 
left end, another bag of mass m2 at the right end, and a third bag m3 at a 
distance l3 from the left end (l3 6 0.5l). At what distance from the left end 
should you support the beam so that it balances?

8.4 Center of mass
27. A person whose height is 1.88 m is lying on a light board placed on two 

scales so that scale 1 is under the person’s head and scale 2 is under the 
person’s feet. Scale 1 reads 48.3 kg and scale 2 reads 39.3 kg. Where is the 
center of mass of the person?

28. * A seesaw has a mass of 30 kg, a length of 3.0 m, and a fulcrum beneath 
its midpoint. It is balanced when a 60-kg person sits on one end and a 
75-kg person sits on the other end. Locate the center of mass of the seesaw. 
Where is the center of mass of a uniform seesaw that is 3.0 m long and has 
a mass of 30 kg if two people of masses 60 kg and 75 kg sit on its ends?

29. * You decide to cut an L-shaped 
object out of cardboard so that the 
object is in static equilibrium if hung 
as shown in Figure P8.29. Find the 
missing dimension of the object. Cut 
the object out of some cardboard and 
check if your result is correct.

30. * You have a 1-m-wide, 2-m-long 
14-kg wooden board. If you place 
a 5.0-kg pot of soup in one corner 
of the board, where is the center of 
mass of the board-pot system?

31. * An 80-kg clown sits on a 20-kg 
bike on a tightrope attached between 
two trees. The center of mass of the 
clown is 1.6 m above the rope, and the center of mass of the bike is 0.7 m 
above the rope. A load of what mass should be fixed onto the bike and hang 
1.5 m below the rope so that the center of mass 
of the clown-bike-load system is 0.5 m below 
the rope? What is the force that the rope exerts 
on each tree if the angle between the rope and 
the horizontal is 108?

32. ** Figure P8.32 shows a disk of radius R 
with a circular hole of radius r cut a distance a 
from the center of the disk. Where is the disk’s 
center of mass? (Hint: You can think of cutting 
the hole as adding material of negative mass to 
the original object.)

1 2

FIGURE P8.18
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8.5 Skills for analyzing situations using equilibrium 
 conditions

33. Leg support A person’s broken leg is kept in place by the apparatus shown 
in Figure P8.33. If the rope pulling on the leg exerts a 120@N force on it, 
how massive should be the block hanging from the rope that passes over the 
pulley? First, derive a general expression for m in terms of relevant parame-
ters and then determine the mass of the block.

40. * What mechanical work must you do to lift a log that is 3.0 m long and has 
a mass of 100 kg from the horizontal to a vertical position? (Hint: Use the 
work-energy principle.) You are lifting one end of the log while the other 
end is on the ground all the time.

8.6  Stability of equilibrium
41. * A 70-g meter stick has a 30-g piece of modeling clay attached to the end. 

Where should you drill a hole in the meter stick so that you can hang the 
stick horizontally in equilibrium on a nail in the wall? Draw a picture to 
help explain your decision.

42. * You are trying to tilt a very tall refrigerator (2.0 m high, 1.0 m deep, 1.4 m  
wide, and 100 kg) so that your friend can put a blanket underneath to slide 
it out of the kitchen. Determine the force that you need to exert on the front 
of the refrigerator at the start of its tipping. You push horizontally 1.4 m 
above the floor.

43. Can you put a 0.2-kg candle on a 0.6-kg candleholder, as shown in  
Figure P8.43, without tipping the candleholder over? Explain. The centers 
of mass of the candle and candleholder are marked on the figure.

120 N

20°
m 5 ?

FIGURE P8.33

F 5 ?L

L L /2

L /2

Center
of mass

FIGURE P8.35

1.5 m

10 kg

30°

FIGURE P8.37

34. * Diving board The diving board shown in Figure P8.18 has a mass 
of 28 kg and its center of mass is at the board’s geometrical center. 
 Determine the forces that support posts 1 and 2 (separated by 1.4 m) exert 
on the board when a 60@kg person stands on the end of the board 2.8 m 
from support post 2.

35. ** A uniform cubical box of mass m 
and side L sits on the floor with its 
bottom left edge pressing against a 
ridge. Derive the expression for the 
least force you need to exert horizon-
tally at the top right edge of the box 
that will cause its bottom right edge 
to be slightly off the floor, as shown 
in Figure P8.35. (Note: With the right 
edge slightly off the floor, the ground 
and ridge exert their forces on the bottom left edge of the box.)

36. * If the force F shown in Figure P8.35 is 840 N and the bottom right edge 
of the box is slightly off the ground, what is the mass of the cubical box of 
side 1.2 m?

37. * You decide to hang a new 10@kg flowerpot using the arrangement shown 
in Figure P8.37. Can you use a slanted rope attached from the wall to the 
end of the beam if that rope breaks when the tension exceeds 170 N? The 
mass of the beam is not known, but it looks light.

38. * You decide to hang another plant from a 1.5-m-long 2.0-kg horizontal 
beam that is attached by a hinge to the wall on the left. A cable attached 
to the right end goes 378 above the beam to a connecting point above the 
hinge on the wall. You hang a 100-N pot from the beam 1.4 m away from 
the wall. What is the force that the cable exerts on the beam?

39. * Now you decide to change the way you hang the pot described in 
 Problems 8.37 and 8.38. You orient the beam at a 378 angle above the 
horizontal and orient the cable horizontally from the wall to the end of the 
beam. The beam still holds the  2.0@kg pot and plant hanging 0.1 m from 
its end. Now determine the force that the cable exerts on the beam and the 
force that the wall hinge exerts on the beam (its x- and y-components and 
the magnitude and direction of that force).

20 cm

10 cm10 cm

35 cm

FIGURE P8.43

44. * You have an Atwood machine (see Figure 4.9) with two blocks each of 
mass m attached to the ends of a string of length l. The string passes over a 
frictionless pulley down to the blocks hanging on each side. While pulling 
down on one block, you release it. Both blocks continue to move at con-
stant speed, one up and the other down. Is the system still in equilibrium? 
Find the vertical component of the center of mass of the two-block system. 
Indicate all of your assumptions and the coordinate system used.

45. *  You stand sideways in a moving train. Estimate how far apart you 
should keep your feet so that when the train accelerates at 2.0 m>s2 you can 
still stand without holding anything. List all your assumptions.

General Problems
46.  Your hand holds a liter of milk (mass about 1 kg) while your arm is 

bent at the elbow in a 908 angle. Estimate the torque caused by the milk on 
your arm about the elbow joint. Indicate all numbers used in your calcula-
tions. This is an estimate, and your answer may differ by 10 to 50% from 
the answers of others.

47.  Body torque You hold a 4.0-kg computer. Estimate the torques 
exerted on your forearm about the elbow joint caused by the downward 
force exerted by the computer on the forearm and the upward 340-N force 
exerted by the biceps muscle on the forearm. Ignore the mass of the arm. 
Indicate any assumptions you make.

48. * Using biceps to hold a child A man is holding a 16-kg child using both 
hands with his elbows bent in a 908 angle. The biceps muscle provides the 
positive torque he needs to support the child. Determine the force that each 
of his biceps muscles must exert on the forearm in order to hold the child 
safely in this position. Ignore the triceps muscle and the mass of the arm.

49.  Using triceps to push a table A man pushes on a table exerting a 
20@N downward force with his hand. Determine the force that his triceps 
muscle must exert on his forearm in order to balance the upward force that 
the table exerts on his hand. Ignore the biceps muscle and the mass of the 
arm. If you did not ignore the mass of the arm, would the force you deter-
mined be smaller or larger? Explain.
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50. *  Using biceps to hold a dumbbell Find the force that the biceps 
muscle shown in Example 8.5 exerts on the forearm when you lift a 16@kg 
dumbbell with your hand. Also determine the force that the bone in the 
upper arm (the humerus) exerts on the bone in the forearm at the elbow 
joint. The mass of the forearm is about 5.0 kg and its center of mass is 
16 cm from the elbow joint. Ignore the triceps muscle.

51. *  Hamstring You are exercising your hamstring muscle (the large 
muscle in the back of the thigh). You use an elastic cord attached to a hook 
on the wall while keeping your leg in a bent position (Figure P8.51). 
 Determine the magnitude of the tension force 

u
TH on L exerted by the ham-

string muscles on the leg and the magnitude of compression force 
u
FF on B at 

the knee joint that the femur exerts on the calf bone. The cord exerts a 20@lb 
force 

u
FC on F on the foot.

56. * Eiichi has purchased an adjustable hand grip to use for strengthening 
hands, fingers, and wrists. The hand grip consists of two handles that can 
rotate around a common axis and a spring that connects the handles (see 
Figure P8.56). The force needed to squeeze the hand grip can be adjusted 
from small (Figure P8.56a) to large (Figure P8.56b) by changing the 
 position at which the lower end of the spring is hooked to the left handle. 
Eiichi, Yuko, and Lars have different explanations for why it is harder to 
squeeze the hand grip in case (b) compared to (a).

Eiichi:  It is harder to squeeze the hand grip because the distance between 
the axis of rotation and the point where the force is exerted on the 
left handle by the spring is larger in case (b) than in case (a).

Yuko:  It is harder to squeeze the hand grip because the extension of the 
spring in case (b) is larger than in case (a).

Lars:  It is harder to squeeze the hand grip because the angle u in case  
(b) is smaller than in case (a).

First, comment on the students’ explanations and decide whose ideas are 
correct and whose aren’t. Then construct a complete correct explanation. 
Indicate any assumptions that you made.

52. *  Lift with bent legs You injure your back at work lifting a 420-N 
radiator. To understand how it happened, you model your back as a weight-
less beam (Figure P8.52), analogous to the backbone of a person in a bent 
position when lifting an object. (a) Determine the tension force that the 
horizontal cable exerts on the beam (which is analogous to the force the 
back muscle exerts on the backbone) and the force that the wall exerts on 
the beam at the hinge (which is analogous to the force that a disk in the 
lower back exerts on the backbone). (b) Why do doctors recommend lifting 
objects with the legs bent?
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53. *  Dumbbell lift I A woman lifts a 3.6@kg dumbbell in each hand with 
her arm in a horizontal position at the side of her body and holds it there for 
3 s (see Figure P8.53). What force does the deltoid muscle in her shoul-
der exert on the humerus bone while holding the dumbbell? The deltoid 
attaches 13 cm from the shoulder joint and makes a 138 angle with the hu-
merus. The dumbbell in her hand is 0.55 m from the shoulder joint, and the 
center of mass of her 4.0@kg arm is 0.24 m from the joint.

54. **  Dumbbell lift II Repeat the previous problem with a 7.2-kg 
 dumbbell. Determine both the force that the deltoid exerts on the humerus 
and the force that the lifter’s shoulder joint exerts on her humerus.

55. *  Facemask penalty The head of a football running back (see 
 Figure P8.55) can be considered as a lever with the vertebra at the bottom 
of the skull as a fulcrum (the axis of rotation). The center of mass is about 
0.025 m in front of the axis of rotation. The torque caused by the force that 
Earth exerts on the 8.0@kg head/helmet is balanced by the torque caused by 
the downward forces exerted by a complex muscle system in the neck. That 
muscle system includes the trapezius and levator scapulae muscles, among 
others (effectively 0.057 m from the axis of rotation). (a) Determine the 
magnitude of the force exerted by the neck muscle system pulling down to 
balance the torque caused by the force exerted by Earth on the head.  
(b) If an opposing player exerts a downward 180-N (40-lb) force on the 
facemask, what muscle force would these neck muscles now need to exert 
to keep the head in equilibrium?
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57. *  While browsing books on neurophysiology, you come across a 
book published in 1967 by Soviet neurophysiologist Nikolai Aleksan-
drovich Bernstein, The Co-ordination and Regulation of Movements, in 
which he describes a technique to determine the mass of a part of the 
human body if the position of the center of mass of that body part is known. 
His technique for determining the mass of the forearm is described as fol-
lows: The person lies on a support board, as shown in Figure P8.57. Two 
readings of the scale are taken: first with the forearm held in position 1 (m1) 
and second with it in position 2 (m2). Knowing the distance from the elbow 
to the center of mass of the forearm (dc) and the distance between the knife 
edges supporting the board (D), the mass of the forearm and hand can be 
calculated from the following expression:

mfh =
D1m2 - m12

dc

(a) First, without deriving the expression, evaluate it to see if it is reasona-
ble. Are the units correct? Is the sign of the expression positive? Are quali-
tative dependences reasonable? (b) Now derive the expression. (c) Why do 
you think it is important to place the support board on knife edges instead 
of rigid blocks?

62. ** Find the center of mass of an L-shaped object. The vertical leg has a 
mass of ma of length a and the horizontal leg has a mass of mb of length b. 
Both legs have the same width w, which is much smaller than a or b.

Reading Passage Problems
 Muscles work in pairs Skeletal muscles produce movements by pulling on 

tendons, which in turn pull on bones. Usually, a muscle is attached to two bones 
via a tendon on each end of the muscle. When the muscle contracts, it moves one 
bone toward the other. The other bone remains in nearly the original position. 
The point where a muscle tendon is attached to the stationary bone is called the 
origin. The point where the other muscle tendon is attached to the movable bone 
is called the  insertion. The origin is like the part of a door spring that is attached 
to the doorframe. The insertion is similar to the part of the spring that is attached 
to the movable door.

During movement, bones act as levers and joints act as axes of rotation  
for these levers. Most movements require several skeletal muscles working  
in groups, because a muscle can only exert a pull and not a push. In addition, 
most skeletal muscles are arranged in opposing pairs at joints. Muscles  
that bring two limbs together are called flexor muscles (such as the biceps  
muscle in the upper arm in Figure 8.25). Those that cause the limb to extend  
outward are called extensor muscles (such as the triceps muscle in the upper 
arm). The flexor muscle is used when you hold a heavy object in your hand;  
the extensor muscle can be used, for example, to extend your arm when you 
throw a ball.

D

dc

Scale

Position 1

Position 2

FIGURE P8.57

58. ** Touch detector You have two force sensors connected to a computer 
and a meter stick of known mass. The sensors are used to keep the stick 
horizontal; there are no other supports. You push on the stick with your 
 finger in an arbitrary location. (a) Design an experimental setup that will 
allow you to determine the magnitude of your pushing force F and the  
location of your finger x based on the readings of the two force sensors.  
(b) Derive an expression that can be used as a computer algorithm to  
calculate x and F using the readings of the force sensors and the parameters 
of your setup. (c) Evaluate the expression, analyzing the limiting cases.

59. ** Design two experiments to determine the mass of a ruler, using different 
methods. Your available materials are the ruler, a spring, and a set of ob-
jects of standard mass: 50 g, 100 g, and 200 g. One of the methods should 
involve your knowledge of static equilibrium. After you design and perform 
the experiment, decide whether the two methods give you the same or 
 different results.

60. * An 80@kg person stands at one end of a 130@kg boat. He then walks to 
the other end of the boat so that the boat moves 80 cm with respect to the 
bottom of the lake. (a) What is the length of the boat? (b) How much did 
the center of mass of the person-boat system move when the person walked 
from one end to the other? (Hint: Note that the total momentum of the 
 person-boat system remains constant.)

61.  Two people (50 kg and 75 kg) holding hands stand on Rollerblades 
1.0 m apart. (a) Estimate the location of their center of mass. (b) The 
two people push each other and roll apart. Estimate the new location of  
the center of mass when they are 4.0 m apart. What assumptions did you 
make? (Hint: Note that the total momentum of the two people remains 
constant.)

Extensor

35 cm
5 cm3 cm

Flexor

Triceps Biceps

Axis of 
rotation

FIGURE 8.25 Muscles often come in 
 flexor-extensor pairs.

63. You hold a 10-lb ball in your hand with your forearm horizontal, forming a 
908 angle with the upper arm (Figure 8.25). Which type of muscle produces 
the torque that allows you to hold the ball?
(a) Flexor muscle in the upper arm
(b) Extensor muscle in the upper arm
(c) Flexor muscle in the forearm
(d) Extensor muscle in the forearm

64. In Figure 8.25, how far in centimeters from the axis of rotation are the 
forces that the ball exerts on the hand, that the biceps exerts on your fore-
arm, and that the upper arm exerts on your forearm at the elbow joint?
(a) 0, 5, 35 (b)  35, 5, 0 (c)  35, 5, 3
(d) 35, 5, -3 (e)  30, 5, 0

65. Why is it easier to hold a heavy object using a bent arm than a straight arm?
(a) More flexor muscles are involved.
(b) The distance from the joint to the place where gravitational force is 

exerted by Earth on the object is smaller.
(c) The distance from the joint to the place where force is exerted by the 

object on the hand is smaller.
(d) There are two possible axes of rotation instead of one.

66. Why are muscles arranged in pairs at joints?
(a) Two muscles can produce a bigger torque than one.
(b) One can produce a positive torque and the other a negative torque.
(c) One muscle can pull on the bone and the other can push.
(d) Both a and b are true.
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250  CHAPTER 8 Extended Bodies at Rest

67. Rank in order the magnitudes of the torques caused by the four forces ex-
erted on the backbone (see Figure 8.26b), with the largest torque listed first.
(a) 1 7 2 7 3 7 4 (b)  2 = 3 7 1 7 4
(c) 3 7 2 7 1 7 4 (d)  2 7 1 7 3 7 4
(e) 1 = 2 = 3 = 4

68. What are the signs of the torques caused by forces 1, 2, 3, and 4, respec-
tively, about the origin of the coordinate system shown in Figure 8.26b?
(a) + , + , + , +  (b)  - , + , - , 0
(c) + , - , + , 0 (d)  - , - , - , 0
(e) + , - , + , -

69. Which expression below best describes the torque caused by force 
F3 = FE on B, the force that Earth exerts on the upper body at its center 
of mass for the backbone of length L?
(a) 0 (b)  F312L>32sin 128
(c) F31L>22cos 308 (d)  -F312L>32sin 128
(e) -F31L>22cos 308

70. Which expression below best describes the torque caused by force 
F2 = TM on B exerted by the muscle on the backbone?
(a) 0 (b)  F212L>32sin 128
(c) F21L2cos 308 (d)  -F212L>32sin 128
(e) -F21L2cos 308

Back muscle
Backbone

(300 N)

(380 N)

(a)

30°

12°

L/3

(b)

18°

S
TM on B (2) 

S
FE on B (3) 

S
FD on B (4) 

S
FBb on B (1) 

y

x

FIGURE 8.26  Analysis of a person’s backbone when lifting from a bent 
position.

 Improper lifting and the back A careful study of human anatomy allows 
medical researchers to use the conditions of equilibrium to estimate the internal 
forces that body parts exert on each other while a person lifts in a bent position  
(see Figure 8.19). Suppose an 800-N (180-lb) person lifts a 220-N (50-lb) barbell in 
a bent position. The situation can be represented with a mechanical model  
(Figure 8.26a). The cable (the back muscle) exerts a tension force 

u
TM on B on the 

backbone and the support at the bottom of the beam (the disk in the lower back) 
exerts a compression force 

u
FD on B on the backbone. The backbone in turn exerts the 

same magnitude force on the 2.5-cm-diameter fluid-filled disks in the lower back-
bone. Such disk compression can cause serious back problems. A force diagram 
of this situation is shown in Figure 8.26b. The magnitude of the gravitational force 
u
FE on B that Earth exerts on the center of mass of the upper stomach-chest region is 
300 N. Earth exerts a 380-N force on the head, arms, and 220-N barbell held in the 
hands. Using the conditions of equilibrium, we estimate that the back muscle exerts 
a 3400-N (760-lb) force 

u
TM on B on the backbone and that the disk in the lower back 

exerts a 3700-N (830-lb) force 
u
FD on B on the backbone. This is like supporting a 

grand piano on the 2.5-cm-diameter disk.
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