
251

In 1967, a group of astrophysicists from the University of Cambridge in  England 
was looking for quasars using an enormous radio telescope. Jocelyn Bell, a 
 physics graduate student, noticed a series of regular radio pulses in the midst of 
a lot of receiver noise. It looked like somebody was sending a radio message, turn-
ing the signal on and off every 1.33 seconds. This is an incredibly small time for 
astronomical objects. At first, the astrophysicists believed that they had found 
signals from extraterrestrial life. The group had, in fact, discovered a new class of 
astronomical objects, called pulsars, which emit radio signals every second or so.  
The study of rotational motion explains how pulsars can emit signals so rapidly. 

Rotational Motion

BE SURE YOU KNOW HOW TO:
 ● Draw a force diagram for a system 
(Section 3.1).

 ● Determine the torque produced by a 
force (Section 8.2).

 ● Apply conditions of static equilib-
rium for a rigid body (Section 8.3).

 ● How can a star rotate 1000 times 
faster than a merry-go-round?

 ● Why is it more difficult to balance  
on a stopped bike than on a moving 
bike?

 ● How is the Moon slowing Earth’s rate 
of rotation?

IN THE LAST CHAPTER, we only analyzed rigid bodies that remained at 
rest. In many cases, however, objects do not remain at rest when torques are 
 exerted—they rotate. Think about a car tire that rotates around the axle as 
the car moves. In this chapter, we will learn how to describe, explain, and 
predict such motions.

9
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252  CHAPTER 9 Rotational Motion

9.1 Rotational kinematics
In order to understand the motion of rotating rigid bodies, we will follow the same 
strategy that we used for linear motion. We start by investigating how to describe rota-
tional motion and to explain how forces and torques cause objects to rotate in the way 
they do. This will help us understand why a bicycle is so stable when moving, how the 
gravitational pull of the Moon slows the rotation of Earth, and many other interesting 
phenomena.

One common example of a rotating rigid body is a spinning disk, such as a turning 
DVD. Suppose a horizontal disk is rotating on a lab bench in front of you and you are 
looking down on it. You wish to describe the counterclockwise motion of the disk quan-
titatively. This is trickier than it might seem at first. When we investigated the motion of 
point-like objects, we did not have to specify which part of the object we were describ-
ing, since the object was located at a single point. With a rigid body, there are infinitely 
many points to choose from. For example, imagine that you place small coins at differ-
ent locations on the disk, as shown in Figure 9.1a. As the disk turns, you observe that 
the direction of the velocity of each coin changes continually (see the coins on the outer 
edge of the disk in Figure 9.1a). In addition, a coin that sits closer to the edge moves 
faster and covers a longer distance during a particular time interval than a coin closer 
to the center (Figure 9.1b). This means that different parts of the disk move not only in 
different directions, but also at different speeds relative to you.

On the other hand, there are similarities between the motions of different points on 
a rotating rigid body. In Figure 9.1c, we see that during a particular time interval, all 
coins at the different points on the rotating disk turn through the same angle. Perhaps 
we should describe the rotational position of a rigid body using an angle.

Rotational (angular) position U
Consider again a disk that rotates on a lab bench about a fixed point. The axis of rota-
tion passes through the center of and is perpendicular to the disk (Figure 9.2). A fixed 
line perpendicular to the axis of rotation (like the positive x-axis in Figure 9.2) is used 
as a reference line. We can draw another line on the disk from the axis of rotation to 
a point of interest, for example, to a coin sitting on the rotating disk. The angle u in 
the counterclockwise direction between the reference line and the line to the point of 
interest is the rotational position (or angular position) of the point of interest. The 
observer is stationary beside the lab bench and looking down on the disk.

Rotational position U The rotational position u of a point on a rotating object 
(sometimes called the angular position) is defined as an angle in the counterclock-
wise direction between a reference line (usually the positive x-axis) and a line 
drawn from the axis of rotation to that point. The units of rotational position can 
be either degrees or radians.

(a)

Sv

Sv

SThe direction of the velocity v for each coin 
changes continually.

Rotating
disk

(b) Coins at the edge travel farther during Dt than 
those near the center. The speed v will be 
greater for coins near the edge than for coins 
near the center.

(c) All coins turn through the same angle in Dt, 
regardless of their position on the disk.
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FIGURE 9.1 Top views comparing the velocities  
of coins traveling on a rotating disk.
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the page
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of a point of interest 
with respect to a 
reference line

u

FIGURE 9.2 The rotational position of a point on a 
rotating disk.

Units of rotational position
The degree 182 is the most familiar unit of rotational position. There are 3608 in a  circle. 
If a point on the turning object is at the top of the circle, its position is 908 from a hori-
zontal, positive x-axis. When at the bottom of the circle, its position is 2708 or, equiva-
lently, -908.

The unit for rotational position that is most useful in physics is the radian. It is 
defined in terms of the two lengths shown in Figure 9.3. The arc length s is the path 
length in the counterclockwise (CCW) direction along the circumference of the circle 
from the positive x-axis to the position of a point on the circumference of the rotating 
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9.1 Rotational kinematics  253

object. The other length is the radius r of the circle. The angle u in units of radians (rad) 
is the ratio of s and r:

 u 1in radians2 =
s
r
 (9.1)

Note that the radian unit has no dimensions; it is the ratio of two lengths. We can multi-
ply by the radian unit or remove the radian unit from an equation with no consequence. 
If we put the unit rad in the equation, it is usually because it is a reminder that we are 
using radians for angles.

x

y

r s

Object or point 
of interest Arc length

 to object

u

u (in radians) 5 Rotational 
position of 
the object

r
s

FIGURE 9.3 The rotational position u in radians 
is the ratio of the arc length s and the radius r.

A 1-rad rotational position has 
equal arc length s and radius r.

s 5 2 cm

r 5 2 cm

u 5 1 rad

u 5  s  5  2 cm  5 1 rad
2 cmr

FIGURE 9.4 The arc length for a 1-rad angle 
equals the radius of the circle.
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Du
u, t
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Rotational velocity v:

v 5 ( t 1 D t) 2  t
(u 1 Du) 2 u

D t
Du

5

FIGURE 9.5 Each point on a rigid body has the 
same rotational velocity v.

TIP From Eq. (9.1) we see that the arc length for a 1-rad angle equals the radius 
of the circle. For example, the 1-rad angle shown in Figure 9.4 is the ratio of 

the 2-cm arc length and the 2-cm radius and is simply 1. If you use a calculator to work 
with radians, make sure it is in the radian mode.

TIP You cannot calculate arc length 
using s = r u when u is measured in 

degrees. You must first convert u to radians.

One complete rotation around a circle corresponds to a change in arc length of 2pr 
(the circumference of the circle) and a change in rotational position of

u 1one complete rotation2 =
s
r
=

2pr
r

= 2p

Thus, there are 2p radians in one circle. We can now relate the two rotational position 
units:

3608 = 2p rad

We can use this equation to convert between degrees and radians.
We can use Eq. (9.1) to find the arc length s if the radius and rotational position u 

are known:

s = r  u 1for u in radians only2
For example, if a car travels 2.0 rad around a highway curve of radius 100 m, the car 
travels a path length along the arc equal to

s = r  u = 1100 m212.0 rad2 = 200 m

We dropped the radian unit in the answer because angles measured in radians are 
 dimensionless.

Rotational (angular) velocity V
When we were investigating the motion of a point-like object along a single axis, we de-
fined the translational velocity of that object as the rate of change of its linear position. 
Thus, it seems natural to define the rotational (angular) velocity v of a rigid body as 
the rate of change of each point’s rotational position. Because all points on the rigid 
body rotate through the same angle in the same period of time (see Figure 9.1c), each 
point on the rigid body has the same rotational velocity. This means we can just refer to 
the rotational velocity of the rigid body itself, rather than to any specific point within it.

TIP Rotational velocity is the same for 
all points of a rotating rigid body. It 

is independent of the radius—the distance of 
a chosen point on the rigid body from the axis 
of rotation.

Rotational velocity V The average rotational velocity (sometimes called angular 
velocity) of a turning rigid body is the ratio of its change in rotational position Du 
and the time interval Dt needed for that change (see Figure 9.5):

 v =
Du

Dt
 (9.2)

The sign of v (omega) is positive for counterclockwise turning and negative for 
clockwise turning, as seen looking along the axis of rotation. Rotational ( angular) 
speed is the magnitude of the rotational velocity. The most common units for 
rotational velocity and speed are radians per second (rad>s) and revolutions per 
minute (rpm).
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254  CHAPTER 9 Rotational Motion

To distinguish the rotational velocity from the familiar velocity that characterizes 
the linear motion of an object, the latter is called linear velocity. When an object rotates, 
each point of the object has linear velocity. If you examine Figure 9.1a you see that the 
linear velocity vectors are tangent to the circle. Thus the linear velocity of a point on a 
rotating object is sometimes called tangential velocity.

The revolution is a familiar unit from everyday life. One revolution (rev) corre-
sponds to a complete rotation about a circle and equals 3608. The revolution is not a 
unit of rotational position. It is a unit of change in rotational position Du. Revolutions 
are usually used to indicate change in rotational position per unit time. For example, a 
motor that makes 120 complete turns in 1 min is said to have a rotational speed of 120 
revolutions per minute (120 rpm). Automobile engines rotate at about 2400 rpm.

Rotational acceleration A The average rotational acceleration a (alpha) of a 
rotating rigid body (sometimes called angular acceleration) is its change in rota-
tional velocity Dv during a time interval Dt divided by that time interval:

 a =
Dv

Dt
 (9.3)

The unit of rotational acceleration is 1rad>s2>s = rad>s2.

TIP The definition of average rotational velocity or rotational speed becomes the 
instantaneous values of these quantities if you consider a small time interval 

in Eq. (9.2) and the corresponding small change in the rotational position. See our 
earlier discussion of instantaneous velocity in Section 2.7.

Rotational (angular) acceleration A
When we investigated the linear motion of a point-like object along a single axis, we 
developed the physical quantity acceleration to describe the object’s change in veloc-
ity. This was translational acceleration, as it described the changing velocity of the 
object while moving from one position to another. We could apply the same transla-
tional acceleration idea to the center of mass of a rigid body that is moving as a whole 
from one position to another. But usually we are interested in the rate of change of the 
rigid body’s rotational velocity, that is, its rotational acceleration. In other words, 
when the rotation rate of a rigid body increases or decreases, it has a nonzero rotational 
 acceleration.

Figure 9.6 shows motion diagrams for three different types of rotational motion. 
Let’s consider these rotational motion diagrams and try to develop a rule for how the 
sign of the rotational acceleration relates to the rotational velocity for a CCW-turning 
disk. Note that when the disk’s rotational velocity is constant (the lengths of arcs be-
tween the dots are the same), its rotational acceleration is zero (Figure 9.6a). When 
its CCW rotational velocity (positive) is increasing (note that in Figure 9.6b the arcs 
between the dots increase in length), its rotational acceleration has the same sign (pos-
itive) as the rotational velocity. If the disk’s CCW rotational velocity (positive) is de-
creasing (note that in Figure 9.6c the arcs between the dots are shrinking), its rotational 
acceleration has the opposite sign (negative). Similarly, when a disk is rotating CW 
(negative rotational velocity) faster and faster, its rotational acceleration has the same 
sign (negative). If the disk’s clockwise rotational velocity (negative) is decreasing, its 
rotational acceleration has the opposite sign (positive).

What could we conclude about the signs of Earth’s rotational velocity and acceler-
ation if we were looking down on Earth from above the North Pole? The rotational ve-
locity would have a positive sign (turning counterclockwise), and because the rotational 
velocity is constant, the rotational acceleration would be zero. (We will learn later that 
Earth’s rotational velocity is not exactly constant.)

Du

Du
Du

Du is constant
v is constant
a 5 0

t 1 3Dt t 1 2Dt

t 1 Dt

t 5 0

(a)

Du1

Du2

Du3

Du is increasing
v is positive (CCW) and increasing
a . 0

t 1 3Dt
t 1 2Dt

t 1 Dt

t 1 Dt

t 5 0

(b)

Du1

Du2

Du3

Du is decreasing
v is positive (CCW) and decreasing
a , 0

t 1 3Dt t 1 2Dt

t 5 0

(c)

FIGURE 9.6 Three rotational motion diagrams 
and the corresponding signs of the rotational 
accelerations.
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9.1 Rotational kinematics  255

Relating translational and rotational quantities
Are there mathematical connections between physical quantities describing the rota-
tional motion of a rigid body and the translational motion of different points on the 
body? Recall that the rotational position u of a point on a turning object depends on the 
radial distance r of that point from the axis of rotation and the path length s measured 
along the arc connecting that point to the reference axis (see Figure 9.3):

 s = ru (9.1)

If the angle changes by Du, the distance of the point of the object along the arc changes 
by Ds, so that

Ds = r Du

Do similar relations exist for other quantities? Suppose, for example, that a point on the 
object changes rotational position by Du in a time interval Dt. Its rotational velocity is 
v = Du>Dt. The change in arc length is Ds along its circular path, and its tangential 
speed (the speed of the object tangent to the circle, sometimes called linear speed) is 
vt = Ds>Dt. Substituting for Ds, we get

 vt =
Ds
Dt

=
r Du

Dt
= r a Du

Dt
b = rv (9.4)

Notice that while the rotational speed of all points of the same rigid body is the same, 
the tangential (linear) speed of different points increases as their distance from the 
axis of rotation increases. A similar relationship can be derived that relates that point’s 
 acceleration at tangent to the circle and its rotational acceleration a:

 at =
Dvt

Dt
=

r Dv

Dt
= r a Dv

Dt
b = ra (9.5)

The signs of the rotational position and velocity are positive for counterclockwise turn-
ing, and the signs of the translational position and velocity are also positive for counter-
clockwise motion.

To visualize this relationship, imagine five people (the point objects in Figure 9.7) 
holding on to a long stick that can rotate horizontally about a vertical pole to which it is 
attached on one end. These people hold on to the stick as it completes a full circle. The 
person closest to the pole moves the slowest, the next person moves a little faster, and 
the one at the free end has to almost run to keep the stick in his hands. At a particular 
time, all of them have the same rotational position u and the same rotational velocity v. 
However, the linear distances and speeds are larger for the people farther from the axis 
of rotation (larger values of r).

Black holes are an extreme case of rotational motion. Black holes form when some 
stars at the end of their lives collapse, forming small, very dense objects. If the star was 
spinning when it was young, it continues to spin when it becomes a black hole, only 
much faster. The matter near the outer edge of the black hole is usually extremely hot 
gas that orbits the black hole with a tangential speed near the speed of light. The figure 
below is an artist’s rendition of what such a black hole might look like, if we could see it.

TIP You get the familiar translational 
quantities for motion along 

the circular path by multiplying the 
corresponding angular rotational quantities 
by the radius r of the circle.

Five people (the dots) hold a stick that rotates 
about a fixed pole.

x

u, t

u 1 Du, 
t 1 Dt

Pole This person moves slowest.

v 5 Du
 D t

Top view

This person 
moves fastest.Stick

FIGURE 9.7 A top-view diagram of five people 
(represented by dots) holding on to a stick that 
rotates about a fixed pole.

QUANTITATIVE EXERCISE 9.1 

Black hole

Gaseous cloud
just outside
black hole

Orbiting a black hole

Black hole GRS 1915+105 in the constellation Aquila (the Eagle) is 
about 35,000 light-years from Earth. It was formed when the core of a 
star with about 14 solar masses (mass of 14 times the mass of our Sun) 
collapsed. The boundary of the black hole, called the event horizon, 
is a sphere with radius about 25 km. Surrounding the black hole is a 
stable gaseous cloud with an innermost 30-km-radius stable circular 
orbit. This cloud moves in a circle about the black hole about 970 times 
per second. Determine the tangential speed of matter in this innermost 
 stable orbit.

(continued)
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256  CHAPTER 9 Rotational Motion

v=1.3 rad>s; T=5.0 s.Answer

TABLE 9.1 Equations of kinematics for translational motion with constant acceler-
ation and the analogous equations for rotational motion with constant rotational 
acceleration

Translational motion Rotational motion

vx = v0x + axt v = v0 + at (9.3)

x = x0 + v0xt + 1
2 axt

2 u = u0 + v0t + 1
2 at2 (9.6)

2ax1x - x02 = vx
2 - v0x

2 2a1u - u02 = v2 - v0
2 (9.7)

Represent mathematically We model the cloud as a rotating 
disk with radius r = 30,000 m; to find the rotational speed we con-
vert the rotations in revolutions per second into radians per second: 
v = 1970 rev>s212p rad>rev2 = 6100 rad>s. We need to find the 
tangential speed vt of the particles of gas in orbit around the black hole, 
which is related to the radius r of the circular orbit and the rotational 
speed v of the matter:

vt = rv

Solve and evaluate The speed of the matter in the innermost stable 
orbit is

vt = rv = 130,000 m216100 rad>s2 = 1.8 * 108 m>s

This is slightly more than half the speed of light! Actually, the physics 
we have developed is only moderately applicable in this environment of 
extreme gravitational forces and high speeds. Our answer is about 20% 

high compared to a more sophisticated analysis done using Einstein’s 
theory of general relativity. Nevertheless, using ideas from uniform cir-
cular motion, we estimate that the radial acceleration of matter moving in 
that circular orbit is about v2>r <  1011g. It’s not a good place to visit.

Try it yourself You ride a carnival merry-go-round and are 4.0 m 
from its center. A motion detector held by your friend next to the 
merry-go-round indicates that you are traveling at a tangential speed 
of 5.0 m>s. What are the rotational speed and time interval needed to 
complete one revolution on the merry-go-round?

Rotational motion at constant acceleration
Earlier, we developed equations that related the physical quantities t, x, v, and a, which 
we used to describe the translational motion of a point-like object along a single axis 
with constant acceleration. Similar equations relate the rotational kinematics quantities 
t, u, v, and a, assuming the rotational acceleration is constant. We’re not going to de-
velop them based on observations in the way we did for the equations of translational mo-
tion, since the process will be nearly the same. Instead, we will rely on the connections 
we have seen between the translational and rotational quantities. The analogous rotational 
motion equations are provided in Table 9.1 along with the corresponding translational 
motion equations. Because the quantities that describe motion depend on the choice of 
the reference frame, always note the location of the observer in a particular situation.

For rotational motion, u0 is an object’s rotational position at time t0 = 0; v0 is the 
object’s rotational velocity at time t0 = 0; u and v are the rotational position and rota-
tional velocity at some later time t; and a is the object’s constant rotational acceleration 
during the time interval from time zero to time t.

 ● The sign of the rotational position is positive for counterclockwise u and negative 
for clockwise u from the reference axis.

 ● The sign of the rotational velocity v depends on whether the object is rotating coun-
terclockwise 1+2 or clockwise 1-2.

 ● The sign of the rotational acceleration a depends on how the rotational velocity 
is changing; a has the same sign as v if the magnitude of v is increasing and the 
opposite sign of v if v’s magnitude is decreasing.

REVIEW QUESTION 9.1 Visualize an ice skater rotating faster and faster in a clockwise 
direction. What are the signs of rotational velocity and rotational acceleration? As the 
skater starts slowing down, what are the signs of rotational velocity and  acceleration?
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9.2 Physical quantities affecting rotational acceleration  257

9.2  Physical quantities affecting 
rotational acceleration

What causes a rigid body to have a particular rotational acceleration? When we inves-
tigated translational motion we learned that the acceleration of a point-like object was 
determined by its interactions with other objects, that is, forces that objects in the en-
vironment exerted on it. Perhaps there is an analogous way to think about what causes 
rotational acceleration. In the last chapter, we learned that the net torque produced by 
forces exerted on a system had to equal zero for the object to remain in static equilib-
rium, to not start rotating. What happens when the net torque isn’t zero? Let’s investi-
gate this. In Observational Experiment Table 9.2, we perform experiments with a metal 
arm that can rotate freely around a vertical axis. We attach to the arm two fans that we 
can turn on and off and move along the arm (Figure 9.8).

FIGURE 9.8 The equipment for the experiments 
in Table 9.2.

OBSERVATIONAL 
EXPERIMENT TABLE 9.2 Turning effects of forces exerted on a rotating arm 

Observational experiment Analysis

Experiment 1. Two fans are fixed on the arm. One fan is switched on, 
and it pushes air along the arm. The arm does not rotate.
(Note that all figures show the top view of the experimental setup.)

S
Faxis on system

S
Fair on system

O
N

Axis of rotation

OFF

The arm with the fans is the system. The horizontal forces are shown 
in the figure at left.

Because the arm does not accelerate translationally, 
u
a1 = 0. This 

is only possible when S
u
F = 0. The force exerted by the air on the 

system and the force exerted by the axis on the system therefore add 
to zero.

The arm does not rotate (v1 = 0) or accelerate rotationally (a1 = 0). 
This is only possible when St= 0; in this case, the torques produced 
by both forces are equal to zero.

Experiment 2. The turned-on fan rotates so that it pushes air perpen-
dicular to the arm. When the fan is on, the arm rotates faster and faster. 
We determine its rotational acceleration by measuring the change in 
 rotational velocity and the time interval.

S
Faxis on system

S
Fair on system

OFF ON

The air exerts a force on the fan and the arm and causes a positive 
torque, t2 7 0.

The arm has increasing positive rotational velocity and a positive  
rotational acceleration,  a2 7 0.

The arm does not  accelerate translationally, 
u
a2 = 0; this is only  

possible when the sum of the forces exerted on it is zero, S
u
F = 0.

Experiment 3. Both fans are turned on so that air pushes on the fans and 
the arm in opposite directions. The arm rotates faster and faster, with the 
rotational acceleration twice as large as before.

S
Fair on system

S
Fair on system

ON ON

The air pushing on the fans and the arm creates two torques of the 
same magnitude that are both positive:

S
u
F = 0

u
a3 = 0

t2 + t3 = 2t2

a3 = 2a2

(continued)

VIDEO
OET 9.2
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258  CHAPTER 9 Rotational Motion

TESTING  
EXPERIMENT TABLE 9.3 Testing the hypothesis that mass affects rotational acceleration 

Testing experiment Prediction Outcome

Experiment 1. Repeat Experiment 2 from  Table 9.2, but this time 
move the turned-off fan closer to the axis of rotation.

ONOFF

If the rotational acceleration 
 depends on the external torques 
and the mass of the system and  
we have the same fans as in 
 Experiment 2 from Table 9.2, 
then changing the location of the 
turned-off fan should not change 
the rotational acceleration of the 
system.

The rotational acceleration 
of the arm is greater than in 
 Experiment 2 from Table 9.2.

Experiment 2. Remove the turned-off fan from the arm and repeat 
Experiment 2 from Table 9.2.

ON

Because the mass of the  system 
decreases, the rotational 
 acceleration should increase.

The rotational acceleration of the 
arm is greater than in  Experiment 2 
from Table 9.2 and greater than in 
Experiment 1 above.

Conclusion

Although we found that the mass of the system affects its rotational acceleration, we rejected the hypothesis that the rotational acceleration depends 
only on the net exerted torque and the mass of the object. We found that the distribution of mass with respect to the axis of rotation is important, too.

Observational experiment Analysis

Experiment 4. While the arm is rotating, you simultaneously turn off the 
fans. The arm continues to  rotate at a constant rotational velocity.

OFFOFF

S
u
F = 0

u
a4 = 0

St= 0

a4 = 0

v ? 0

Patterns

 ● An external force that produces a zero torque on the arm does not change the arm’s rotational velocity. If the arm is at rest, it remains at rest.
 ● When there are no external forces exerting torques on a rotating arm, its rotational velocity remains constant.
 ●  External forces that produce a nonzero net torque on the arm cause rotational acceleration. Doubling the net torque doubles the rotational 
 acceleration of the arm.

Using these patterns, we can hypothesize that the rotational acceleration of an ob-
ject with fixed axis of rotation depends on the external net torque exerted on the object. 
But is it just the torque that determines the acceleration? In translational motion, the 
other quantity affecting translational acceleration was the mass of the object. What is 
the analogous quantity in rotational motion? Could it be the mass, too? Let’s test the 
hypothesis that the rotational acceleration depends on the sum of the external torques 
and the mass of the object in Testing Experiment Table 9.3.

VIDEO
TET 9.3
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9.2 Physical quantities affecting rotational acceleration  259

We found that the distribution of mass with respect to the axis of rotation affects 
an object’s rotational acceleration. A simple experiment that you can perform in your 
kitchen helps you “feel” the effect of mass distribution with respect to the axis of 
rotation. Lay a broom on a hard, smooth floor. First, try to increase the broom’s rota-
tional speed about a vertical axis by spinning it with one hand holding the broomstick 
near the end opposite the broom head. Then do it again while holding the broom in 
the middle, nearer the broom head. It is much easier to increase the rotational speed 
while holding it in the middle. You are turning the same mass, but the location of 
that mass with respect to the axis of rotation makes a difference—just as we found in 
Table 9.3.

We can now summarize two patterns that we have discovered so far:

Let us focus on the distribution of mass of the rotating object. The closer the mass 
of the object to the axis of rotation, the easier it is to change its rotational motion. We 
call the physical quantity characterizing the location of the mass relative to the axis of 
rotation the rotational inertia (also known as the moment of inertia) of the object. 
Rotational inertia I depends on both the total mass of the object and the distribution of 
that mass about its axis of rotation. For objects of the same mass, the more mass that is 
located near the axis of rotation, the smaller the object’s rotational inertia will be. Like-
wise, the more mass that is located farther away from the axis of rotation, the greater 
the object’s rotational inertia will be. For objects of different mass but the same mass 
distribution, the more massive object has more rotational inertia. The higher the rota-
tional inertia of an object, the harder it is to change its rotational motion. In summary, 
this quantity is the rotational equivalent of mass.

We have now found two factors that affect the rotational acceleration of an object:

 ● The rotational inertia of the object
 ● The net torque produced by forces exerted on the object

Notice how this is similar to what we learned when studying translational motion. 
A nonzero net force (sum of the forces) needs to be exerted on an object to cause its 
velocity to change. The greater the net force, the greater the translational acceleration 
of the object. The mass of the object affects its acceleration, too—the greater the mass, 
the smaller the acceleration for the same net force.

Remember that in all of the experiments we have performed so far in this chapter, 
rotational motion was all that was possible. Each rigid body was rotating about a fixed 
axis through its center of mass. If the rigid body were not held fixed, then a change in 
both translational and rotational motion could occur. The translational acceleration of 
the center of mass of such an object is determined by Newton’s second law 

u
a = S

u
F>m. 

The rotational acceleration around its center of mass will be determined by the ideas 
we will investigate over the next several sections.

Changes in rotational velocity Rotational acceleration depends on net torque. 
The greater the net torque, the greater the rotational acceleration. Rotational 
 acceleration also depends on the total mass of the object and the mass distribution 
with respect to the axis of rotation.

REVIEW QUESTION 9.2 A solid wooden ball and a smaller solid metal ball have equal 
mass (the metal ball is smaller because it is much denser than wood). Both can rotate 
on an axis going through their centers. You exert a force on each that produces the 
same torque about the axis of rotation. Which sphere’s rotational motion will change 
the least? Explain.
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9.3  Newton’s second law for 
rotational motion

To construct a quantitative relation between rotational acceleration, net torque, 
and rotational inertia we start with a simple example of rotational motion: a small 
block attached to a light stick that can move on a smooth surface in a circular path  
(Figure 9.9). The axis of rotation passes through a pin at the other end of the stick. 
After we analyze this case, we will generalize the result to the rotation of an extended 
rigid body. You push the block with your finger, exerting a small force 

u
FF on B on the 

block tangent to the circular path. This push causes a torque, which in turn causes the 
block and stick’s rotational velocity about the pin to increase.

The torque produced by the force 
u
FF on B is

t= rFF on B sin u = rFF on B sin 908 = rFF on B

Since the block is small, we can reasonably model it as a point-like object. This allows 
us to apply Newton’s second law. Since the mass of the block is much larger than the 
mass of the stick, we assume that the stick has no mass. The finger exerts a force of 
constant magnitude pushing lightly in a direction tangent to the block’s circular path. 
Thus, the tangential component of Newton’s second law for the block is

at =
FF on B

mB

There is a mathematical way to get the torque produced by the pushing force. Rear-
range the above equation to get

mBat = FF on B

Then multiply both sides of the equation by r, the radius of the circular path:

mB r at = rFF on B

Recall from Eq. (9.5) that at = ra. Thus,

mB r 1ra2 = rFF on B

The right side of this equation equals the torque t caused by 
u
FF on B:

 1mBr22 a = t

1 a =
t

mBr2

Examine the above equation and compare it to Newton’s second law for the same 
object—the block not only acquires translational acceleration at due to the force ex-
erted on it by the finger, but also acquires rotational acceleration around the axis caused 
by the torque produced by that same force. This rotational acceleration is directly pro-
portional to the torque produced by the force and inversely proportional to the mass of 
the block times the square of the distance between the block and the axis of rotation. 
The latter makes sense—we found experimentally that the farther the mass of the ob-
ject is from the axis of rotation, the harder it is to change its rotational velocity. Thus 
the denominator in the equation above is an excellent candidate for the rotational iner-
tia of the block about the pin (the axis of rotation in this situation).

In the above thought experiment, there was just a single force exerted on the object 
producing a torque about the axis of rotation. More generally, there could be several 
forces producing torques. It’s reasonable that we should add the torques produced by 
all forces exerted on the object to determine its rotational acceleration:

 a =
1

mBr2 St=
1

mBr2 1t1 + t2 + c2 (9.8)

where t1, t2, care the torques produced by forces 
u
F1 on O, 

u
F2 on O, c exerted on the 

object.

Your finger (not shown) pushes the block, 
causing its rotational acceleration.

Block moves at increasing speed.

Axis of rotation

S
FF on B

r

mB

FIGURE 9.9 A top view of an experiment to 
 relate torque and rotational acceleration.
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Analogy between translational motion 
and rotational motion
Notice how similar Eq. (9.8)

a =
1

mBr2 St

is to Newton’s second law for translational motion

u
a =

1
m

 S
u
F

When forces are exerted on a point-like object, we can describe its motion using two 
acceleration-type quantities—translational and rotational acceleration when the axis 
around which the object rotates is located outside the object. The translational accelera-
tion is determined by Newton’s second law, and the rotational acceleration is determined 
by Eq. (9.8), called Newton’s second law for rotational motion. There is a strong 
analogy between each of the three quantities in the two equations (see Table 9.4).

For translational motion, mass is a measure of an object’s resistance to the changes 
in its translational motion. For the rotational motion of a point-like object, the object’s 
mass times the square of its distance r from the axis of rotation 1mr22 is a measure of 
the object’s resistance to the changes in its rotational motion. In summary, the quantity 
mr2 is the rotational inertia I of a point-like object of mass m around the axis that is the 
distance r from the location of the object.

For translational motion, the net force S
u
F exerted on an object of interest by other 

objects causes that object’s velocity to change—it has a translational acceleration 1u
a = D

u
v >Dt2. For rotational motion, the net torque St produced by forces exerted 

on the object causes its rotational velocity to change—it has a rotational acceleration 1a = Dv>Dt2.

TABLE 9.4 Analogy between transla-
tional and rotational quantities in  
Newton’s second law

Translational  
motion

Rotational  
motion

Inertia of a  
point-like  
object

m mr2

Cause of  
acceleration S

u
F St

Acceleration u
a a

EXAMPLE 9.2 

her (these forces are not shown in the figure). The tension force exerted 
by the rope on the Rollerblader 

u
TRope on R points directly toward the axis 

of rotation, so that force produces no torque.

Represent mathematically From the force diagram we conclude 
that your push 

u
FY on R on the Rollerblader is the only force that produces 

a nonzero torque t= rFY on R sin 908 = rFY on R, where r is the radius of 
the Rollerblader’s circular path.

Use Newton’s second law in the tangential direction to determine 
the Rollerblader’s tangential acceleration:

at =
1

mR
 SFt =

FY on R

mR

Use Newton’s second law for rotational motion [Eq. (9.8)] to determine 
the Rollerblader’s rotational acceleration:

a =
1

mRr2 St=
1

mRr2 tY on R =
1

mRr2 1rFY on R2 =
FY on R

mRr

Solve and evaluate For the tangential acceleration:

at =
FY on R

mR
=

40 N
60 kg

=  0.67 m>s2

Pushing a Rollerblader

A 60-kg Rollerblader holds a 4.0-m-long rope that is loosely tied around 
a metal pole. You push the Rollerblader, exerting a 40-N force on her, 
which causes her to move increasingly fast in a counterclockwise circle 
around the pole. The surface she skates on is smooth, and the wheels of 
her Rollerblades are well oiled. Determine the tangential and rotational 
acceleration of the Rollerblader.

Sketch and translate We sketch the situation as shown below. 
We choose the Rollerblader as the object of interest.

Axis of
rotation

Simplify and diagram Since the size of the Rollerblader is small 
compared to the length of the rope, we can model her as a point-like 
object. The following figure shows a force diagram for the Rollerblader 
(viewed from above). Her tangential acceleration has no vertical compo-
nent along a vertical axis (which would extend up and out of the page in 
the figure). The upward normal force 

u
NF on R that the floor exerts on her 

balances the downward gravitational force 
u
FE on R exerted by Earth on (continued)
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Newton’s second law for rotational motion 
applied to rigid bodies
We know that the mass of an object composed of many small objects with masses 
m1, m2, m3, etc. is the sum of the masses of its parts: m = m1 + m2 + m3 + . . . . Mass 
is a scalar quantity and therefore is always positive. The rotational inertia of a point-like 
object with respect to some axis of rotation is a scalar quantity. Thus, it is reasonable 
to think that the same rule applies to rigid bodies: the rotational inertia of a rigid body 
about some axis of rotation is the sum of the rotational inertias of the individual point-
like objects that make up the rigid body.

To test this idea, we can use it to calculate the rotational inertia of a lightweight 
stick with a block attached to each end, as shown in Figure 9.10a. The axis of rotation 
is at the middle of the stick. If our reasoning is correct, the rotational inertia of this two-
block rigid body should be twice the rotational inertia of a single block at the end of a 
stick that is half the length (Figure 9.10b): ITwo block = 2IOne block.

If this is correct, and we exert the same torque 1t= rF sin 908 = rF2 on the two-
block–stick system, the rotational acceleration of this system should be half the rota-
tional acceleration of the one-block–stick system:

aTwo block =
t

ITwo block
=

t

2IOne block
=

1
2

 a t

IOne block
b =

1
2

 aOne block

We check this prediction by performing a testing experiment. We exert the same force 
on the two-block system and the one-block system, thus producing the same torque, and 
measure the angular acceleration of each system. The outcome matches the above predic-
tion. The rotational inertia of the two-block system is twice that of the one-block system.

It appears that the rotational inertia of a rigid body that consists of several point-like 
parts located at different distances from the axis of rotation is the sum of the mr2 terms 
for each part:

I = m1r1
2 + m2r2

2 + . . .

Let’s apply this idea.

The tangential acceleration will not change, but the rotational accel-
eration will be half as large. The torque will be doubled because the 
distance from the axis of rotation to the point where the force is applied 
will be doubled. But the rotational inertia 1mr22 in the denominator will 
be quadrupled because of the r2. The combination will be a reduction of 
the rotational acceleration by half—0.08 rad>s2.Answer

For the rotational acceleration:

a =
FY on R

mRr
=

40 N160 kg214.0 m2 =  0.17 rad>s2

Let’s check the units; note that 
N

kg m
=

kg # m

s2 # kg m
=

1
s2. Remember that 

the radian is not an actual unit. It is dimensionless. It is just a reminder 
that this is the angle unit appropriate for these  calculations. So the units 
are correct, and the magnitudes for both results are reasonable. The 
Rollerblader would have a rotational velocity of 0.17 rad>s after 1 s, 
0.34 rad>s after 2 s, and so forth—the rotational velocity increases  
0.17 rad>s each second.

Try it yourself Suppose you exerted the same force on your friend, 
but the friend is holding an 8.0-m-long rope instead of a 4.0-m-long 
rope. How will this affect the rotational acceleration?

The rotational inertia I of the two-block system 
should be twice that of the one-block system.

Top view
S
F

rr

S
F

r

(a)

Thus, we predict that with equal torque and 
using a 5 t/I, aOne block 5 2 aTwo block.

(b)

FIGURE 9.10 Comparing the effect of rota-
tional inertia on rotational acceleration.

QUANTITATIVE EXERCISE 9.3 

Represent mathematically Each block of mass m contributes 
differently to the rotational inertia of the system. The farther the block 
from the axis of rotation, the greater its contribution to the rotational 
inertia of the system of blocks. We can add the rotational inertia of each 
block of mass m about the axis of rotation:

I = m1022 + m1L>422 + m12L>422 + m13L>422 + m14L>422

Rotational inertia of a rigid body

Use what you learned about rota-
tional inertia to write an expression 
for the rotational inertia of the rigid 
body shown at right. Each of the 
five blocks has mass m. They are 
connected with lightweight sticks of 
equal length L>4.

Axis of rotation

L/4L/4

L

L/4 L/4

mm m m m
I 5 ?
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Calculating rotational inertia
We can calculate the rotational inertia of a rigid body about a specific axis of rotation in 
about the same way we determined the rotational inertia of the five-block system in Quan-
titative Exercise 9.3, by adding the rotational inertias of each part of the entire system. 
However, for most rigid bodies, the parts are not separate objects but are instead parts in 
a continuous distribution of mass—like in a door or baseball bat. In such a case, we break 
the continuous distribution of mass into very small pieces and add the rotational inertias 
for all of the pieces. Consider the person’s leg shown in Figure 9.11, which we model as a 
rigid body if none of the joints bend. For example, mass element 7 contributes an amount 
m7r7

2 to the rotational inertia of the leg. The rotational inertia of the whole leg is then

 I = m1r1
2 + m2r2

2 + . . . + m7r7
2 + . . . + m18r18

2  (9.9)

All r’s in the above are from the same axis of rotation. The rotational inertia would be 
different if we chose a different axis of rotation. There are other ways to do the sum-
mation process in Eq. (9.9); often it is done using integral calculus, and sometimes I is 
determined experimentally.

Table 9.5 gives the rotational inertias of some common uniform objects (a uniform 
object is made of the same material throughout) for specific axes of rotation. Notice the 
coefficients in front of the mR2 and mL2 expressions for the objects of different shapes. 
The value of the coefficient is determined by the mass distribution inside the object and 
the location of the axis of rotation.

0.625mL2.Answer

The rotational inertia of
the entire leg is the sum
of the rotational inertias
of each small part: 
Ileg 5 m1r1

2 1 m2r2
2 1 ...

Axis of 
rotation

r7

m
18

m
17

m
16

m
15

m
14

m
13

m
12

m
11

m
5

m
4

m
3

m2

m1

m
10

m
9

m
7m

8

m
6

FIGURE 9.11 Add the mr2 of all the small parts 
to find the rotational inertia I of the leg.

TABLE 9.5 Expressions for the rotational inertia of standard shape objects

Solve and evaluate When added together, the rotational inertia 
of the five-block system is I = 1.88mL2. Each block (except the one 
located at the axis of rotation) contributes to the system’s rotational in-
ertia. However, blocks farther from the axis of rotation contribute much 
more than those near the axis. In fact, the block at the right side of the 
rod contributes more to the rod’s rotational inertia (mL2) than the other 
four blocks combined 10.88mL22.

Try it yourself Calculate the rotational inertia of the same system 
altered so that the axis of rotation passes perpendicular through the 
central block.

Axis of rotation

Hoop
I 5 mR2

R
Hoop, axis
along diameter

I 5   mR21
2

R Solid
cylinder
(flywheel)

R

I 5   mR21
2

Hollow
cylinder

R2

R1

I 5   m(R2  1 R2 )2 1
1
2

      

Thin rod, axis
through center

L
I 5    mL21

12

      

Thin rod, axis
through end

LI 5   mL21
3

Solid
sphere

RI 5   mR22
5

 

Hollow sphere
with thin wall

RI 5   mR22
3

 

Flat rectangle,
axis through
center

L

I 5    mL21
12

 

Flat rectangle,
axis through
side

L

I 5   mL21
3
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264  CHAPTER 9 Rotational Motion

We can now rewrite the rotational form of Newton’s second law in terms of the 
 rotational inertia of the rigid body.

TIP By writing Newton’s second law in the form

u
aS =

1
mS

S
u
Fon S =

u
FO1 on S +

u
FO2 on S + . . . +

u
FOn on S

mS

we see the cause-effect relationship between the net force S
u
Fon S exerted on the 

system and the system’s resulting translational acceleration u
aS. The same idea is seen 

in Eq. (9.10), only applied to the rotational acceleration:

aS =
1
IS

 St=
t1 + t2 + . . . + tn

IS

Rotational form of Newton’s second law One or more objects exert forces on 
a rigid body with rotational inertia I that can rotate about some axis. The sum 
of the torques St due to these forces about that axis causes the object to have a 
 rotational acceleration a:

 a =
1
I
 St (9.10)

EXAMPLE 9.4 

 translational acceleration as the blocks). We also assume that the pul-
ley’s axle is oiled enough that the frictional torque can be ignored.

The translational acceleration of the hanging objects is due to the 
difference between the gravitational force that Earth exerts on them and 
the tension force that the string exerts on them. The rotational acceler-
ation of the pulley is due to a nonzero net torque produced by the two 
tension forces exerted on the pulley.

We consider the pulley to be similar to a solid cylinder. Then  
according to Table 9.5, its rotational inertia around the axis that passes 
through its center is I = 1

2 MR2, where R is the radius of the pulley and 
M is its mass.

Represent mathematically The force diagrams help us apply  
Newton’s second law in component form for the two blocks and the 
 rotational form for the pulley. The coordinate systems used in each  
case are shown. We choose the coordinate systems so the translational 
accelerations of both blocks are positive.

Atwood machine

In an Atwood machine, a block of mass m1 and a less massive block of 
mass m2 are connected by a string that passes over a pulley of mass M 
and radius R. What are the translational accelerations a1 and a2 of the 
two blocks and the rotational acceleration a of the pulley?

Sketch and translate A sketch of 
the situation is shown here. You might 
recall that we analyzed a similar 
situation previously (in Section 4.4). 
However, at that time we assumed 
that the pulley had negligible (zero) 
mass. We had no choice but to make 
that assumption because we had not 
yet developed the physics for rotating 
rigid bodies. Now that we have, we 
can analyze the situation in different ways depending on the choice of 
system. We analyze the situation using three separate systems: block 1, 
block 2, and the pulley, and then combine the analyses to answer the 
questions.

Simplify and diagram We model the blocks as point-like objects and 
the pulley as a rigid body. Force diagrams for all three objects are shown 
at top right. A string wrapped around the rim of a pulley (or any disk/
cylinder) pulls purely tangentially, so the torque it produces is simply 
the product of the magnitude of the force and the radius of the pulley. 
Previously, we assumed that the force exerted by the string pulling down 
on each side of the massless and frictionless pulley was the same—the 
pulley just changed the direction of the string but not the tension it ex-
erted on the blocks below. Now, with a pulley with nonzero mass, the 
forces that the string exerts on two sides are different. If they were not, 
the pulley would not have a rotational acceleration. We assume that 
the string does not stretch (the translational acceleration of the blocks 
will have the same magnitude a1 = a2 = a) and that the string does 
not slip on the pulley (a point on the edge of the pulley has the same 
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Notice the calculations of the translational acceleration of the blocks in  Example 9.4. 
The acceleration is equal to the sum of the forces divided by an effective total mass of 
the system.

a =
m1 - m2

1
2 M + m1 + m2

 g

Here you see that the pulley only contributes half of its mass due to its mass distribu-
tion. We can say that the pulley’s “effective mass” is M>2 because of how its mass is 
distributed.

a=1.6 m>s2 and a=7.8 rad>s2.Answer

Block on the left:   m1a = +m1g + 1-TR1 on 12
Block on the right:    m2a = -m2g + TR2 on 2

The pulley: TR1 on P R + 1-TR2 on P R2 = Ia = aMR2

2
b a a

R
b

1 1TR1 on 12R - 1TR2 on 22R =
MRa

2

1 TR1 on 1 - TR2 on 2 =
Ma
2

We now have three equations with three unknowns—the two tension 
forces exerted by the rope on the pulley and the magnitude of the accel-
eration a of the blocks. We can write expressions for TR1 on 1 and TR2 on 2 
using the first two equations. We then have

 TR1 on 1 = m1g - m1a

 TR2 on 2 = m2g + m2a

After substituting these expressions for the rope forces into the pulley 
equation, we get1m1g - m1a2 - 1m2g + m2a2 = Ma>2

Solve and evaluate This equation can be rearranged to get an 
 expression for the translational acceleration of the blocks:

a =
m1 - m2

1
2 M + m1 + m2

 g

Notice that if we neglect the mass of the pulley, the acceleration  becomes

a =
m1 - m2

m1 + m2
 g

a larger acceleration than with the pulley (and consistent with the result 
we got in Chapter 4). Thus, the massive pulley decreases the acceler-
ation of the blocks, which makes sense. If the pulley mass M is much 
heavier than the masses of the hanging objects m1 and m2, the accelera-
tion becomes very small—it is almost like the blocks are hanging from 
a fixed massive object and not moving at all. We can find the rotational 
acceleration of the pulley by dividing the translational acceleration by 
the radius of the pulley because the string does not slip on the pulley.

a =
a
R

= ¢ m1 - m2
1
2 M + m1 + m2

≤ 
g
R

Try it yourself Determine the translational acceleration of the 
blocks and the rotational acceleration of the pulley for the following 
given information: m1 = 1.2 kg, m2 = 0.8 kg, M = 1.0 kg, and 
R = 0.20 m.

EXAMPLE 9.5 

angular acceleration of the arm and then finally use the rotational form 
of  Newton’s second law to find the force that the biceps muscle exerts 
on her arm during the throw. For this second part of the problem, we 
choose the lower arm and hand as the system of interest. The axis of 
 rotation is at the elbow joint between the upper arm and the forearm.

Upper arm

Forearm

Bottle

Biceps

Throwing a bottle

A woman tosses a 0.80@kg soft drink bottle vertically upward to a friend 
on a balcony above. At the beginning of the toss, her forearm rotates 
upward from the horizontal so that her hand exerts a 20@N upward force 
on the bottle. Determine the force that her biceps exerts on her forearm 
during this initial instant of the throw. The mass of her forearm is  
1.5 kg, and its rotational inertia about the elbow joint is 0.061 kg # m2. 
The attachment point of the biceps muscle is 5.0 cm from the elbow 
joint, the hand is 35 cm away from the elbow, and the center of mass 
of the forearm/hand is 16 cm from the elbow.

Sketch and translate A sketch of the situation is shown at right. 
There is no information given about the kinematics of the process (for 
example, no way to directly determine the rotational acceleration of 
her arm). How can we use the rotational form of Newton’s second law 
to determine the unknown force that the biceps muscle exerts on the 
woman’s forearm during the throw? We do know the force her hand 
exerts on the bottle and the bottle’s mass. So, in the first part of the 
problem, we can first use the translational form of Newton’s second law 
with the bottle as the system to find the bottle’s vertical acceleration at 
the beginning of the throw. We can then use this acceleration to find the (continued)
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266  CHAPTER 9 Rotational Motion

430 N.Answer

Bottle is
system

Simplify and diagram The figure at right is a 
force diagram for the bottle as a system. Earth exerts 
a downward 7.8@N gravitational force 

u
FE on B on the 

bottle and the woman’s hand exerts an upward 20@N 
normal force 

u
NH on B on the bottle. Since these forces 

do not cancel, the bottle has an initial upward accel-
eration. Next, consider the forearm and hand as the 
system. Assume that the forearm and hand form a rigid body. The bottle 
exerts a downward 20@N force on her hand 

u
NB on H. Earth exerts a down-

ward gravitational force 
u
FE on F on the forearm at its center of mass. Her 

biceps muscle exerts an upward tension force 
u
TBic on F. The upper arm 

presses down on the forearm at the joint, exerting a force 
u
FUA on F. If the 

upper arm did not push down, the forearm at the joint would fly upward 
when the biceps muscle pulled up on it.

Forearm is
system

Represent mathematically We first analyze the bottle’s motion to 
determine its translational acceleration; then determine the rotational 
acceleration of the forearm and hand system; and finally apply the ro-
tational form of Newton’s second law to find the force that the biceps 
needs to exert on the system to cause this rotational acceleration. Con-
sider the initial instant of the bottle’s upward trip. The y-component 
form of Newton’s second law applied to the bottle can be used to deter-
mine the vertical acceleration aBy for the bottle:

aBy =
NH on B y + FE on B y

mB
=

NH on B + 1-mBg2
mB

The rotational acceleration of the forearm/hand system at that instant is 
related to the vertical acceleration of the bottle:

aF =
aBy

r
where r is the distance from the axis of rotation to the hand. The magni-
tude of the force that the biceps muscle exerts on the forearm 1TBic on F2 
can be determined using the rotational form of Newton’s second law 
applied to the forearm/hand. Notice that here the system consists of 
 different parts joined together.

TBic on FL Joint to Bic + 1-FE on FL Joint to cm2
+ 1-NB on HL Joint to H2 = IFaF

Solve and evaluate We now use the known values of the quantities 
to solve the problem:

 aBy =
NH on B - mBg

mB
=

20 N - 10.80 kg219.8 N>kg210.80 kg2
 = 15.2 m>s2

 aF =
aBy

r
=

115.2 m>s2210.35 m2 = +43.4 rad>s2

TBic on F10.05 m2 - 311.5 kg219.8 N>kg2410.16 m2
- 120 N210.35 m2 = 10.061 kg # m22143.4 rad>s22

Solving the above equation, we find that TBic on F = 240 N = 54 lb, a 
reasonable magnitude for this force.

Try it yourself Determine the force that the woman’s biceps exerts 
on her forearm during the initial instant of a vertical toss of a 100@g 
rubber ball if she is exerting a 10@N force on the ball.

REVIEW QUESTION 9.3 How is Newton’s second law for rotational motion similar to 
Newton’s second law for translational motion? How is it different?

9.4 Rotational momentum
Earlier in this textbook (Chapters 6 and 7), we constructed powerful principles for 
 momentum and energy that allowed us to analyze complex processes that involved 
translational motion. Is it possible to find analogous principles for the rotational (angu-
lar) momentum and rotational energy of extended bodies? Consider the experiments in 
Observational Experiment Table 9.6.
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OBSERVATIONAL 
EXPERIMENT TABLE 9.6 Observations concerning rotational motion 

Observational experiment Analysis

Experiment 1. A figure skater initially spins slowly 
with a leg and two arms extended. Then she pulls her 
leg and arms close to her body, and her spinning rate 
increases dramatically.

Initial situation: Large rotational inertia I and 
small rotational speed v.

Final situation: Smaller rotational inertia I  
and larger rotational speed v.

Experiment 2. A man sitting on a chair that can 
spin with little friction initially holds dumbbells 
far from his body and spins slowly. When he pulls 
the dumbbells close to his body, the spinning rate 
increases  dramatically.

Initial situation: Large rotational inertia I and 
small rotational speed v.

Final situation: Smaller rotational inertia I  
and larger rotational speed v.

Pattern

 ● There are no external forces exerted on either person—no torques.
 ●  As the mass distribution of the system moves closer to the axis of rotation, the system’s rotational inertia I decreases and the system’s rotational 
speed v increases (even though the net torque on the system is zero).

Slow Fast

Slow Fast

For each experiment in Table 9.6, the rotational inertia I of the spinning person 
 decreased (the mass moved closer to the axis of rotation). Simultaneously, the rotational 
speed v of the person increased. When I increases and v decreases (or vice versa), Iv 
 remains constant. We tentatively propose that when the rotational inertia I of an extended 
body in an isolated system decreases, its rotational speed v increases, and vice versa.

Below we will continue to explore this idea quantitatively and then test it 
experimentally.

Rotational momentum is constant  
for an isolated system
Note that I is the rotational analog of the mass m of a point-like object and v is the 
rotational analog of the translational velocity 

u
v . The linear momentum of an object 

is the product of its mass m and its velocity 
u
v . Let’s propose that a turning object’s 

rotational momentum L (analogous to linear momentum 
u
p = m

u
v) is defined as

 L = Iv (9.11)

In the chapter on linear momentum (Chapter 6) we derived a relationship [Eq. (6.4)] 
between the net force exerted on an object and the change in its linear momentum:

 S
u
F1tf - ti2 = u

pf - u
p i (6.4)

VIDEO
OET 9.6
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where 
u
p = m

u
v . Torque t is analogous to force 

u
F. Thus, using the analogy between 

rotational and translational motion, we write

St1tf - ti2 = L f - L i

where L = Iv. If a system with one rotating body is isolated, then the external torque 
exerted on the object is zero. In such a case, the rotational momentum of the object 
does not change 10 = L f - L i2, and the object’s rotational momentum is constant 1L f = L i2, or

Iivi = If vf

Note that this is consistent with our tentative qualitative rule. If the final value of one 
quantity (I or v) increases for an isolated system, then the other quantity must decrease.

The similarity between the reasoning concerning rotational momentum of an iso-
lated system and the reasoning we used to study linear momentum leads us to believe 
that we can use the bar chart representation to analyze rotational situations. We can also 
hypothesize that the change of rotational momentum of a system that is not isolated 
should be equal to the rotational equivalent of impulse. When a sum of forces S

u
F is ex-

erted on an system over a time interval Dt, the momentum of the system changes by the 
amount of S

u
F # Dt. We can use the analogy between translational and rotational motion 

to say that when a sum of torques St is exerted on a system over a time interval Dt,  
the rotational momentum of the system changes by the rotational impulse St Dt.

Rotational momentum and rotational impulse We now have a quantitative 
 relation between rotational momentum L = Iv and rotational impulse.

 L i + StDt = L f (9.12)

The initial rotational momentum of a turning object plus the product of the net ex-
ternal torque exerted on the object and the time interval during which it is exerted 
equals the final rotational momentum of the object.

If the net torque that external objects exert on the turning object is zero, or 
if the torques add to zero, then the rotational momentum L of the turning object 
 remains constant:

 L f = L i   or  If vf = Iivi (9.13)TIP Rotational momentum is sometimes 
called angular momentum.

To explain most of the applications of torque and rotational momentum in this 
book, we account for their directions using positive or negative signs:

 ● A torque is positive if it tends to rotate the object counterclockwise and negative if it 
tends to rotate the object clockwise about the axis of rotation.

 ● A body rotating counterclockwise has positive rotational momentum and one 
 rotating clockwise has negative rotational momentum.

EXAMPLE 9.6 

Simplify and diagram We model the boy as a point-like object. The 
process in the problem is similar to an inelastic collision of two objects. 

Jumping on a merry-go-round

A boy of mass mB running at speed vB steps tangentially onto the 
stationary circular platform of a merry-go-round that can rotate on a 
frictionless bearing about its central shaft. The radius of the platform is 
r and the rotational inertia of the merry-go-round is IM. After stepping 
onto the platform, the boy stops moving with respect to the merry-go-
round. Derive an expression for the rotational velocity of the merry-go-
round vf after the boy steps on it.

Sketch and translate A sketch of the situation is shown at right. We 
choose the boy and the merry-go-round as the system and place the axis 
of rotation along the shaft of the merry-go-round. The initial state is 
just before the running boy steps onto the platform, and the final state is 
when the boy and the platform are rotating together.
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Rotational momentum of a shrinking object
At the beginning of the chapter, we described the discovery of pulsars, astronomical 
objects that rotate very quickly and emit repetitive radio signals with a very small time 
interval between them. The signals from the first discovered pulsar had a period of 
approximately 1.33 s. Astronomers could not explain at first how pulsars could rotate 
so rapidly. Most stars, including our Sun, rotate very much the way Earth does, usually 
taking several days to complete one rotation (about a month for our Sun).

However, as a star’s core collapses and its mass moves closer to the axis of rotation, 
its rotational velocity increases because its rotational momentum is constant (assuming 
the star does not interact with any other objects). How much does a star need to shrink 
so that its period of rotation becomes seconds instead of days?

TIP Remember that the notation for 
period is T. Do not confuse this with 

T also used for the tension force.

(a)(b)

Answer

Try it yourself In the example, we chose the boy and the merry-go-
round as the system. How will the rotational momentum bar charts 
change if we choose (a) the boy as the system or (b) the merry-go-
round as the system? Draw these two bar charts.

The vertical forces exerted on the system by Earth and the ground cannot 
exert torques on the system  because they are parallel to the axis of rota-
tion. At the moment when the boy steps onto the platform, the ground 
exerts a horizontal static friction force on the axis (preventing the merry-
go-round from moving translationally), but because this force is exerted 
on the axis of the merry-go-round, it exerts no torque on the system. 
Therefore, the sum of all torques exerted on the system is zero, and the 
rotational momentum of the boy and the merry-go-round should remain 
constant. We can represent the process with a rotational momentum bar 
chart as shown in the figure below. The external impulse is zero because 
the torque is zero; thus the initial momentum of the boy is equal to the 
final momentum of the boy and merry-go-round together. Because the 
boy does not move with respect to the merry-go-round after that, and 
there are no external torques, the rotational momentum of the system 
and therefore the speed of the system 
are constant. Here we have a process 
in which the linear momentum of the 
system is not constant but the rota-
tional momentum is.

Represent mathematically We use the bar chart to write the math-
ematical representation of the process: the initial and final rotational 
momenta of the system should be equal (L i = L f). Thus,

LBi + LMi = LB and M f

From the bar chart: LMi = 0. The initial rotational momentum of the 
boy with respect to the axis of rotation (which is outside his body), just 
before he jumps onto the merry-go-round, can be expressed as

LBi = IBvB = mBr2 # vB

r
= mBvBr

In the final state, the boy and the merry-go-round rotate as one rigid 
body. Therefore, the final rotational momentum of the system can be 
expressed as LB and M f = 1mBr2 + IM2vf.

Solve and evaluate Combining the equations above, we get

mBvBr = 1mBr2 + IM2vf

and finally

vf =
mBvBr

mBr2 + IM

To evaluate the expression we need to examine it for extreme cases. The 
expression predicts that the faster the boy runs, the larger the final rota-
tional velocity of the merry-go-round—this makes sense. The larger the 
rotational inertia of the merry-go-round, the smaller the final rotational 
velocity—this prediction makes sense, too. Checking the units for vf 

in our expression, we get 
kg * m>s * m

kg * m2 =
1
s
. The units for rotational 

 velocity are rad>s, but as we noted earlier, radians have no dimension 
and so our unit analysis confirms the expression for vf.

EXAMPLE 9.7 A pulsar

Imagine that our Sun ran out of nuclear fuel and collapsed. What would 
its radius have to be in order for its period of rotation to be the same as 
the first discovered pulsar described above? The Sun’s current period of 
rotation is 25 days.

Sketch and translate First, sketch the process. The Sun is the sys-
tem. We can convert the present period of rotation of the Sun into sec-
onds 1Ti = 25 days = 2.16 * 106 s2. Its mass is m = 2.0 * 1030 kg 
and its radius is Ri = 0.70 * 109 m. After the Sun collapses, its period 
of rotation will be Tf = 1.33 s. What will be its radius?

(continued)
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Vector nature of torque, rotational velocity, 
and rotational momentum
So far, we have treated torque, rotational velocity, and rotational momentum as scalar 
quantities, but at the same time we assigned signs to them reflecting CW or CCW 
direction of rotation. Thus the value of these quantities depends on the direction of 
 rotation. In fact, all of those quantities are vector quantities, but for most applications in 
this chapter we do not need to treat them as such. However, there are a few applications 
for which the vector nature of torque, rotational velocity, and rotational momentum is 
important. The vector direction of both rotational velocity and rotational momentum 
can be determined using a right-hand rule.

Right-hand rule for determining the direction of torque, rotational  velocity, 
and rotational momentum Curl the four fingers of your right hand in the direction 
of rotation of the turning object. Your thumb, held perpendicular to the fingers, then 
points in the direction of both the object’s rotational velocity and rotational momentum 
(Figure 9.12). To determine the vector direction of the torque that a force produces 
on an object (as opposed to the clockwise/counterclockwise way of describing it) about 
an axis of rotation, first imagine that the object is at rest and that the torque you are 
interested in is the only torque exerted on the object. Next, curl the fingers of your right 
hand in the direction that the torque would make the object rotate. Your thumb, held 
perpendicular to the fingers, shows the direction of this torque.

Bicycling We can use the vector nature of torque and rotational momentum to under-
stand why a bicycle is much more stable when moving fast—especially if the bicycle has 
massive tires. Consider an axis of rotation parallel to the ground that passes through the 
two contact points of the tires with the ground. This axis of rotation is below the center 
of mass of the stationary bike—an unstable equilibrium (Figure 9.13). When the bicy-
cle is moving quickly, the rotating tires (and therefore the bicycle +  rider system) have 
considerable rotational momentum, which will change only when an unbalanced torque 

2.6*10-4 s.Answer

Simplify and diagram Assume that the Sun is a sphere with its mass 
distributed uniformly. Assume also that it does not lose any mass as it 
collapses.

Represent mathematically Now, apply the principle of rotational 
momentum conservation (Eq. 9.13) to the Sun’s collapse:

Iivi = Ifvf

From Table 9.5 we find that the rotational inertia of a sphere rotating 
around an axis passing through its center is

I = 2
5 mR2

The rotational velocity of an object is

v =
Du

Dt
=

2p
T

where T is the period for one rotation. Combining the above three equa-
tions, we get 12

5 mRi
22  

2p
Ti

= 12
5 mRf

22  
2p
Tf

Dividing by the 2>5, 2p, and m on each side of the equation, we get

Ri
2

Ti
=

Rf
2

Tf

Solve and evaluate Multiply both sides of the above by Tf and take 
the square root:

 Rf = BRi
2Tf

Ti

 = B10.70 * 109 m2211.33 s2
2.16 * 106 s

 = 5.5 * 105 m = 550 km

Although this is much smaller than the radius of Earth, models of stellar 
evolution actually do predict that the Sun’s core will eventually shrink 
to this size and possibly smaller.

Try it yourself When massive stars explode, the collapse can 
shrink their radii to about 10 km. What would be the period of ro-
tation of such a star if it originally had a mass twice the mass of the 
Sun, a radius that was 1.3 times the Sun’s radius, and the same initial 
period of rotation as the Sun (25 days)?

Circle fingers in direction of rotation. Thumb 
points in the direction of rotational momentum.

S
L

S
L

FIGURE 9.12 Using the right-hand rule to 
 determine the direction of an object’s rotational 
momentum 

u
L.

Center of mass

Axis of  rotation

Axis of rotation is below
center of mass—unstable.

FIGURE 9.13 A bicycle that is not moving is in 
unstable equilibrium.
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L 5 Iv

S
L

Axis of rotation

FIGURE 9.14 Rotating bicycle tires have rota-
tional momentum that stabilizes the bicycle.

is exerted on the system. When a bicycle is moving on a smooth road, the rotational 
 velocity and the rotational momentum vectors are perpendicular to the plane of rotation 
of the bike tires (Figure 9.14), and they are large due to the rapid rotation of the tires.

When the bike +  rider system is balanced, the gravitational force exerted by Earth 
on the system produces no torque since that force points directly at the axis of rotation. 
If the rider’s balance shifts a bit, or the wind blows, or the road is uneven, the system 
will start tilting. As a result, the gravitational force exerted on the system will produce 
a torque. However, since the rotational momentum of the system is large, this torque 
does not change its direction by much right away, but it takes only several tenths of a 
second for the torque to change the rotational momentum significantly. This is enough 
time for an experienced rider to make corrections to rebalance the system. The faster 
the person is riding the bike, the greater the rotational momentum of the system and the 
more  easily the rider can keep the system balanced.

Gyroscopes Guidance systems for spaceships rely on the constancy of rotational  
momentum in isolated systems to help them maintain their chosen course. Once the 
ship is pointed in the desired direction, one or more heavy gyroscopes start rotating. 
The gyroscope is a wheel whose axis of rotation keeps the ship oriented in the chosen 
direction. The gyroscope is similar to the rotating bicycle tires that help keep a rider 
upright without tipping or changing direction. Gyroscopes are also used in cameras to 
prevent them from vibrating or moving while the camera lens is open.

REVIEW QUESTION 9.4 After a playground merry-go-round is set in motion, its rota-
tional speed decreases noticeably if another person jumps on it. However, if a person rid-
ing the merry-go-round steps off, the rotational speed seems not to change at all. Explain.

9.5 Rotational kinetic energy
We are familiar with the kinetic energy 11>22mv2 of a single particle moving along 
a straight line or in a circle. It would be useful to calculate the kinetic energy of a 
rotating body—like Earth. Doing so would allow us to use the work-energy approach 
to solving problems involving rotation. Let’s start by deriving an expression for the 
rotational kinetic energy of a single particle of mass m moving in a circle of radius r 
at speed v. According to the kinematics in Section 9.1, its linear speed v and rotational 
speed v are related:

v = rv

Thus, the kinetic energy of this particle moving in a circle can be written as

Krot = 1
2 mv2 = 1

2 m1rv22 = 1
2 1mr22v2 = 1

2 Iv2

where I = mr2 is the rotational inertia of a particle moving a distance r from the center 
of its circular path. The expression for the translational kinetic energy 11>22mv2 of a 
particle is similar to the rotational version, which involves the product of a mass-like 
term I and the square of a speed-like term v. Can we use the expression 1

2 Iv2 for the 
rotational kinetic energy of a rotating rigid body?

To test this idea, consider a solid sphere of known radius R and mass m that can 
rotate freely on an axis. We wrap a string around the sphere and pull the string with a 
force probe exerting a constant force of a known magnitude so that the sphere starting 
at rest completes 5.0 revolutions (Figure 9.15a). After we stop pulling, we measure the 
rotational speed v of the sphere. But before measuring it, we predict its value using 
this expression for rotational kinetic energy. If we choose the sphere as the system, 
the string is the only external object that exerts a force that causes a nonzero torque on 
the sphere. This string force does work, which changes the sphere’s kinetic energy from 
zero to some new value (Figure 9.15b). Thus, the initial rotational kinetic energy of 

(a)

(b)

R 5 0.10 m

m 5 10 kg

5.0 N
Axis of
rotation

Work done by the string causes the rotational 
kinetic energy of the sphere to increase.

0

Krot i1 W 5Krot f

FIGURE 9.15 A string pulls a solid sphere 
(top view).
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272  CHAPTER 9 Rotational Motion

the sphere (zero) plus the work done by the string on the sphere during these five turns 
equals the final rotational kinetic energy of the sphere:

Krot i + W = Krot f

The string pulls parallel to the displacement of the edge of the sphere during the 
entire time. We can use the expression for the rotational kinetic energy under test to 
predict the magnitude of the final rotational speed:

 0 + FString on Sphere15 # 2pR2 cos 0 = 1
2 Iv

2

where 5 # 2pR is the distance the string is pulled—five circumferences of the sphere. 
The above leads to a prediction of the final rotational speed:

vf = BFString on Sphere
# 20pR

I

From Table 9.5 we know that the rotational inertia of a solid sphere of radius R and 
mass m is I = 12>52mR2 (the axis passes through the center of the sphere); in our 
sphere, m = 10 kg and R = 0.10 m. Thus, the rotational inertia is

I = 12>52mR2 = 12>52110 kg210.10 m22 = 0.040 kg # m2

We pull the string so that it exerts a 5.0-N force on the edge of the sphere. Thus, the 
sphere’s final speed should be

vf = B15.0 N2120 p210.10 m210.040 kg # m22 = a28 
rad
s
b a 1 rev

2p rad
b = 4.5  

rev
s

When we measure the final angular velocity, it is about 4.5 rev>s.
We can apply our new understanding of rotational kinetic energy to predict the out-

come of the experiment shown in Figure 9.16a. A solid cylinder and a hoop of the 
same radius and mass start rolling at the top of an inclined plane. Which object reaches 
the bottom of the plane first? What is the ratio of their speeds at the bottom?

Both Earth-object systems start with the same gravitational potential energy. As 
they roll, both acquire translational and rotational kinetic energies. We can represent 
the process in a work-energy bar chart (Figure 9.16b). The bar chart helps us construct 
a mathematical description:

mgyi = 1
2 mvf

2 + 1
2 Ivf

2

Since the objects are rolling without skidding, the rotational speed v and translational 
speed v are related as v = v>r. We substitute this into the above energy equation and 
then rearrange:

mgyi = 1
2 am + I

r2 bvf
2

1 vf = H 2mgyiam + I
r2 b

This expression for vf suggests that at the bottom of the inclined plane, the object with 
greater rotational inertia I will have the smaller translational speed vf. Using the informa-
tion in Table 9.5, we have Icylinder = 1

2 mr2 and Ihoop = mr2. Thus Ihoop 7 Icylinder, giving 
the conclusion that the cylinder should reach the bottom first.

We can now find the ratio of their final speeds. We insert the expressions for the 
rotational inertia of the solid cylinder and of the hoop to find their final speeds. For the 

cylinder, vf = 44
3 gyi , and for the hoop, vf = 2gyi . The ratio of their final speeds 

is 44
3 , with the cylinder moving faster. When we perform the experiment (see the 

video), we see that the cylinder reaches the bottom of the plane first.

Hoop

Solid cylinder

Initial positions

Final positions
(compare v’s
when reach
bottom)

(a)

(b)

0

Ugi Ktran f5 Krot f1

FIGURE 9.16 A race between a hoop and a 
 cylinder of the same mass.

VIDEO
9.1
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This is the second testing experiment involving rotational kinetic energy in which 
the outcome matched the prediction. Given this support for our prediction and the lack 
of counterevidence, we will use this mathematical expression for a rigid body’s rota-
tional kinetic energy.

Rotational kinetic energy The rotational kinetic energy of an object with 
 rotational inertia I turning with rotational speed v is

 Krot = 1
2 Iv2 (9.14)

TIP When you encounter a new physical 
quantity, always check whether 

its units make sense. In this particular case, 
the units for I are kg # m2 and the units for 
v2 are 1>s2. Thus, the unit for kinetic energy 
is kg # m2>s2 = 1kg # m>s22 m = N # m = J, the 
correct unit for energy.

Flywheels for storing and providing energy
You stop your car at a stoplight. Before stopping, the car had considerable kinetic en-
ergy; after stopping, the kinetic energy is zero. It has been converted to internal energy 
due to friction in the brake pads. Unfortunately, this thermal energy cannot easily be 
converted back into a form that is useful. Is there a way to convert that translational ki-
netic energy into some other form of energy that would help the car regain translational 
kinetic energy when the light turns green?

Efforts are under way to use the rotational kinetic energy of flywheels (rotating 
disks) for this purpose. Instead of rubbing a brake pad against the wheel and slowing it 
down, the braking system would, through a system of gears or through an electric gen-
erator, convert the car’s translational kinetic energy into the rotational kinetic energy of 
a flywheel. As the car’s translational speed decreases, the flywheel’s rotational speed 
increases. This rotational kinetic energy could then be used to help the car start moving, 
rather than relying entirely on the chemical potential energy of gasoline.

EXAMPLE 9.8 

Multiplying both sides of the equation by 2 and dividing by I, we get

vf
2 =

Mvi
2

I

The rotational inertia of the disk (a solid cylinder) is Icylinder = 11>22mr2. 
Thus,

vf
2 =

Mvi
2

I
=

Mvi
2

1
2mr2

=
2Mvi

2

mr2

Solve and evaluate To find the rotational speed, take the square root 
of both sides of the above equation:

 vf =
vi

r B2M
m

=
20 m>s

0.20 m B211600 kg2120 kg2 = 1300 rad>s

 = 200 rev>s = 12,000 rpm

The hoop has a greater rotational inertia and therefore would have a 
greater rotational kinetic energy at the same rotational speed.Answer

Flywheel rotational speed

A 1600-kg car traveling at 20 m>s approaches a stop sign. If it could 
transfer all of its translational kinetic energy to a 0.20-m-radius, 20-kg 
flywheel while stopping, what rotational speed would the flywheel 
 acquire?

Sketch and translate A sketch of the situation is shown below.  
The system of interest is the car, including the flywheel.

Simplify and diagram The process is represented at 
right with a bar chart. The initial energy of the system 
is the car’s translational kinetic energy; the final energy 
is the flywheel’s rotational kinetic energy. Braking 
converts car’s initial kinetic energy into the flywheel’s 
rotational energy, which is saved for future use. Assume that the fly-
wheel is a solid disk with rotational inertia of 11>22mr2 (see Table 9.5).

Represent mathematically Use the bar chart to help construct an 
energy conservation equation:

 Ktran i = Krot f

 12 Mvi
2 = 1

2 Ivf
2

Try it yourself Could you store more energy in a rotating hoop 
or in a rotating solid cylinder, assuming they have the same mass, 
 radius, and rotational speed?
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REVIEW QUESTION 9.5 Will a can of watery chicken noodle soup roll slower or faster 
down an inclined plane than an equal-mass can of thick English clam chowder?

9.6 Tides and Earth’s day
The level of the ocean rises and falls by an average of 1 m twice each day, a phenom-
enon known as the tides. Many scientists, including Galileo, tried to explain this phe-
nomenon and suspected that the Moon was a part of the answer. Isaac Newton was the 
first to explain how the motion of the Moon actually creates tides. He noted that at any 
moment, different parts of Earth’s surface are at different distances from the Moon and 
that the distance from a given location on Earth to the Moon varied as Earth rotated. 
As illustrated in Figure 9.17, point A is closer to the Moon than the center of Earth or 
point B are, and therefore the gravitational force exerted by the Moon on point A is 
greater than the gravitational force exerted on point B. Due to the difference in forces, 
Earth elongates along the line connecting its center to the Moon’s. This makes water 
rise to a high tide at point A and surprisingly also at B. The water “sags” a little at 
points C and D, forming low tides at those locations. When the Sun is aligned with the 
Moon and Earth, the bulging is especially pronounced.

As the solid Earth rotates beneath the tidal bulges, it attempts to drag the bulges 
with it. A large amount of friction is produced, which converts the rotational kinetic 
energy of Earth into internal energy. The time interval needed for Earth to complete one 
turn on its axis increases by 0.0016 s every 100 years. In other words, the Earth day is 
slowly getting longer. In a very long time, Earth will stop turning relative to the Moon 
and an unmoving tidal bulge will face toward and away from the Moon. This “tidal 
locking” has already occurred on the Moon (although it is solid, the same principle 
applies), which is why on Earth we only see one side of the Moon. It rotates around its 
axis with the same period as it moves around Earth.

Let’s use our new understanding of rotational dynamics to estimate the friction 
force the tides exert on Earth, causing Earth’s rotation rate to decrease.

Tidal
bulge

Tidal
bulge

Low tide

Low tide

Moon

B A

C

D

North Pole

FIGURE 9.17 The ocean bulges on both sides  
of Earth along a line toward the Moon.

EXAMPLE 9.9 

Tidal friction force 
exerted by ocean water
on the rest of Earth

Represent mathematically To estimate the friction force exerted 
by the oceans on Earth, we need to determine the torque produced by 
that force. We can use the rotational form of Newton’s second law if we 
can determine the rotational inertia of Earth and its rotational accelera-
tion. The rotational acceleration of Earth is

 a =
Dv

Dt
=

vf - vi

Dt
=

a +  
2p
Tf

b - a +  
2p
Ti

b
Dt

 =
2p
Dt

a 1
Tf

- 1
Ti
b

Tides slow Earth’s rotation

Estimate the effective tidal friction force exerted by ocean water on 
Earth that causes a 0.0016@s increase in Earth’s rotation time every 
100 years.

Sketch and translate The situation is already sketched in 
 Figure 9.17. The solid Earth is the system; the water covering most 
of its surface is considered an external object for this estimate. Earth 
rotates counterclockwise, taking 24 hours for one revolution (one 
 period), as seen looking down on the North Pole. Remember that when 
an object rotates counterclockwise, its angular velocity is considered 
to be positive. Since Earth’s rotation is gradually slowing, the tidal 
friction force is producing a negative torque, opposite the positive 
sign of the rotational velocity. We need to find the magnitude of the 
force that would increase the time of one revolution by 0.0016 s in 
100 years.

Simplify and diagram Assume that the solid Earth is a sphere cov-
ered uniformly with water on its surface. Assume also that the frictional 
force exerted by the water on Earth is constant in magnitude and exerted 
at the equator. The force exerted by the tidal bulge on Earth produces a 
torque that opposes Earth’s rotation.
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Using Eq. (9.3), we find t=1v-v02>a<-v0>a=
1-7*10-5 rad>s2>1-4*10-22 rad>s22=2 * 1017 s,  
almost 10 billion years.

Answer

where Ti = 24 ha3600 s
1 h

b = 86,400 s, Tf = Ti + DT =  

86,400 s + 0.0016 s, and Dt = 100 yearsa365 days

1 year
b  a86,400 s

1 day
b  

=  3.15 * 109 s.

Because Tf and Ti are so close, your calculator will likely evaluate 
the rotational acceleration of Earth to be zero. To deal with this, we put 
the equation into another form.

 a =
2p
Dt

 a 1
Tf

- 1
Ti
b =

2p
Dt

 aTi - Tf

TiTf
b

 =
2p
Dt

 a - DT
Ti1Ti + DT2 b =

2p
Dt

 a - DT
Ti

2 + Ti DT
b

Now look at the two terms in the denominator, Ti
2 and Ti DT. Because 

DT is so small, the second term is much less than the first term. This 
means the second term can be dropped without affecting the result in 
any significant way. Thus,

a = -  
2p DT
DtTi

2

We can use the rotational form of Newton’s second law to get an 
 alternative expression for Earth’s rotational acceleration:

a =
1
I

 St=
1

2
5 mRE

2
 1FT on ERE sin 9082

The RE in the numerator is the distance from the axis of rotation to the 
surface where the friction force is exerted, the radius of Earth. The RE in 
the denominator is also the radius of Earth.

a =
1

2
5 mRE

2
 1FT on ERE sin 9082 =

5FT on E

2mRE

Setting the two expressions for the magnitude of the rotational accelera-
tion equal to each other, we get

2p DT
DtTi

2 =
5FT on E

2mRE

Solve and evaluate Solve the previous equation for the force of the 
tides on Earth:

 FT on E =
4pmRE DT

5 DtTi
2

 =
4p15.97 * 1024 kg216.38 * 106 m210.0016 s2

513.15 * 109 s2186,400 s22

 = 6.5 * 109 N

The magnitude of this friction force seems big, and it is. But when 
 exerted on an object of such large mass 15.97 * 1024 kg2, the effect  
is extremely tiny. By comparison, the gravitational force that the Sun 
exerts on Earth is 3.5 * 1022 N.

Try it yourself Estimate the time interval in years that it will take 
for Earth’s rotation to change from 24 hours to 27 days.

REVIEW QUESTION 9.6 How can you explain the increasing length of a day on Earth?
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Summary
Rotational kinematics The rotational motion 
of a rigid body can be described using quantities 
similar to those for translational motion—rotational 
 position u, rotational velocity v, and rotational ac-
celeration a. (Section 9.1)

t 5 0

t 1 Dt

t

srDu

u

 ● Rotational position (in radians)

 u = s>r Eq. (9.1)
 ● Rotational velocity (in rad>s)

 v = Du>Dt Eq. (9.2)
 ● Rotational acceleration 1in rad>s22

 a = Dv>Dt Eq. (9.3)

Rotational inertia I is the physical quantity equal 
to the sum of the mr2 terms for each part of an ob-
ject and depends on the distribution of mass relative 
to an axis of rotation. (Sections 9.2 and 9.3)

Axis of rotation

r1

r4

r2

m2

m3

m1

m4

 I = Smr2 Eq. (9.9)

Rotational dynamics A rigid body’s rotational 
acceleration equals the net torque produced by 
forces exerted on the body divided by its rotational 
inertia. (Section 9.3) r1r2

S
F1

S
F2

IBody

 a =
1
I

St Eq. (9.10)

Rotational momentum L is the product of the 
rotational inertia I of an object and its rotational 
velocity v, positive for counterclockwise rotation 
and negative for clockwise rotation. For an isolated 
system (zero net torque exerted on it), the rotational 
momentum of the system is constant. (Section 9.4)

B

A

B
Iivi

A

Ifvf

LAi

0

LBi1 StDt1 LAf5 LBf1

 L = Iv Eq. (9.11)
Translational motion equivalent:

 
u
p = m

u
v  Eq. (6.1)

For isolated system,

 Iivi = If vf Eq. (9.13)
For nonisolated systems, rotational impulse  
St Dt is nonzero.

Rotational kinetic energy Krot of a rigid body 
is energy due to the rotation of the object about a 
particular axis. This is another form of kinetic en-
ergy that is included in the work-energy principle. 
(Section 9.5)

y

0

yi

vf

vf

0

Ugi Ktran f5 Krot f1  Krot = 1
2 Iv2  Eq. (9.14)

Translational motion equivalent:

 Ktran = 1
2 mv2 Eq. (7.5)
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7. Select all the pairs below in which the two physical quantities have the 
same units.
(a) Rotational velocity and translational velocity
(b) Rotational kinetic energy and translational kinetic energy
(c) Linear momentum and rotational momentum
(d) Work and torque
(e) Power and energy
(f) Impulse (that changes linear momentum) and rotational impulse

8. If you turn on a coffee grinding machine sitting on a smooth tabletop, what 
do you expect it to do?
(a) Start rotating in the same direction as the blades rotate
(b) Start rotating in the direction opposite the blade rotation
(c) Grind the coffee without any rotation of the machine

9. A bowling ball is rolling without skidding down an incline. While acceler-
ating down the incline, the ratio of translational kinetic energy to rotational 
kinetic energy of the ball
(a) remains constant and equal to about 0.4.
(b) remains constant and equal to about 2.5.
(c) remains constant; the value depends on the radius of the ball.
(d) decreases.
(e) increases.

10. The Mississippi River carries sediment from higher latitudes toward the 
equator. How does this affect the length of the day?
(a) Increases the day
(b) Decreases the day
(c) Does not affect the day
(d) There is no relation between the mass distribution and the length of 

the day.
11. Two disks are cut from the same uniform board. The radius of disk B is 

twice the radius of the disk A. The disks can rotate around axes with negli-
gible friction. Two very light battery-powered fans are attached to the disks, 
as shown in Figure Q9.11. When switched on, the fans exert equal forces 
on the disks. Which of the following correctly compares and explains the 
rotational accelerations of the disks after the fans are switched on?
(a) aA = 4aB because FB = FA and mB = 4mA.
(b) aA = aB because tB = 2tA and IB = 2IA .
(c) aA = 2aB because tB = 2tA and IB = 4IA.
(d) aA = 4aB because tB = 2tA and IB = 8IA.
(e) aA = 8aB because tB = 2tA and IB = 16IA.

Multiple Choice Questions
1. Is it easier to open a door that is made of a solid piece of wood or a door of 

the same mass made of light fiber with a steel frame?
(a) Wooden door
(b) Fiber door with a steel frame
(c) The same difficulty
(d) Not enough information to answer

2. You push a child on a swing. Why doesn’t the child continue in a vertical 
loop over the top of the swing?
(a) The torque of the force that Earth exerts on the child pulls  

him back.
(b) The swing does not have enough kinetic energy when at  

the bottom.
(c) The swing does not have enough rotational momentum.
(d) All of the above are correct.

3. In terms of the torque needed to rotate your leg as you run, would it be 
 better to have a long calf and short thigh, or vice versa?
(a) Long calf and short thigh
(b) Short calf and long thigh
(c) Does not matter

4. Suppose that two bicycles have equal overall mass, but one has thin light-
weight tires while the other has heavier tires made of the same material. 
Why is the bicycle with thin tires easier to accelerate?
(a) Thin tires have less area of contact with the road.
(b) With thin tires, less mass is distributed at the rims.
(c) With thin tires, you don’t have to raise the large mass of the tire at the 

bottom to the top.
5. When riding a 10-speed bicycle up a hill, a cyclist shifts the chain to a 

 larger-diameter gear attached to the back wheel. What must be true when 
the cyclist shifts to a larger gear?
(a) The torque exerted by the chain on the gear is larger.
(b) The force exerted by the chain on the gear is larger.
(c) The cyclist pedals more frequently to travel the same distance.
(d) Both a and c are correct.

6. The objects in Figure Q9.6 are made of two identical paper cups glued 
 together. Rank the rotational inertias I1, I2, I3, and I4 about the indicated 
axes using the signs = , 7 , and 6 . Explain.

Questions

I2 I4

I1 I3

FIGURE Q9.6

A
r

S
FA

B
2r

S
FB

FIGURE Q9.11

Conceptual Questions
12. Explain your choices for Questions 1–11 (your instructor will choose which 

ones).
13. A spinning raw egg, if stopped momentarily and then released by the fin-

gers, will resume spinning. Explain. Will this happen with a hard-boiled 
egg? Explain.

14. Compare the magnitude of Earth’s rotational momentum about its axis to 
that of the Moon about Earth. The tides exert a torque on Earth and the 
Moon so that eventually they will rotate with the same period. The object 
with the greater rotational momentum will experience the smaller percent 
change in the period of rotation. Will Earth’s solar day increase more than 
the Moon’s period of rotation decreases? Explain.

15. You lay a pencil on a smooth desk (ignore sliding friction). You push the 
pencil, exerting a constant force first directly at its center of mass and then 
close to the tip of the pencil. In both cases, the force is exerted perpendic-
ular to the body of the pencil. If the forces that you exert on the pencil are 
exactly the same in magnitude and direction, in which case is the transla-
tional acceleration of the pencil greater in magnitude?

16. If you watch the dive of an Olympic diver, you note that she continues to 
rotate after leaving the board. However, her center of mass follows a para-
bolic curve. Explain why.

17. Explain why you do not tip over when riding a bicycle but do tip when 
 stationary at a stoplight.

18. Sometimes a door is not attached properly and it will open by itself or close 
by itself. But it will never do both. Why?

19. Why do tightrope walkers carry long, heavy bars?
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14. * Speedometer The speedometer on an automobile measures the rotational 
speed of the axle and converts that to a linear speed of the car, assuming the 
car has 0.62-m-diameter tires. What is the rotational speed of the axle when 
the car is traveling at 20 m>s (45 mph)?

15. * Ferris wheel A Ferris wheel starts at rest, acquires a rotational velocity of 
v rad>s after completing one revolution and continues to accelerate. Write 
an expression for (a) the magnitude of the wheel’s rotational acceleration 
(assumed constant), (b) the time interval needed for the first revolution, 
(c) the time interval required for the second revolution, and (d) the distance 
a person travels in two revolutions if he is seated a distance l from the axis 
of rotation.

16. * You push a disk-shaped platform tangentially on its edge 2.0 m from 
the axle. The platform starts at rest and has a rotational acceleration of 
0.30 rad>s2. Determine the distance you must run while pushing the 
 platform to increase its speed at the edge to 7.0 m>s.

17. **  Estimate what Earth’s rotational acceleration would be in  
rad>s2 if the length of a day increased from 24 h to 48 h during the next 
100 years.

9.3 Newton’s second law for rotational motion
18. A 0.30-kg ball is attached at the end of a 0.90-m-long stick. The ball and 

stick rotate in a horizontal circle. Because of air resistance and to keep the 
ball moving at constant speed, a continual push must be exerted on the 
stick, causing a 0.036@N # m torque. Determine the magnitude of the resis-
tive force that the air exerts on the ball opposing its motion. What assump-
tions did you make?

19. Centrifuge A centrifuge with a 0.40@kg # m2 rotational inertia has a rota-
tional acceleration of 100 rad>s2 when the power is turned on. (a) Deter-
mine the minimum torque that the motor supplies. (b) What time interval  
is needed for the centrifuge’s rotational velocity to increase from zero to 
5000 rad>s?

20. Airplane turbine What is the average torque needed to accelerate the 
 turbine of a jet engine from rest to a rotational velocity of 160 rad>s in  
25 s? The turbine’s rotating parts have a 32@kg # m2 rotational inertia.

21. * A turntable turning at rotational speed 33 rpm stops in 50 s when turned 
off. The turntable’s rotational inertia is 1.0 * 10-2 kg # m2. How large is the 
resistive torque that slows the turntable?

22. * The solid pulley in Figure P9.22 
consists of a two-part disk, which 
initially rotates counterclockwise. 
Two ropes pull on the pulley as 
shown. The inner part has a radius 
of 1.5a, and the outer part has a 
radius of 2.0a. (a) Construct a 
force diagram for the pulley with 
the origin of the coordinate sys-
tem at the center of the pulley. (b) 
Determine the torque produced by 
each force (including the sign) and 
the resultant torque exerted on the 
pulley. (c) Based on the results of 
part (b), decide on the signs of the 
rotational velocity and the rotational 
 acceleration.

23. * The pulley shown in Figure P9.22 is initially rotating clockwise.  
Compare the forces exerted by the ropes on the disk in order for the wheel’s 
rotational velocity to (a) remain constant, (b) increase in magnitude, and 
(c) decrease in magnitude. The outer radius is 2.0a compared to 1.5a for the 
inner radius.

24. The pulley shown in Figure P9.22 is initially rotating in the clockwise 
direction. The force that the rope on the right exerts on it is 1.5F and the 
force that the rope on the left exerts on it is F. Determine the ratio of the 
maximum radius of the inner circle compared to that of the outer circle in 
order for the wheel’s rotational speed to decrease.

Below,  indicates a problem with a biological or medical focus. Problems 
labeled  ask you to estimate the answer to a quantitative problem rather 
than derive a specific answer. Asterisks indicate the level of difficulty of the prob-
lem. Problems with no * are considered to be the least difficult. A single * marks 
moderately difficult problems. Two ** indicate more difficult problems.

9.1 Rotational kinematics
1. The sweeping second hand on your wall clock is 20 cm long. What is (a) 

the rotational speed of the second hand, (b) the translational speed of the tip 
of the second hand, and (c) the rotational acceleration of the second hand? 
Assume the second hand moves smoothly.

2. You find an old record player in your attic. The turntable has two readings: 
33 rpm and 45 rpm. What do they mean? Express these quantities in differ-
ent units.

3. * Consider again the turntable described in the last problem. Determine 
the magnitudes of the rotational acceleration in each of the following situ-
ations. Indicate the assumptions you made for each case. (a) When on and 
rotating at 33 rpm, it is turned off and slows and stops in 60 s. (b) When 
off and you push the play button, the turntable attains a speed of 33 rpm in 
15 s. (c) You switch the turntable from 33 rpm to 45 rpm, and it takes about 
2.0 s for the speed to change. (d) In the situation in part (c), what is the 
magnitude of the average tangential acceleration of a point on the turntable 
that is 15 cm from the axis of rotation?

4. You step on the gas pedal in your car, and the car engine’s rotational speed 
changes from 1200 rpm to 3000 rpm in 3.0 s. What is the engine’s average 
rotational acceleration?

5. You pull your car into your driveway and stop. The drive shaft of your 
car engine, initially rotating at 2400 rpm, slows with a constant rotational 
 acceleration of magnitude 30 rad>s2. How long does it take for the drive 
shaft to stop turning?

6. An old wheat-grinding wheel in a museum actually works. The sign on the 
wall says that the wheel has a rotational acceleration of 190 rad>s2 as its 
spinning rotational speed increases from zero to 1800 rpm. How long does 
it take the wheel to attain this rotational speed?

7. Centrifuge A centrifuge at the same museum is used to separate seeds of 
different sizes. The average rotational acceleration of the centrifuge accord-
ing to a sign is 30 rad>s2. If starting at rest, what is the rotational velocity 
of the centrifuge after 10 s?

8. * Potter’s wheel A fly sits on a potter’s wheel 0.30 m from its axle. The 
wheel’s rotational speed decreases from 4.0 rad>s to 2.0 rad>s in 5.0 s. 
Determine (a) the wheel’s average rotational acceleration, (b) the angle 
through which the fly turns during the 5.0 s, and (c) the distance traveled 
by the fly during that time interval.

9. * During your tennis serve, your racket and arm move in an approximately 
rigid arc with the top of the racket 1.5 m from your shoulder joint. The 
top accelerates from rest to a speed of 20 m>s in a time interval of 0.10 s. 
 Determine (a) the magnitude of the average tangential acceleration of the 
top of the racket and (b) the magnitude of the rotational acceleration of 
your arm and racket.

10. * An ant clings to the outside edge of the tire of an exercise bicycle. When 
you start pedaling, the ant’s speed increases from zero to 10 m>s in 2.5 s. 
The wheel’s rotational acceleration is 13 rad>s2. Determine everything you 
can about the motion of the wheel and the ant.

11. * The speedometer on a bicycle indicates that you travel 60 m while your 
speed increases from 0 to 10 m>s. The radius of the wheel is 0.30 m. 
 Determine three physical quantities relevant to this motion.

12. * You pedal your bicycle so that its wheel’s rotational speed changes from 
5.0 rad>s to 8.0 rad>s in 2.0 s. Determine (a) the wheel’s average rotational 
acceleration, (b) the angle through which it turns during the 2.0 s, and 
(c) the distance that a point 0.60 m from the axle travels.

13. Mileage gauge The odometer on an automobile actually counts axle turns 
and converts the number of turns to miles based on knowledge that the 
diameter of the tires is 0.62 m. How many turns does the axle make when 
traveling 10 miles?

Problems

S
T1 on P 1.5 T1 on P

S

1 2

FIGURE P9.22
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25. A 2.0-kg metal cylinder on a table is placed inside a hoop that is fixed at 
the end of a meter stick. The stick can rotate around a vertical axis that is 
located 20 cm from the cylinder (see Figure P9.25). By exerting a force on 
the stick, you can make the cylinder rotate in a horizontal plane, with the 
bottom surface of the cylinder sliding on the rough table. The coefficient of 
kinetic friction between the cylinder and the table is 0.3. (a) Determine the 
magnitude of the force that you need to exert on the end of the stick  
(perpendicular to it) so that the cylinder moves with a constant speed. 
(b) Determine the work done by your hand on the stick while your hand 
makes one full turn around the axis. Then determine the work done by the 
stick on the cylinder during the same time. Compare the two values and 
comment on the result. Does the result surprise you?

34. ** A string wraps around a 6.0-kg wheel of radius 0.20 m. The wheel is 
mounted on a frictionless horizontal axle at the top of an inclined plane 
tilted 37° below the horizontal. The free end of the string is attached to 
a 2.0-kg block that slides down the incline without friction. The block’s 
acceleration while sliding down the incline is 2.0 m>s2. (a) Draw separate 
force diagrams for the wheel and for the block. (b) Apply Newton’s second 
law (either the translational form or the rotational form) for the wheel and 
for the block. (c) Determine the rotational inertia for the wheel about its 
axis of rotation.

35. * Elena, a black belt in tae kwon do, is experienced in breaking boards with 
her fist. A high-speed video indicates that her forearm is moving with a 
rotational speed of 40 rad>s when it reaches the board. The board breaks in 
0.0040 s and her arm is moving at 20 rad>s just after breaking the board. 
Her fist is 0.32 m from her elbow joint and the rotational inertia of her 
forearm is 0.050 kg # m2. Determine the average force that the board exerts 
on her fist while breaking the board (equal in magnitude to the force that 
her fist exerts on the board). Ignore the gravitational force that Earth exerts 
on her arm and the force that her triceps muscle exerts on her arm during 
the break.

36. ** Like a yo-yo Sam wraps a string 
around the outside of a 0.040-m- radius 
0.20-kg solid cylinder and uses it like a 
yo-yo (Figure P9.36). When released, 
the cylinder accelerates downward at 12>32g. (a) Draw a force diagram for the 
cylinder and apply the translational form 
of Newton’s second law to the cylinder 
in order to determine the force that the 
string exerts on the cylinder. (b) Deter-
mine the rotational inertia of the solid 
cylinder. (c) Apply the rotational form 
of Newton’s second law and determine 
the cylinder’s rotational acceleration. (d) 
Is your answer to part (c) consistent with the application of a = ra, which 
relates the cylinder’s linear acceleration and its rotational acceleration? 
Explain.

37. * Fire escape A unique fire escape for a three-
story house is shown in  Figure P9.37. A 30-kg 
child grabs a rope wrapped around a heavy fly-
wheel outside a bedroom window. The flywheel 
is a 0.40-m-radius uniform disk with a mass of 
120 kg. (a) Make a force diagram for the child as 
he moves downward at increasing speed and an-
other for the flywheel as it turns faster and faster. 
(b) Use Newton’s second law for translational 
motion and the child force diagram to obtain an 
expression relating the force that the rope exerts 
on him and his acceleration. (c) Use Newton’s 
second law for rotational motion and the fly-
wheel force diagram to obtain an expression 
relating the force the rope exerts on the flywheel 
and the rotational acceleration of the flywheel. 
(d) The child’s acceleration a and the flywheel’s 
rotational acceleration a are related by the equa-
tion a = ra, where r is the flywheel’s radius. 
Combine this with your equations in parts (b) 
and (c) to determine the child’s acceleration and 
the force that the rope exerts on the wheel and 
on the child.

38. ** An Atwood machine is shown in Example 9.4. Use m1 =  0.20 kg, 
m2 = 0.16 kg, M = 0.50 kg, and R = 0.10 m. (a) Construct separate force 
diagrams for block 1, for block 2, and for the solid cylindrical pulley. (b) 
Determine the rotational inertia of the pulley. (c) Use the force diagrams for 
blocks 1 and 2 and Newton’s second law to write expressions relating the 
unknown accelerations of the blocks. (d) Use the pulley force diagram and 
the rotational form of Newton’s second law to write an expression for the 
rotational acceleration of the pulley. (e) Noting that a = Ra for the pulley, 
use the three equations from parts (c) and (d) to determine the magnitude of 
the acceleration of the hanging blocks.

l

l

l
C

A
B

l

FIGURE P9.28

Axis of rotation

Top view
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80 cm
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26. * Equation Jeopardy 1 The equation below describes a rotational 
 dynamics situation. Draw a sketch of a situation that is consistent with the 
equation and construct a word problem for which the equation might be a 
solution. There are many possibilities.

-12.2 N210.12 m2 = 311.0 kg210.12 m224a
27. * Equation Jeopardy 2 The equation below describes a rotational 

 dynamics situation. Draw a sketch of a situation that is consistent with the 
equation and construct a word problem for which the equation might be a 
solution. There are many possibilities.

-12.0 N210.12 m2 + 16.0 N210.06 m2 = 311.0 kg210.12 m224a
28. Derive an expression for the 

rotational inertia of the four balls 
shown in  Figure P9.28 about an 
axis perpendicular to the paper 
and passing through point A. The 
mass of each ball is m. Ignore 
the mass of the rods to which the 
balls are attached.

29. * Repeat the previous problem 
for an axis perpendicular to the 
paper through point B.

30. Repeat the previous problem for 
axis BC, which passes through 
two of the balls.

31. * Merry-go-round A mechanic needs to replace the motor for a merry-go-
round. What torque specifications must the new motor satisfy if the merry-
go-round should accelerate from rest to 1.5 rad>s in 8.0 s? You can consider 
the merry-go-round to be a uniform disk of radius 5.0 m and mass 25,000 kg.

32. * A small 0.80-kg train propelled by a fan engine starts at rest and goes 
around a circular track with a 0.80-m radius. The air exerts a 2.0-N force 
on the train. Determine (a) the rotational acceleration of the train and (b) 
the time interval needed for it to acquire a speed of 3.0 m>s. Indicate any 
assumptions you made.

33. * Motor You wish to buy a motor that will be used to lift a 20-kg bundle of 
shingles from the ground to the roof of a house. The shingles are to have a 
1.5@m>s2 upward acceleration at the start of the lift. The very light pulley 
on the motor has a radius of 0.12 m. Determine the minimum torque that 
the motor must be able to provide.

r 5 0.040 m

FIGURE P9.36

FIGURE P9.37
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39. ** A physics problem involves a massive pulley, a bucket filled with sand, 
a toy truck, and an incline (see Figure P9.39). You push lightly on the 
truck so it moves down the incline. When you stop pushing, it moves down 
the incline at constant speed and the bucket moves up at constant speed. 
(a) Construct separate force diagrams for the pulley, the bucket, and the 
truck. (b) Use the truck force diagram and the bucket force diagram to help 
write expressions in terms of quantities shown in the figure for the forces 
F1 on Truck and F2 on Bucket that the rope exerts on the truck and that the rope 
exerts on the bucket. (c) Use the rotational form of Newton’s second law to 
determine if the tension force F1 on Pulley that the rope on the right side exerts 
on the pulley is the same, greater than, or less than the force F2 on Pulley that 
the rope exerts on the left side.

47. * Neutron star An extremely dense neutron star with mass equal to that of 
the Sun has a radius of about 10 km—about the size of Manhattan Island. 
These stars are thought to rotate once about their axis every 0.03 to 4 s, 
depending on their size and mass. Suppose that the neutron star described 
in the first sentence rotates once every 0.040 s. If its volume then expanded 
to occupy a uniform sphere of radius 1.4 * 108 m (most of the Sun’s mass 
is in a sphere of this size) with no change in mass or rotational momentum, 
what time interval would be required for one rotation? By comparison, the 
Sun rotates once about its axis each month.

48. * A boy of mass m is standing on the edge of a merry-go-round platform, 
which is initially rotating with a constant rotational velocity vi (initial 
state). The rotational inertia of the merry-go-round is I, and the radius of 
the platform is r. After the boy steps down from the platform, tangentially 
to its edge, the merry-go-round continues rotating with a smaller rotational 
velocity vf, and the boy continues moving away from the platform with 
constant speed v (final state). (a) Draw three rotational momentum bar 
charts, choosing the boy, the merry-go-round, and both of them as a system. 
(b) Derive the expression for vf in terms of the relevant quantities.

49. * Bar chart jeopardy The rotational momentum bar chart in Figure P9.49 
describes a rotational dynamics situation. Draw a sketch of a situation that 
is consistent with the equation and write a word problem to which the bar 
chart could apply.

40. * A thin rod of length L and mass m rotates around an axis perpendicular to 
the rod, passing through the rod’s left end. Treat the rod as an object made 
up of five rods of length L>5. Derive an expression for the rotational inertia 
of this five-piece object around the same axis, assuming each piece is a 
point-like object with mass m>5. Compare your result with the expression 
for the rotational inertia of the one-piece rod 1I = 1

3 mL22. Discuss the simi-
larities and the differences.

9.4 Rotational momentum
41. * (a) Determine the rotational momentum of a 10-kg disk-shaped flywheel 

of radius 9.0 cm rotating with a rotational speed of 320 rad>s. (b) With 
what magnitude rotational speed must a 10-kg solid sphere of 9.0 cm radius 
rotate to have the same rotational momentum as the flywheel?

42. Ballet A ballet student with her arms and a leg extended spins with an ini-
tial rotational speed of 1.0 rev>s. As she draws her arms and leg in toward 
her body, her rotational inertia becomes 0.80 kg # m2 and her rotational 
velocity is 4.0 rev>s. Determine her initial rotational inertia.

43. * A 0.20-kg block moves at the end of a 0.50-m string along a circular path 
on a frictionless air table. The block’s initial rotational speed is 2.0 rad>s. 
As the block moves in the circle, the string is pulled down through a hole in 
the air table at the axis of rotation. Determine the rotational speed and tan-
gential speed of the block when the string is 0.20 m from the axis.

44. * Puck on a string You attach a 100-g puck to a string and let the puck 
glide in a circle on a horizontal, frictionless air table. The other end of the 
string passes through a hole at the center of the table. You pull down on the 
string so that the puck moves along a circular path of radius 0.40 m. It com-
pletes one revolution in 4.0 s. If you pull harder on the string so the radius of 
the circle slowly decreases to 0.20 m, what is the new period of revolution?

45. * Equation Jeopardy 3 The equation below describes a process. Draw a 
sketch representing the initial and final states of the process and construct a 
word problem for which the equation could be a solution.a 2

5
 mR2b a 2p

30 days
b = c 2

5
 ma R

100
b2 d a 2p

Tf
b

46. ** A student sits motionless on a stool that can turn friction-free about its 
vertical axis (total rotational inertia I). The student is handed a spinning 
bicycle wheel, with rotational inertia Iwheel, that is spinning about a vertical 
axis with a counterclockwise rotational velocity v0. The student then turns 
the bicycle wheel over (that is, through 1808). Estimate, in terms of v0, the 
final rotational velocity acquired by the student.

53. * Flywheel energy for car The U.S. Department of Energy had plans for 
a 1500-kg automobile to be powered completely by the rotational kinetic 
energy of a flywheel. (a) If the 300-kg flywheel (included in the 1500-kg 
mass of the automobile) had a 6.0-kg # m2 rotational inertia and could turn 
at a maximum rotational speed of 3600 rad>s, determine the energy stored 
in the flywheel. (b) How many accelerations from a speed of zero to 15 m>s 
could the car make before the flywheel’s energy was dissipated, assuming 
100% energy transfer and no flywheel regeneration during braking? Ignore 
rotational kinetic energy of car wheels.

9.5 Rotational kinetic energy
50. A grinding wheel with rotational inertia I gains rotational kinetic energy 

K after starting from rest. Determine an expression for the wheel’s final 
rotational speed.

51. * The rotational speed of a flywheel increases by 40%. By what percent 
does its rotational kinetic energy increase? Explain your answer.

52. ** Two uniform disks are made from the same material and have equal 
masses. The radius of disk B is three times larger than the radius of disk 
A. The disks touch each other and rotate at constant angular speed without 
skidding (Figure P9.52). Determine (a) the ratio of the disks’ thicknesses 
dB>dA, (b) the ratio of the disks’ angular velocities vB>vA, (c) the ratio 
of the disks’ rotational inertias IB>IA, (d) the ratio of the disks’ rotational 
momenta LB>LA, and (e) the ratio of the disks’ rotational kinetic energies 
Krot B>Krot A.

IPulley

F1 on Truck

m1

F2 on Bucket

m2

u

FIGURE P9.39
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54. * Flywheel energy Engineers at the University of Texas at Austin are 
developing an Advanced Locomotive Propulsion System that uses a gas 
turbine and perhaps the largest high-speed flywheel in the world in terms of 
the energy it can store. The flywheel can store 4.8 * 108 J of energy when 
operating at its maximum rotational speed of 15,000 rpm. At that rate, the 
perimeter of the rotor moves at approximately 1,000 m>s. Determine the 
radius of the flywheel and its rotational inertia.

55. * Equation Jeopardy 4 The equations below represent the initial and final 
states of a process (plus some ancillary information). Construct a sketch of 
a process that is consistent with the equations and write a word problem for 
which the equations could be a solution.

 180 kg219.8 N>kg2116 m2 = 1
2 180 kg2vf

2 + 1
2 1240 kg # m22vf

2

 vf = 10.40 m2vf

56. ** Rotating student A student sitting on a chair on a circular platform of 
negligible mass rotates freely on an air table at initial rotational speed  
2.0 rad>s. The student’s arms are initially extended with 6.0-kg dumbbells 
in each hand. As the student pulls her arms in toward her body, the dumb-
bells move from a distance of 0.80 m to 0.10 m from the axis of rotation. 
The initial rotational inertia of the student’s body (not including the dumb-
bells) with arms extended is 6.0 kg # m2, and her final rotational inertia is 
5.0 kg # m2. (a) Determine the student’s final rotational speed. (b) Deter-
mine the change of kinetic energy of the system consisting of the student 
together with the two dumbbells. (c) Determine the change in the kinetic 
energy of the system consisting of the two dumbbells alone without the  
student. (d) Determine the change of kinetic energy of the system consist-
ing of the student alone without the dumbbells. (e) Compare the kinetic 
energy changes in parts (b) through (d).

57. * A turntable whose rotational inertia is 1.0 * 10-3 kg # m2 rotates on a fric-
tionless air cushion at a rotational speed of 2.0 rev>s. A 1.0-g beetle falls to 
the center of the turntable and then walks 0.15 m to its edge. (a) Determine 
the rotational speed of the turntable with the beetle at the edge. (b) Deter-
mine the kinetic energy change of the system consisting of the turntable 
and the beetle. (c) Account for this energy change.

58. ** Repeat the previous problem, only assume that the beetle initially falls 
on the edge of the turntable and stays there.

59. * A bug of a known mass m stands at a distance d cm from the axis of a 
spinning disk (mass md and radius rd) that is rotating at ƒ i revolutions per 
second. After the bug walks out to the edge of the disk and stands there, the 
disk rotates at ƒf revolutions per second. (a) Use the information above to 
write an expression for the rotational inertia of the disk. (b) Determine the 
change of kinetic energy in going from the initial to the final situation for 
the total bug-disk system.

60. * Merry-go-round A carnival merry-go-round has a large disk-shaped 
platform of mass 120 kg that can rotate about a center axle. A 60-kg student 
stands at rest at the edge of the platform 4.0 m from its center. The platform 
is also at rest. The student starts running clockwise around the edge of the 
platform and attains a speed of 2.0 m>s relative to the ground. (a) Deter-
mine the rotational velocity of the platform. (b) Determine the change of 
kinetic energy of the system consisting of the platform and the student.

61. *  You hold an apple by its stem between your thumb and index finger 
and spin it so that the apple is rotating at approximately constant speed. 
Estimate the rotational kinetic energy and the rotational momentum of the 
apple. Indicate any assumptions that you made.

General Problems
62. * Stopping Earth’s rotation Suppose that Superman wants to stop Earth so 

it does not rotate. He exerts a force on Earth 
u
FS on E at Earth’s equator tan-

gent to its surface for a time interval of 1 year. What magnitude force must 
he exert to stop Earth’s rotation? Indicate any assumptions you make when 
completing your estimate.

63. *   Punting a football Estimate the tangential acceleration of 
the foot and the rotational acceleration of the leg of a football punter dur-
ing the time interval that the leg starts to swing forward in an arc until the 
instant just before the foot hits the ball. Indicate any assumptions that you 
make and be sure that your method is clear.

64. *  Estimate the average rotational acceleration of a car tire as you 
leave an intersection after a light turns green. Discuss the choice of num-
bers used in your estimate.

65. *  Triceps and darts Your 
upper arm is horizontal and your 
forearm is vertical with a 0.010-
kg dart in your hand (Figure 
P9.65). When your triceps muscle 
contracts, your forearm initially 
swings forward with a rotational 
acceleration of 35 rad>s2. Deter-
mine the force that your triceps 
muscle exerts on your forearm 
during this initial part of the throw. 
The rotational inertia of your fore-
arm is 0.12 kg # m2 and the dart is 
0.38 m from your elbow joint.  
Your triceps muscle attaches 0.03 
m from your elbow joint.

66. *  Bowling At the start of your throw of a 2.7-kg bowling ball,  
your arm is straight behind you and horizontal (Figure P9.66).  
Determine the rotational acceleration of your arm if the muscle is  
relaxed. Your arm is 0.64 m long, has a rotational inertia of 0.48 kg # m2, 
and has a mass of 3.5 kg with its center of mass 0.28 m from your  
shoulder joint.

67. **  Leg lift You are doing one-leg leg lifts (Figure P9.67) and decide 
to estimate the force that your iliopsoas muscle exerts on your upper leg 
bone (the femur) when being lifted (the lifting involves a variety of mus-
cles). The mass of your entire leg is 15 kg, its center of mass is 0.45 m from 
the hip joint, and its rotational inertia is 4.0 kg # m2, and you estimate that 
the rotational acceleration of the leg being lifted is 35 rad>s2. For calcula-
tion purposes assume that the iliopsoas attaches to the femur 0.10 m from 
the hip joint. Also assume that the femur is oriented 158 above the hori-
zontal and that the muscle is horizontal. Estimate the force that the muscle 
exerts on the femur.

0.38 m

0.03 m
Triceps

FIGURE P9.65

cm

15°

0.10 m
0.45 m

15°

Hip bone Iliopsoas Femur

FIGURE P9.67

2.7 kg cm

Axis of
rotation

0.28 m

0.64 m

FIGURE P9.66
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68. * A horizontal, circular platform can rotate around a vertical axis at its 
center with negligible friction. You decide to use the rotating platform 
to design a procedure that will allow you to determine the unknown ro-
tational inertias of different objects, for example, a bowl. You know the 
rotational inertia of the platform IP. Which of the following procedures 
would best serve your task? (More than one answer could be correct.) 
Comment on the procedures that are not suitable and explain what is 
wrong with them.
(a) Exert a constant torque t on the empty platform and measure its 

angular acceleration aP. Then place the bowl on the platform at its 
center and repeat the previous experiment, obtaining aPB. Calculate the 

 rotational inertia of the bowl using the expression IB =
t

aPB - aP
 .

(b) Perform the same experiment as in (a) but use the expression 

IB = IPa aP

aPB
- 1b .

(c) Spin the empty platform and measure its angular velocity vi. While 
the platform is rotating, place the bowl carefully on the platform at its 
center. Wait until the bowl rotates together with the platform. Measure 
the final angular velocity of the bowl-platform system vf. Calculate the 

rotational inertia of the bowl using the expression IB = IPavi

vf
- 1b .

(d) Perform the same experiment as in (c) but use the expression 

IB = IPavi
2

vf
2 - 1b .

(e) Measure the mass of the platform mP, the mass of the bowl mB, the 
radius of the platform rP, and the radius of the bowl rB. Calculate the 

rotational inertia of the bowl using the expression IB = IP
# mBrB

2

mPrP
2 .

69. * You have an empty cylindrical 
metal can and two metal nuts. In 
your first experiment, you spin the 
can around its axis and place it on 
a rough table (Figure P9.69a). The 
can slows down due to friction, 
with the rotational acceleration 
a1 = 30 rad>s2 until it stops ro-
tating. In your second experiment, 
you first fix two nuts near the 
center of the can (Figure P9.69b) 
and spin it again before placing it 
on the table. In this case, the can 
slows down with the rotational 
 acceleration a2 = 38 rad>s2. In 
your third experiment, you spin the 
can with the nuts fixed at opposite 
sides of the can (Figure P9.69c). 
Now the can slows down with 
rotational acceleration a3 = 26 rad>s2. Explain (a) why a2 7 a1, (b) why 
a3 6 a2, and (c) why a3 6 a1.

70. ** In the previous problem, each nut has a mass of 8.0 g. The distances 
 between the centers of mass of the nuts and the axis of rotation are 0.8 
cm in Experiment 2 and 3.5 cm in Experiment 3. Determine the rotational 
inertia of the can (without nuts). Indicate any assumptions that you made. 
(Hint: The torque due to the kinetic friction force in Experiments 2 and 3 is 
the same.)

71. * Superball If you give a superball backspin and throw it toward a hori-
zontal floor, it is possible that the ball bounces backward, as shown in 
Figure P9.71. If the ball has a color pattern or stripes, you may also notice 
that during the collision with the ground, the direction of rotation of the 
ball changes, as indicated in the figure. Both changes (the change of the 
ball’s translational velocity and the change of the ball’s angular velocity) 
are the result of a force exerted on the ball by the ground during the colli-
sion. (a) In which approximate direction did the ground exert the force on 
the ball in the case shown in the figure? Choose the best answer from the 
options given in the figure and explain your answer. (b) The ball has initial 
and final velocity (with components vxi, vyi and vxf, vyf) and initial and final 
angular velocity (vi and vf). During the collision, the ground exerts a force 

Fx Fy

vxf - vxi

vyf - vyi

vf - vi

72. ** Yo-yo trick A yo-yo rests on a horizontal table. The yo-yo is free to 
roll but friction prevents it from sliding. When the string exerts one of the 
following tension forces on the yo-yo (shown in Figure P9.72), which 
way does the yo-yo roll? Try the problem for each force: (a) 

u
TA S on Y; 

(b) 
u
TB S on Y; and (c) 

u
TC S on Y. (Hint: Think about torques about a pivot point 

where the yo-yo touches the table.)(a)

(b)

(c)

FIGURE P9.69

(A)

(E)

(D)(F)

(B)(H)

(C)(G)

Svi

vi

vf

Svf

FIGURE P9.71

A B C

4a

2a

FIGURE P9.72

73. *  White dwarf A star the size of our Sun runs out of nuclear fuel 
and, without losing mass, collapses to a white dwarf star the size of our 
Earth. If the star initially rotates at the same rate as our Sun, which is once 
every 25 days, determine the rotation rate of the white dwarf. Indicate any 
assumptions you make.

Reading Passage Problems
Rolling versus sliding Our knowledge of rotational kinetic energy helps explain 
a very simple but rather mysterious experiment that you can perform at home. 
For this experiment, you need two identical plastic water bottles (1 and 2). 
Fill bottle 1 with snow (if you do not have snow, you can use whipped cream). 
Fill bottle 2 with water so that the masses of filled bottles are the same. Place 
one bottle at the top of an inclined plane and let it roll down. Then repeat the 
experiment with the other bottle (Figure 9.18). You observe an interesting effect: 
when bottle 1 rolls down, it rotates and the solid snow inside rotates with the 
bottle. Bottle 2 rotates, too, but the water inside does not rotate much. Thus, in 
effect, the water slides down the incline and does not roll. When the snow-filled 
bottle rolls down, it rotates as a solid cylinder, acquiring rotational kinetic energy 
in addition to translational kinetic energy. In the case of the water-filled bottle, 
only the bottle rotates; the water inside just translates. Rolling is a combination 
of translation and rotation, whereas sliding involves only translation. The water 
bottle has almost no rotational kinetic energy and a larger translational kinetic 
energy at the end of the plane.

(determined by Fx and Fy) on the ball. Complete the table below by drawing 
crosses in the cells that correctly connect changes of the quantities in the 
first column and the components of the force during the collision. Explain 
your answers.
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74. Which bar chart in Figure P9.74 corresponds to the bottle filled with solid 
snow rolling from the top of the incline to the bottom?
(a) Bar chart A
(b) Bar chart B
(c) Both charts could represent the trip.

78. If the Rance Tidal Power Station in France could produce power 24 hours a 
day, which answer below is closest to the daily amount of energy in joules 
that it could produce?
(a) 240 J (b)  240 * 106 J
(c) 6 * 109 J (d)  2.5 * 1010 J
(e) 2 * 1013 J

79. Suppose a tidal basin is 5 m above the ocean at low tide and that the area of 
the basin is 4 * 107 m2 (about 4 miles by 4 miles). Which answer below is 
closest to the gravitational potential energy change if the water is released 
from the tidal basin to the low-tide ocean level? The density of water is 
1000 kg>m3. (Hint: The level does not change by 5 m for all of the water.)
(a) 5 * 108 J (b)  5 * 1011 J
(c) 1 * 1012 J (d)  5 * 1012 J
(e) 1 * 1013 J

80. The Rance tidal basin can only produce electricity when what is  occurring?
(a) Water is moving into the estuary from the ocean.
(b) Water is moving into the ocean from the estuary.
(c) Water is moving in either direction.
(d) The Moon is full.
(e) The Moon is full and directly overhead.

81. Why do water turbines seem more promising than tidal basins for 
 producing electric energy?
(a) Turbines are less expensive to build.
(b) Turbines have less impact on the environment.
(c) There are many more locations for turbines than for tidal basins.
(d) Turbines can operate 24 hours>day versus only 10 hours>day for tidal 

basins.
(e) All of the above

82. Why do water turbines have an advantage over air turbines (windmills)?
(a) Air moves faster than water.
(b) The energy density of moving water is much greater than that of 

 moving air.
(c) Water turbines can float from one place to another, whereas air 

 turbines are fixed.
(d) All of the above
(e) None of the above

83. Which of the following is a correct statement about water turbines?
(a) Water turbines can operate only in moving tidal water.
(b) Water turbines can produce only a small amount of electricity.
(c) Water turbines have not had a proof of concept.
(d) Water turbines cause significant ocean warming.
(e) None of the above are correct statements.

Bottle 1 containing snow Bottle 2 containing water

Snow
rotates.

Water does
not rotate.

FIGURE 9.18

0

Ugi Ktran f5 Krot f1

Bar chart A

0

Ugi Ktran f5 Krot f5

Bar chart B

FIGURE P9.74

Turbine and 
generator

Tide coming in

Tide going out

Turbine and 
generator

As the tide rises and falls, 
water passes through the 
turbine, which runs a 
generator.

FIGURE 9.19 Dams built across tidal basins can generate electric power.

75. Which bar chart in Figure P9.74 corresponds to the bottle with the shortest 
time interval from the top of the incline to the bottom?
(a) Bar chart A
(b) Bar chart B
(c) The charts represent the same time  interval for the trip.

76. Based on the results from the two previous questions, which bottle should 
take the shortest time interval to complete the race?
(a) Bottle 1
(b) Bottle 2
(c) Both bottles take the same time interval.

77. Which statement best explains your answer to the previous problem?
(a) Most of the initial gravitational potential energy is converted into 

translational kinetic energy.
(b) Some of the initial gravitational potential energy is converted to 

 rotational kinetic energy.
(c) All initial gravitational potential energy is converted to kinetic energy.

Tidal energy Tides are now used to generate electric power in two ways. In the 
first, huge dams can be built across the mouth of a river where it exits to the 
ocean. As the ocean tide moves in and out of this tidal basin or estuary, the water 
flows through tunnels in the dam (see Figure 9.19). This flowing water turns 
turbines in the tunnels that run electric generators. Unfortunately, this technique 
works best with large increases in tides—a 5-m difference between high and 
low tide. Such differences are found at only a small number of places. Currently, 
France is the only country that successfully uses this power source. A tidal 
basin plant in France, the Rance Tidal Power Station, makes 240 megawatts of 
power—enough energy to power 240,000 homes. Damming tidal basins can have 
negative environmental effects because of reduced tidal flow and silt buildup. 
Another disadvantage is that they can only generate electricity when the tide is 
flowing in or out, for about 10 hours each day.

A second method for collecting energy from the tidal flow (as well as 
all water flow) is to place turbines directly in the water—like windmills in 
moving water instead of in moving air. These water turbines have the advan-
tages that they are much cheaper to build, they do not have the environmental 
problems of a tidal basin, and there are many more suitable sites for such water 
flow energy farms. Also, the energy density of flowing water is about 800 
times the energy density of dry air flow. Verdant Power is developing turbine 
prototypes in the East River near New York City and in the Saint Lawrence 
Seaway in Canada, and they are looking at other sites in the Puget Sound and 
all over the world. The worldwide potential for hydroelectric power is about 
25 terawatts = 25 * 1012 J>s—enough to supply the world’s energy needs.
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