ROTATIONAL MOTION

Name ____

Mech HW-67

- 1. A bicycle wheel is mounted on a fixed, frictionless axle. A light string is wound around the wheel's rim, and a weight is attached to the string at its free end. The diagrams below depict the situation at three different instants:
 - At $t = t_1$, the weight is released from rest.
 - At $t = t_2$, the weight is falling and the string is still partially wound around the wheel.
 - At $t = t_3$, the weight and string have both reached the ground.

Note: The above diagrams do not represent stroboscopic photographs of the wheel.

- a. What is the direction of the angular velocity $\vec{\omega}$ of the wheel at each time shown? If $|\vec{\omega}| = 0$ at any time, state so explicitly. Explain.
- b. What is the direction of the wheel's angular acceleration $\vec{\alpha}$ at each time shown? If $|\vec{\alpha}| = 0$ at any time, state so explicitly. Explain.
- c. Rank the magnitudes of the centripetal acceleration of point A at the three times shown (a_{A1}, a_{A2}, a_{A3}) . If any of these is zero, state so explicitly. Explain your reasoning.

- 2. A small piece of clay is stuck near the edge of a phonograph turntable. Let α represent the angular contribetal acceleration of the clay angular acceleration of the clay and \vec{a} , represent the centripetal acceleration of the clay.
 - For each situation described below, describe a possible motion of the turntable. (Some parts have more than one correct answer.) Explain your reasoning in each case.

i.
$$|\vec{\alpha}| = 0$$
 and $|\vec{a}_r| = 0$

ii.
$$|\vec{a}| = 0$$
 and $|\vec{a}_r| \neq 0$

iii.
$$|\vec{a}| \neq 0$$
 and $|\vec{a}_r| \neq 0$

- b. The equation " $\vec{a} = \vec{a}_r / r$ " is *not* a correct vector equation.
 - Explain how you can tell that the vector equation above is not correct.

ii. Is " $\alpha = a_r/r$ " a correct scalar equation? Explain why or why not.