# Physics 211 

Sections $1 \& 70$
Dr. Geoffrey Lovelace
Fall 2012
Lecture 23 (11/29/12)

## Lecture 23 outline

- Announcements
- Class participation followup
- Rigid body motion
- Stable equilibrium
- Rotational dynamics
- Moment of inertia
- Example: opening a door
- Rotational work and kinetic energy
- Automotive torque \& power


## Announcements

- Homework \#10: due Tuesday at 11:59PM - Homework \#11: last homework
- Course schedule updated, slides posted at piazza.com
- Reading: Finish chapter 8
- Office hours: 10AM-11AM, 4PM-5PM today
- McCarthy Hall room 601B
- Final exam December 20, 9:30AM-11:20AM
- Planning to skip the final exam? See me in office hours or by appointment!

| Date | Event |
| :--- | :--- |
| Nov 15 | Exam 3 |
| Nov 20 | Fall Recess - No class |
| Nov 22 | Fall Recess - No class |
| Nov 27 | Rigid body rotation, torque |
| Nov 29 | Rotational dynamics, rotational energy |
| Dec 4 | Angular momentum, rigid body wrap-up HW \#10 due |
| Dec 6 | Harmonic motion |
| Dec 11 | Harmonic motion \& waves |
| Dec 13 | Gravitational waves, harmonic motion, black holes, HW \# 11 due |
| Dec 20 | Final exam 9:30AM-11:20AM |

## Lecture 23 outline

- Announcements
- Class participation followup
- Rigid body motion
- Stable equilibrium
- Rotational dynamics
- Moment of inertia
- Example: opening a door
- Rotational work and kinetic energy
- Automotive torque \& power


Out of screen $+$
"counterclockwise"


Tangential velocity


Centripetal accel.


Tangential accel.


Angular velocity


Angular accel.


Torque 4



Out of screen

"counterclockwise" X Into screen

Tangential velocity


Centripetal accel.


Tangential accel.


Angular velocity


Angular accel.


Torque $\leftarrow$


## Clicker question \#111a

- If the car shown below accelerates forward to a speed of $20 \mathrm{mi} / \mathrm{hr}$, what is the direction of the tangential acceleration of point $x$ ?



## Clicker question \#111b

- If the car shown below accelerates forward to a speed of $20 \mathrm{mi} / \mathrm{hr}$, what is the direction of the centripetal acceleration of point $x$ ?



## Clicker question \#111c

- If the car shown below accelerates forward to a speed of $20 \mathrm{mi} / \mathrm{hr}$, what is the direction of the final angular velocity of point $x$ ?



## Clicker question \#111d

- If the car shown below accelerates forward to a speed of $20 \mathrm{mi} / \mathrm{hr}$, what is the direction of the angular acceleration of point $x$ ?



## Clicker question \#111e

- If the car shown below accelerates forward to a speed of $20 \mathrm{mi} / \mathrm{hr}$, what is the direction of the torque of point $x$ ?



## Lecture 23 outline

- Announcements
- Class participation followup
- Rigid body motion
- Stable equilibrium
- Rotational dynamics
- Moment of inertia
- Example: opening a door
- Rotational work and kinetic energy
- Automotive torque \& power


## Example of equilibrium: humans



## Stable equilibrium

- Condition for stable equilibrium: center of mass is above base of support


Balanced carefully on narrow base of support (point)

Disturbance produces displacing torque


## Clicker question \#108

## Question 8.15b Tipping Over II

Consider the two configurations of books shown below. Which of the following is true?

| A | case 1 will tip |
| :---: | :--- |
| B | case 2 will tip |
| C | both will tip |
| D | neither will tip |



## Lecture 23 outline

- Announcements
- Class participation followup
- Rigid body motion
- Equilibrium examples: brick stacking, traction
- Rotational dynamics
- Moment of inertia
- Example: opening a door
- Rotational work and kinetic energy
- Automotive torque \& power


## Moment of inertia

- Rotational analog of mass
- I.e. a measure of rotational inertia
- Newton's second law

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{\text {net }}=m \overrightarrow{\mathbf{a}} \\
\overrightarrow{\mathbf{F}}_{\text {net }}=\text { net force }
\end{gathered}
$$

$m=$ mass $\overrightarrow{\mathbf{a}}=$ accel.
Describes motion of

$$
\begin{gathered}
\vec{\tau}_{\text {net }}=I \vec{\alpha} \\
\vec{\tau}_{\text {net }}=\text { torque } \vec{\alpha}=\text { angular accel } . \\
I=\text { Moment of inertia }
\end{gathered}
$$

Describes rotational motion

## center of mass

- Computing moment of inertia
- Depends on mass distribution
- System of individual particles $I=\sum m_{i} r_{i}^{2}$
- Continuous object: derive with calculus


## Moment of inertia

- Examples

(e) Solid cylinder or disk

(d) Thin cylindrical shell, hoop, or ring


## Clicker question \#106

## Question 8.9 Moment of Inertia

Two spheres have the same radius and equal masses. One is made of solid aluminum, and the other is made from a hollow shell of gold.

Which one has the bigger moment of inertia about an axis through its center?

A solid aluminum
B hollow gold
C same

same mass \& radius

## Clicker question \#107

- A disk and ring (equal mass) start from rest at the same time down identical ramps. Which reaches the bottom of the ramp first?


c Both arrive at the same time
(D) Not enough information to know


## Ex. 8.12

- A student opens a 12 kg door by applying a force of 40 N at a perpendicular distance 0.90 m from the hinges. If the door is 1.0 m wide, what is the angular acceleration?


$$
\begin{gathered}
\text { Given: } \\
\begin{aligned}
& r_{\perp}=0.90 \mathrm{~m} \\
& F=40 \mathrm{~N} \\
& L=1.0 \mathrm{~m} \\
& M=12 \mathrm{~kg} \\
& \text { Goal: } \\
& \alpha=?
\end{aligned}
\end{gathered}
$$

Principles \& eqns.:

$$
\vec{\tau}=I \vec{\alpha}
$$


(k) Thin rectangula sheet
Ex. 8.12

Given:

$$
\begin{aligned}
r_{\perp} & =0.90 \mathrm{~m} \\
F & =40 \mathrm{~N} \\
L & =1.0 \mathrm{~m} \\
M & =12 \mathrm{~kg}
\end{aligned}
$$

## Goal:

$$
\alpha=?
$$

Equation:

$$
\vec{\tau}=I \vec{\alpha}
$$

$\alpha=\frac{\tau}{I}=\frac{r_{\perp} F}{\frac{1}{3} M L^{2}}=\frac{3(0.90 \mathrm{~m})(40 \mathrm{~N})}{(12 \mathrm{~kg})\left(1.0 \mathrm{~m}^{2}\right)}=9.0 \mathrm{rad} / \mathrm{s}^{2}$
Axis

(k) Thin rectangula sheet

## Lecture 23 outline

- Announcements
- Class participation followup
- Rigid body motion
- Stable equilibrium
- Rotational dynamics
- Moment of inertia
- Example: opening a door
- Rotational work and kinetic energy
- Automotive torque \& power


## Rotational energy

- Rotational work for a single force
$W=\tau \theta$

$$
W=F d
$$

Sign: + if $\vec{\tau}$ points along $\vec{\omega}$,

- if $\vec{\tau}$ points opposite $\vec{\omega}$
- Rotational power

$$
P=\tau \omega
$$

$$
P=F v
$$

Sign: + if $\vec{\tau}$ points along $\vec{\omega}$,

- if $\vec{\tau}$ points opposite $\vec{\omega}$
- Rotational kinetic energy

$$
K=\frac{1}{2} I \omega^{2}
$$

$$
K=\frac{1}{2} m v^{2}
$$

## Clicker question \#108

## Question 8.8a Dumbbell I

A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater center-of-mass speed?

case (a)
B case (b)
© no difference
D it depends on the rotational inertia of the dumbbell


## Clicker question \#109

## Question 8.8b Dumbbell II

A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater energy?

case (a)
B case (b)
(C) no difference
it depends on the rotational inertia of the dumbbell


## Ex. 8.16

- A ring is released from rest and rolls down the ramp without slipping, and no energy is lost to friction. What is the linear speed of the ring's center of mass when it reaches the bottom?
Given

$$
\begin{array}{ll}
h=0.25 \mathrm{~m} & v_{0}=0 \\
I=M R^{2} & \omega_{0}=0
\end{array}
$$

Goal: $v_{\mathrm{CM}}$

Principles \& eqns.:

$$
K=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2} \quad v=r \omega
$$

Conservation of

$$
U=m g h \quad \text { energy }
$$



(d) Thin cylindrical shell, hoop, or ring

## Ex. 8.16

Given: $h=0.25 \mathrm{~m} \quad v_{0}=0$

$$
I=M R^{2} \quad \omega_{0}=0
$$

Goal: $v_{\mathrm{CM}}$
Principles \& eqns.:

$$
\begin{gathered}
K=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2} \quad v=r \omega \quad U=m g h \\
m g h=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}=\frac{1}{2} m R^{2} \frac{v^{2}}{R^{2}}+\frac{1}{2} m v^{2} \\
g h=\frac{1}{2} v^{2}+\frac{1}{2} v^{2} \quad v=\sqrt{g h} \\
v=\sqrt{(0.25 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

## Example: car

- Basic idea
- Engine: gives angular acceleration to a flywheel
- Transmission: connect flywheel to axls
- Uses gears: wheels have lower angular speed
- Engine ratings
- Torque: determines how much angular acceleration engine can give to flywheel
- Power: rotational power output of engine $P=\tau \omega$
- Dealers quote max torque, max power "King of torque" http://www.youtube.com/watch?v=JR3nQf79gtc
- Torque roughly constant at all angular velocities
- Power roughly linear in angular velocity

Certificate of Performance


## Engine

1.8-Liter 4-Cylinder DOHC 16-Valve with Dual Variable Valve Timing with intelligence (VVT-i); 132 hp @ 6000 rpm, 128 lb.-ft. @ 4400 rpm

# Class participation \#22 

- 0. Full name
- 1. I would most like to see another in-class worked example about...
- Center of mass
- Torque
- Rotational dynamics
- Trans./rot. equilibrium \& free-body diagrams
- Rotational energy/power/work

