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Chapter 13:  Rotation of a Rigid Body

The rigid body model:

Practitioners of other sciences often poke fun at 
physicists who stereotypically start off a class 
by asking you to “Consider a spherical cow…”

In fact, this is the “particle model”, which has 
actually served us quite well…until now.

In the particle model, the structure (distribution of matter) 
makes no difference to the analysis.  However, for rotating 
objects, the distribution of matter is key.

This chapter introduces the “rigid body model”, in which all 
parts of an object rotate with the same angular velocity (a.k.a.
angular frequency), ωωωω.
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In rigid body dynamics we have two types of motion: transla-

tional and rotational, plus a third which is a combination of 

the two.

So far, we have only considered translational motion.  This 
chapter shows us how to include rotation into the dynamics.
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Rotational kinematics; a reminder:

In Chapter 7, we introduced the rotational analogues of 
displacement (x:θθθθ), velocity (v:ωωωω), and acceleration (a:αααα)

v = ωωωωr, ar = ωωωω2r, and at = ααααr, where r is the instantaneous 
radius of curvature (= radius of circle for circular motion).
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Two ladybugs sit on a rotating disc
without slipping.  Ladybug 1 is
half way between the rotation
axis and ladybug 2.  The angular 
speed, ωωωω, of ladybug 1 is: 

a)  half that of ladybug 2;

b) the same as ladybug 2;

c) twice that of ladybug 2;

d) impossible to determine from the information given.

Clicker question 13.1
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Chapter 13:  Rotation of a Rigid Body

Two ladybugs sit on a rotating disc
without slipping.  Ladybug 1 is
half way between the rotation
axis and ladybug 2.  The angular 
speed, ωωωω, of ladybug 1 is: 

a)  half that of ladybug 2;

b) the same as ladybug 2;

c) twice that of ladybug 2;

d) impossible to determine from the information given.

Clicker question 13.1

Rigid body rotation 

means the angular 

speed, ωωωω, is constant.
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Two ladybugs sit on a rotating disc
without slipping.  Ladybug 1 is
half way between the rotation
axis and ladybug 2.  The linear 
speed, v, of ladybug 1 is: 

a)  half that of ladybug 2;

b) the same as ladybug 2;

c) twice that of ladybug 2;

d) impossible to determine from the information given.

Clicker question 13.2
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Chapter 13:  Rotation of a Rigid Body

Two ladybugs sit on a rotating disc
without slipping.  Ladybug 1 is
half way between the rotation
axis and ladybug 2.  The linear 
speed, v, of ladybug 1 is: 

a)  half that of ladybug 2;

b) the same as ladybug 2;

c) twice that of ladybug 2;

d) impossible to determine from the information given.

Clicker question 13.2
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Sign convention for 

rotational kinematical 

quantities:

counterclockwise (ccw):  +

clockwise (cw):  –

αααα has same sign as ωωωω if ωωωω is 
increasing

αααα has opposite sign as ωωωω if ωωωω
is decreasing.
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A small dot is painted on the edge of a magnetic computer disk with 
radius 4.0 cm.  Starting from rest, the disk accelerates at 600 rads–2

for 0.5 s, then coasts at a steady angular velocity for another 0.5 s.

a) What is the speed of the dot at t = 1.0 s?

ωωωω = ωωωω0 + αααα t until t = 0.5, then ωωωω stays constant.

⇒⇒⇒⇒ ωωωω = 0 + 600 (0.5) = 300 rads-1

v = ωωωωr = (300)(0.040) = 12 ms-1

b) Through how many revolutions does the dot turn?

For the first 0.5s:  ∆∆∆∆θθθθ1 = ωωωω0t + ½ αααα t2 = (600)(0.5)2/2 = 75 rad

For the next 0.5s:  ∆∆∆∆θθθθ2 = ωωωω t = (300)(0.5) = 150 rad

Total angular displacement:  ∆∆∆∆θθθθ = ∆∆∆∆θθθθ1 + ∆∆∆∆θθθθ2 = 225 rad = 35.6 revolutions

Example: a review problem
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Definition (HRW*): The centre of mass of an object or of a 
system of objects is that point which moves as though all mass 
were concentrated there and all forces were applied there.

e.g., As a hammer tossed through the air spins handle over 
head, only the centre of mass follows the parabolic trajectory 
(red path) that a particle of the 
same mass would follow 
under the same forces 
(in this case gravity).  
The trajectory of the 
handle (blue path) 
is rather more 
complicated.

*Halliday, Resnick, and Walker: Fundamentals of Physics
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Knight’s (less precise) definition: An 
unconstrained object (i.e., one not on 
an axle or a pivot) on which there is no 
net force rotates about a point called 
the centre of mass.

Locating the centre of mass for 
discrete particles…

miyi

xi

y

x

and a similar expression for a z-component.

1
M
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Example: Find the centre of mass for 
the system of the 5 objects shown.

xcm =          xi mi ; ycm =           yi mi 

1
M

1
M ΣΣΣΣ

i=1

N

ΣΣΣΣ
i=1

N

The centre of mass is the position 
vector:  rcm = (xcm, ycm), where

2 4–4 –2 

2

4

–4 

–2 

x

y

1 kg

2 kg

3 kg
m1 m2

m3

m4

m5

M = m1 + m2 + m3 + m4 + m5 = 10 kg

xi mi =  (–3)(1) + (1)(3) + (3)(3) + (1)(1) + (–2)(2)  =  6ΣΣΣΣ
i=1

5

yi mi =  (2)(1) + (1)(3) + (–3)(3) + (–4)(1) + (–2)(2)  =  –12ΣΣΣΣ
i=1

5

⇒⇒⇒⇒ rcm = (0.6, –1.2)
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Clicker question 13.3

1 2 3 4–1 0–2 x (m)

1 kg 3 kg 2 kg

centre of mass formula: xcm =          xi mi 

1
M ΣΣΣΣ

i=1

N

a) xcm = –1 m b) xcm = 0 m c) xcm = 1 m

d) xcm = 2 m e) xcm = 3 m f) xcm = 3.5 m

Where is the centre of mass for the system of three masses 
shown?
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Clicker question 13.3

Where is the centre of mass for the system of three masses 
shown?

1 2 3 4–1 0–2 x (m)

1 kg 3 kg 2 kg

xcm =          xi mi  =      (–1)(1) + (0)(3) + (3.5)(2)   =  1 m
1
M ΣΣΣΣ

i=1

3

a) xcm = –1 m b) xcm = 0 m c) xcm = 1 m

d) xcm = 2 m e) xcm = 3 m f) xcm = 3.5 m

1
6 ( )
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Locating the centre of mass for an “extended object”…

Imagine the extended object of mass 
M broken up into N smaller pieces 
each of mass ∆∆∆∆m, and apply the sum 
formulae of the previous slide:

xcm =          xi ∆∆∆∆m; ycm =          yi ∆∆∆∆m 
1
M

1
M ΣΣΣΣ

i=1

N

ΣΣΣΣ
i=1

N

Then, take N       , and the sums 
become integrals:

88 88

To evaluate these integrals, one must know how the mass is 
distributed in space, i.e., m(x,y,z).
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However, for our purposes, we almost never have to do these integrals!

For uniform symmetric objects (e.g., sphere, cylinder, cube, rod, 
etc.), the centre of mass is at the object’s geometric centre.

box         cylinder     sphere

Centre of gravity:  If you could 
balance an object by its centre 
of gravity, it would remain in 
place without any other means 
of support.  For objects with 
uniform density, the centres of 
mass and gravity are the same 
point. For a non-uniform 
object, these two points are, in 
fact, different.

rod
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example:  Find the centre of mass of the system below 
consisting of two uniform boxes.

x

60 cm

40 cm

30 cm

24 cm

y

z m1 = 5 kg
m2 = 3 kg

30 cm

20 cm

Strategy:  Replace each symmetric 
object with a point mass at its 
centre of mass.

y

z

m1 m2

x

Using box dimensions as x,y,z coordinates:

rcm,1 = (30, 20, 15); rcm,2 = (75, 12, 10)

⇒⇒⇒⇒ rcm =                                =       5(30, 20, 15) + 3(75, 12, 10) = (46.9, 17, 13.1) 
m1rcm,1 + m2rcm,2

m1 + m2

1
8

( )
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13.3  Torques In addition to translational acceleration, a 
force can cause angular acceleration.  The ability of a force to 
cause something to rotate is called a torque (ττττ ).

Torque is a vector quantity that depends upon:

1.  the magnitude of the applied force, F

2.  The distance, r, connecting the point about which the object rotates 
(the “pivot point”) and where F is applied, and 

3.  The angle between r and F.

The ability of a force to open a 

door (and thus to rotate) depends 

not only on the magnitude of the 

force, but also where and in what 

direction the force is applied.
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Provisional mathematical definition of torque: ττττ =  rFsinφφφφ

Units of ττττ :  Nm.  Formally, this is a 
Joule (J).  However, since torque has 
nothing to do with energy, we always 
use Nm as the units for torque, never J.

Why provisional? We’ll “upgrade” to 
the “proper” definition of a torque 
(involving “cross products”) by the end 
of the chapter.

Sign convention:

ττττ > 0 when F tends to rotate object counter-clockwise (ccw) about pivot.

ττττ < 0 when F tends to rotate object clockwise (cw) about pivot.

Note: Torques depend very much on the location of the pivot!
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Clicker question 13.4

A

B
C

D

E

F

Six forces, A, B, C, D, E, and F, each with equal magnitude, 
are applied to a rigid body confined to rotate about the pivot 
point shown.  Which forces produce the torques with the 
greatest magnitude?

a) All torques have the same 
magnitude because all forces 
have the same magnitude.

b)  A and D

c)  C and E

d) B and F
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Clicker question 13.4

A

B
C

D

E

F

Six forces, A, B, C, D, E, and F, each with equal magnitude, 
are applied to a rigid body confined to rotate about the pivot 
point shown.  Which forces produce the torques with the 
greatest magnitude?

a) All torques have the same 
magnitude because all forces 
have the same magnitude.

b)  A and D

c)  C and E

d) B and F
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Clicker question 13.5

A

B
C

D

E

F

Six forces, A, B, C, D, E, and F, each with equal magnitude, 
are applied to a rigid body confined to rotate about the pivot 
point shown.  Which forces produce no torque?

a) All forces produce torque 
since all forces have a non-
zero magnitude.

b)  A and D

c)  C and E

d) B and F
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Clicker question 13.5

A

B
C

D

E

F

Six forces, A, B, C, D, E, and F, each with equal magnitude, 
are applied to a rigid body confined to rotate about the pivot 
point shown.  Which forces produce no torque?

a) All forces produce torque 
since all forces have a non-
zero magnitude.

b)  A and D

c)  C and E

d) B and F
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Clicker question 13.6

A

B
C

D

E

F

Six forces, A, B, C, D, E, and F, each with equal magnitude, 
are applied to a rigid body confined to rotate about the pivot 
point shown.  For which forces is ττττ > 0?

a)  B, C, E, and F.

b)  B and C

c)  E and F

d)  A, B, C, and D

e) B only
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Clicker question 13.6

A

B
C

D

E

F

Six forces, A, B, C, D, E, and F, each with equal magnitude, 
are applied to a rigid body confined to rotate about the pivot 
point shown.  For which forces is ττττ > 0?

a)  B, C, E, and F.

b)  B and C

c)  E and F

d)  A, B, C, and D

e) B only
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Two ways to think about torque…

1. ττττ =  r(Fsinφφφφ)  =  rFt

Ft is the tangential component of the 
force.  Only the tangential component 
is responsible for torque; the radial 
component does not cause rotation.

2. ττττ =  F(rsinφφφφ)  =  Fd

d = rsinφφφφ is the moment arm (lever 
arm).  d is the shortest distance from 
the pivot point to the “line of force”.
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The role of an axle:  So long as it doesn’t break, an axle will 
exert just the right force so that the net force on the object is 
zero, and the object doesn’t accelerate away from the axle.

But what torque does the axle 
force generate?

None!  It’s moment arm is zero!

Thus, only the applied forces 
generate torque.  

The net torque need not be zero 
even if the net force is.

ττττnet = ττττ1 + ττττ2 + ττττ3 + …  =     ττττiΣΣΣΣ
i=1

N



SMU PHYS1100, fall 2008, Prof. Clarke 28

Chapter 13:  Rotation of a Rigid Body

Torque caused by gravity

Consider a rigid body to be a collection 
of N tiny particles (all joined together), 
each with mass mi, i = 1, N (N very big).

Moment arm of each torque is xi, (x-
direction perpendicular to the force).  
Thus, the net gravitational torque is:

ΣΣΣΣ
i=1

N

ΣΣΣΣ
i=1

N

ττττgrav =      ττττi =      (–migxi) = –Mg mixiΣΣΣΣ
i=1

N 1
M

xcm



SMU PHYS1100, fall 2008, Prof. Clarke 29

Chapter 13:  Rotation of a Rigid Body

see page 379

Torque caused by gravity

Consider a rigid body to be a collection 
of N tiny particles (all joined together), 
each with mass mi, i = 1, N (N very big).

Moment arm of each torque is xi, (x-
direction perpendicular to the force).  
Thus, the net gravitational torque is:

ΣΣΣΣ
i=1

N

ΣΣΣΣ
i=1

N

ττττgrav =      ττττi =      (–migxi) = –Mg mixiΣΣΣΣ
i=1

N 1
M

xcm
⇒⇒⇒⇒ ττττgrav = –Mgxcm

Thus, gravitational torque acts as though all 
mass were concentrated at the centre of mass 
(measured relative to the pivot point).

ended here, 20/11/08
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Newton’s 2nd Law for rotation

A rocket of mass m (point particle) is attached to a rod on a pivot. 

Tension in the rod counteracts the radial component of the thrust, leaving 
only the tangential component to cause an acceleration.  In Chapter 7, we 
saw that a tangential force gives rise to an angular acceleration:

Ft =  mat =  mrαααα

⇒⇒⇒⇒ rFt =  ττττ =  mr2αααα

Thus, for a point mass, torque
causes angular acceleration, just 
as force causes linear acceleration.

We now extend this idea to 
extended (rigid) bodies…
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Newton’s 2nd Law for rotation, continued

For an “extended” object, we do as before:  Suppose the object is made 
up of N (very large) point masses of mass mi, i = 1, N, and add up all the 
particle torques to get the net object torque:

ττττnet =      ττττi =      (miri
2αααα) =        miri

2   ααααΣΣΣΣ
i=1

N

ΣΣΣΣ
i=1

N

ΣΣΣΣ
i=1

N

( )
I

I = moment of inertia about the rotation axis. 

Why a “rigid body”?  We need αααα to be the same at all points!  Without a 
rigid body, αααα couldn’t have been “factored out” above, and the form of 
Newton’s 2nd Law would have been much more complicated.

ττττnet =  Iαααα (compare with Fnet = ma)

Thus, for rigid bodies, we have Newton’s 
2nd Law for rotation:
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The moment of inertia is to angular acceleration what mass
(inertia) is to linear acceleration.  Mass is the property of an 
object that resists linear acceleration from a force.  The 
moment if inertia is the property of an object that resists 
angular acceleration from a torque.

Unlike m, I isn’t unique for 
each object:  It depends on: 

- the mass of the object

- distribution of mass

- location of rotation axis

moment of inertia (black tubes) demo
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I  = ∆∆∆∆miri
2   = r2dmΣΣΣΣ

i=1

N

lim
∆∆∆∆mi 0

For a single point mass:

For N point masses:

For an extended object:

I  = miri
2 ΣΣΣΣ

i=1

N

I  = mr2 (units: kgm2)

Calculating moment of inertia:

m

r

dm

r

miri

axes of rotation
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Clicker question 13.7

You swing a rock of mass 0.25 kg on the end of a rope of 
length 2.0 m about your head at angular speed 3 rad s-1.  
What is moment of inertia of the rock?

a)  0.75 kg m2

b)  1.00 kg m2

c)  1.50 kg m2

d)  6.00 kg m2
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Clicker question 13.7

You swing a rock of mass 0.25 kg on the end of a rope of 
length 2.0 m about your head at angular speed 3 rad s-1.  
What is moment of inertia of the rock?

a)  0.75 kg m2

b)  1.00 kg m2

c)  1.50 kg m2

d)  6.00 kg m2

I = mr2 = (0.25)(2.0)2 = 1.00 kg m2

Note that the angular speed was 
completely irrelevant.
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Clicker question 13.8

The mass of the Earth is 6.0 x 1024 kg, and its distance 
from the sun is 1.5 x 1011 m.  What is the moment of 
inertia of the earth as it orbits about the sun?

a)  9.0 x 1035 kg m2

b)  9.0 x 1047 kg m2

c)  1.35 x 1035 kg m2

d) 1.35 x 1047 kg m2
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Clicker question 13.8

The mass of the Earth is 6.0 x 1024 kg, and its distance 
from the sun is 1.5 x 1011 m.  What is the moment of 
inertia of the earth as it orbits about the sun?

a)  9.0 x 1035 kg m2

b)  9.0 x 1047 kg m2

c)  1.35 x 1035 kg m2

d) 1.35 x 1047 kg m2

I = mr2

Dealing with big numbers in your head:

Deal with the mantissas first:  You 
know 1.52 is about 2, and 2 xxxx 6 = 12  ⇒⇒⇒⇒
a) and b) are eliminated.  

Next add the exponents:  24 from m, 
11 twice from r  ⇒⇒⇒⇒ 24 + 11 + 11 = 46

12 xxxx 1046 ~ 1.2 xxxx 1047 ⇒⇒⇒⇒ d)



SMU PHYS1100, fall 2008, Prof. Clarke 38

Chapter 13:  Rotation of a Rigid Body

example: compute  I for a thin rod spinning about one end.

I = x2dm
L

0

x

x

dx

L0

axis of rotation
dm

We cannot proceed until we 
know either x in terms of m, 
or m in terms of x.

Problems like this typically go as follows:

The mass per unit length of the entire rod is:

The mass per unit length of the mass increment is:

For a uniform rod, these must be the same!  Thus, dm =     dx, and we get:

m

L
dm
dx

m

L

I =          x2dx =               =      – 0    =   
m
L

L

0

L

0

x3

3
m
L

m
L

L3

3( ) mL2

3
check units!  kg m2



SMU PHYS1100, fall 2008, Prof. Clarke 39

Chapter 13:  Rotation of a Rigid Body
T

a
b

le
 1

3
.3

, 
p

a
g

e
 3

8
5
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The parallel axis theorem (see page 386 for a “sorta proof”):

Let Icm be the moment of inertia of a mass M about an axis that 
passes through the centre of mass.

Let I be the moment of inertia about an axis parallel to and at a 
distance d away from the first axis.

⇒⇒⇒⇒ the two moments are related by:

I =  Icm + Md2

This is the parallel axis theorem.

For it to apply, the “reference” 
moment of inertia must be about 
the centre of mass, and the two axes must be parallel!!



SMU PHYS1100, fall 2008, Prof. Clarke 41

Chapter 13:  Rotation of a Rigid Body

example:  Compute the moment of inertia of a thin rod of mass 
M and length L about an axis through its centre of mass, using 
the fact that the moment of inertia about its end is:

I =    ML2.

From the parallel axis theorem:

I =  Icm + Md2

Here, d = L/2.

⇒⇒⇒⇒ Icm =  I – M =           – =    ( )L

2

2 ML2

3
ML2

4
ML2

12

exercise:  Try 
computing Icm

directly from

I = x2dm
L

0

x
L0

axis through 
the end

L1
2

axis through 
the C of M

d

1
3
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example:  A “T” is made up of two identical thin rods, as 
shown, each of mass M and length L.  What is the moment of 
inertia of the “T” about an axis at its base parallel to its top?

axis of 
rotation

L

L
Break the “T” up into its vertical and 
horizontal parts:

I =  Iv + Ih

We’ve already done the vertical bit:

Iv =    ML2

Since each bit of the horizontal rod is the 
same distance from the rotation axis, we 
can treat it like a point mass, in which case:

Ih =  ML2

⇒⇒⇒⇒ I =     ML2 + ML2 =     ML2

1
3

1
3

4
3
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Clicker question 13.9

Three objects, each of mass m, rotate 

about a common axis at the same 

distance d  from the axis.  Ignoring 

the radii of the sphere and rod and 

the thickness of the hoop, which has 

the greatest moment of inertia about 

the axis?

m

m

m
d

axis of  rotation

d

d

a)  the sphere b)  the rod c)  the hoop

d)  they all have the same moment of inertia
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Clicker question 13.9

Three objects, each of mass m, rotate 

about a common axis at the same 

distance d  from the axis.  Ignoring 

the radii of the sphere and rod and 

the thickness of the hoop, which has 

the greatest moment of inertia about 

the axis?

m

m

m
d

axis of  rotation

d

d

a)  the sphere b)  the rod c)  the hoop

d)  they all have the same moment of inertia
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13.5  Rotation about a fixed axis

Problem solving strategy (page 387)Problem solving strategy (page 387)Problem solving strategy (page 387)Problem solving strategy (page 387)
1.  Model object as a simple shape

2.  Visualise: draw a pictorial representation, FBD, etc.

- set a coordinate system

- identify a rotation axis

- identify forces and their distances from the rotation axis

- identify torques and their signs

3.  Solve:  mathematical representation  (τ τ τ τ net = Iαααα )

- look up I and/or use parallel axis theorem

- use rotational kinematics to find ωωωω and/or ∆∆∆∆θθθθ
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example:  A wheel of mass M = 5.0 kg and radius r = 0.050 m has an axis of 
rotation located d = r /2 from the centre.  A vertical tension T = 100 N is 
exerted at the rim of the wheel, as shown.  A pin holding the wheel in 
place is removed at t = 0.  Find αααα the instant after the pin is removed.

rg rT

Solve: d =     = magnitude of both rT and rg

⇒⇒⇒⇒ ττττg = Mgd =   Mgr ττττT = Td =   Tr

both torques act ccw ⇒⇒⇒⇒ both are positive.

r
2

1
2

1
2

Model the wheel as a uniform disc.  Gravity exerts a torque because the 
axis is off-centre.

Visualise: Diagram shows the forces, distances from axis, etc.

I =    Mr2 + Md 2 =    Mr2 +   Mr2 =    Mr21
2

1
2

1
4

3
4

ττττnet

I

ττττnet = ττττg + ττττT = 3.725 Nm;  I = 9.375x10–3 kg m2

⇒⇒⇒⇒ αααα =        = 397 rad s-2
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Ropes, pulleys, and gears…

Consider a rotating object connected 
to another (possibly rotating) object:

- in direct contact, such as gears;

- via ropes, belts, etc.

So long as touching objects move
without slipping, then 

gears: Points in contact must have the 
same tangential speed & acceleration;

rope on a pulley: Rope’s linear speed and 
acceleration must equal the tangential 
speed and acceleration at rim of pulley.
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example:  A mass m = 1.0 kg hangs on 
a massless string wrapped around a 
cylinder of mass M = 2.0 kg, radius 
R = 2.0 cm.  The cylinder rotates 
without friction on a horizontal axis 
through its axis of symmetry.

What is the acceleration of m?

Visualise : For M, the normal force exerted by 
the axle, n, exactly balances Mg + T, and M has 
no linear acceleration.

Model: point mass for m, rigid body for M, 
no-slip condition for rope.  Thus, a = ααααR.

mg

T

m

Mg

T

R

n

M

a

αααα

y

m = 1.0 kg

R = 2.0 cm

M = 2.0 kg
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example, continued… from previous slide: a = ααααR

Visualise:  n and Mg act through the pivot, and generate no 
torque.  T acts tangentially to the rim and generates the torque:  

ττττ =  RT(sin90°) =  RT (ccw ⇒ positive).

Solve:  Newton’s 2nd Law for rotation (M):

ττττ = Iαααα ⇒⇒⇒⇒ RT =    MR2 ⇒⇒⇒⇒ T =    Ma     (1)
1
2

a
R

1
2

Newton’s 2nd Law for m:

T – mg = –ma ⇒⇒⇒⇒ T = mg – ma (2)

mg

T

m

Mg

T

R

n

M

a

αααα

y
Compare (1) and (2)   ⇒⇒⇒⇒ Ma + ma = mg

⇒⇒⇒⇒ a =                 =      =  4.9 ms–2

1
2

mg

M + m1
2

g
2
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regardless of which 

axis you choose!

13.6  Rigid-body equilibrium

In engineering design, the concept of equilibrium is critical.  
For a bridge not to be in equilibrium is to invite disaster!

A rigid body is in equilibrium (i.e., won’t move!) if 

Fnet = 0 and ττττnet = 0

These are vector equations, each with three components, 

⇒⇒⇒⇒ six equations in all!  ����

We shall limit ourselves to problems in which all forces lie in 
the x-y plane, and all torques are about axes perpendicular to 
the x-y plane (i.e., in the z-direction).

⇒⇒⇒⇒ three equations, one each for Fx, Fy, and τ  τ  τ  τ  ☺☺☺☺
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Problem-solving strategy for equilibrium problems (page 390):

Model object as a simple shape.

Visualize:  Draw pictorial representation and FBD.
- Pick any point you want as a pivot point.  The algebra is much easier
if you pick a point through which most of the unknown forces act! 

- Determine the moment arms of all forces about your pivot point.

- Determine the sign of each torque about your pivot point.

- If the direction of an unknown force is also unknown, represent it
as two perpendicular forces: Fx and Fy acting at the same point.

Solve:  No net forces and no net torque about any pivot point.
- ττττnet = 0, Fnet,x = 0, and Fnet,y = 0

- Solve these three equations for any unknown forces, distances, etc.

Assess:  Is the answer reasonable; does it answer the question?
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example: Will the ladder slip? (page 391) A ladder rests against 
a frictionless wall at an angle θθθθ = 60°.  What is the 

minimum value of µµµµs between the ground and
the ladder to prevent slipping?

The problem says nothing about the mass nor 
the length of the ladder.  We may introduce m 

(w) and L as interim quantities, but our final 
result must be independent of them!

P

Choose P as the pivot point.  It has 
the most number of forces acting 
through it, which will reduce the 
number of torques we have to 
identify (zero moment arms!)

Since we seek the minimum µµµµs, we 
can set   fs = µµµµs n1.
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P

x

y

Fx = n2 – fs = 0   ⇒⇒⇒⇒ n2 = µµµµsn1 (1)

Fy = n1– w = 0    ⇒⇒⇒⇒ w = n1 (2)ΣΣΣΣ
ΣΣΣΣ

ττττ =    wLcosθθθθ – n2Lsinθθθθ = 0      (3)

(torque caused by w ccw, n2 cw)

ΣΣΣΣ
1
2

Only n2 and w generate torques about P:

moment arm of n2 is: d2 = Lsinθθθθ

moment arm of w is:  d1 =    Lcosθθθθ1
2

Substitute (1) and (2) into (3)  ⇒⇒⇒⇒

n1cosθθθθ – µµµµsn1sinθθθθ = 01
2

cotθθθθ

2
⇒⇒⇒⇒ µµµµs =           = 0.29.
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Example: The Tower of Lyre, or the “great pub bet”

At the pub you bet your friend the next round that you can stack four 
blocks (they can be coasters) over the edge of the table such that the top 
block is fully over the edge of the table (D > L).  After he tries for a few 
minutes in futility, you, the keen physics student, just “stack ‘em up”!  
How?

L

m1

m2

m3

m4
d1

d2

d3

d4

D

Let m1 = m2 = m3 = m4 = m

2.  FBD for m1:   

n2 on 1– m1g = 0  ⇒⇒⇒⇒ n2 on 1 = mg

m1g

n2 on 1

cm

1.  Key: All masses are on the verge of tipping.  
Thus, the normal force mi exerts on mi+1 right 
below it is applied right at the edge of mi+1.

So to start, we can deduce that m1 can balance 
as much as d1 = L/2 over the edge of m2.
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3.  FBD for m2: Fy = n3 on 2 – n1 on 2 – m2g =  0  ΣΣΣΣ
n1 on 2 and n2 on 1 form an action-reaction pair.  

⇒⇒⇒⇒ n1 on 2 = n2 on 1 = mg ⇒⇒⇒⇒ n3 on 2 = 2mg

No surprise.  Next, examine the torques.

Choose point P as our pivot (any point will do).  
Relative to P, only m2g and n3 on 2 generate torques:

m2g generates a ccw torque about P; its moment arm is L/2

n3 on 2 generates a cw torque about P; its moment arm is d2

4.  Repeat (try it!) for m3 (d3 = L/6) and m4 (d4 = L/8; see the pattern?)

⇒⇒⇒⇒ D = d1 + d2 + d3 + d4 = L +   +   +      =     L  > L(1
2

1
4

1
6

1
8

25
24)

ττττ =    m2g – d2 n3 on 2 = 0   ⇒⇒⇒⇒ 2mgd2 =    mg  ⇒⇒⇒⇒ d2 = L/4ΣΣΣΣ L

2
L

2

m2

d2
n1 on 2

m2g

n3 on 2

cm

L/2

P

m1

m3
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Two last points on the tower of Lyre…

1.  If you plan to try this as a pub bet, best to do it with five
“bricks”.  With five, D = 137L/120, giving you 17L/120 or 
14%of L to play with.  With just four bricks, you only have 
1/24 (< 5%) to play with, and this may require more accuracy 
than one might have after a couple of pints…

2.  You may know that the series                                does not

converge!  This means that with enough bricks, you could 
build a bridge from the table all the way across the country, 
with only one support!

Although even with 1 billion bricks (stack height ~ 13% of the 
way to the moon!), you are still under 11 L beyond the edge of 
the table, so you better get a lot of bricks!

1
2

1
4

1
6

1
8+  +  +  + …

ended here, 25/11/08
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13.7  Rotational Kinetic Energy

Every point in a rotating solid body rotates with the same 
angular speed, ωωωω, but with a different linear speed, v.  So 
how do we compute the kinetic energy?

As we’ve done before, break the 
object into N small masses, mi, each 
rotating about the axle with speed 
vi = riωωωω.  Thus, Krot is given by:

Krot =        mivi
2 =        miri

2ωωωω2

=          miri
2  ωωωω2 =    Iωωωω2

1
2

ΣΣΣΣ
i=1

N

ΣΣΣΣ
i=1

N
1
2

1
2

1
2

ΣΣΣΣ
i=1

N

( )

I
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example: conservation of mechanical 
energy:  ∆∆∆∆K + ∆∆∆∆U = 0

A hinged (frictionless) horizontal rod 
(L = 1.0 m) is dropped from rest.  What 
is its speed as it hits the wall?

Rotational Kinetic energy, continued…

With the analogy between translational and rotational variables we have 
built up so far, including  m I and v ωωωω, we might have guessed that: 

mv2 Iωωωω21
2

1
2

I =   mL2;  ωωωω = 
1
3

v
L

∆∆∆∆U = change in potential energy of the 
centre of mass = –mgL/2.

∆∆∆∆K =   Iωωωω2 = –∆∆∆∆U =   mgL
1
2

1
2

⇒⇒⇒⇒ mL2      = mgL ⇒⇒⇒⇒ v =   3gL = 5.4 ms–1v2

L2

1
3
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13.8  Rolling motion (combination of translation and rotation)

To “roll” means not to slip.  After one revolution, centre of mass moves 
forward by one circumference:  

∆∆∆∆xcm =  vcmT =  2ππππR ⇒⇒⇒⇒ vcm =       R =  ωωωωR

vcm = ωωωωR is the rolling constraint.  It links translational motion (vcm) with 
rotation (ωωωω ), and is analogous to the no-slip condition for ropes/pulleys.

2ππππ
T
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Did you know…

…the point where the tire touches the road (not skidding!) is momentarily 
at rest relative to the road no matter how fast the car is going?

Thus, the friction between the tire and the road is static friction, not 
kinetic friction!

This is why you have less control of the car when the tires are slipping 
(skidding):  kinetic friction is weaker than static friction.

vcm = ωωωωR for no slipping
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example:  “School Fred”   Will the spool of thread move to the
right or left?  What is its acceleration?

m = 0.10 kg
R = 0.030 m
r = 0.010 m
F = 0.010 N

I =    mR2

= 5.0 x 10-5 kg m2

F
rR

m, I

9
20

A

Substitute (1) and (3) into (2)   ⇒⇒⇒⇒

R(–F + ma) + Fr = – mR29
20

a

R

Forces:   F – fs =  ma    ⇒⇒⇒⇒ fs = F – ma     (1)

Torques about A:    –fsR + Fr = – Iαααα (2)

no slipping    ⇒⇒⇒⇒ αααα =  (3)
a

R

⇒⇒⇒⇒ a  mR +    mR = F(R – r)9
20( )

a =                 =  0.460 ms–2 >  0
F(R – r)

mR
29
20

fs

a
αααα

We guess a > 0  ⇒⇒⇒⇒ αααα < 0.  
This means fs points to 
left (otherwise bottom 
slips to the right).

⇒⇒⇒⇒ our guess was right!
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The energy equation, revisited.

Kinetic energy of rolling motion is the sum of the translational 
kinetic energy of the centre of mass and the rotational kinetic 
energy about the centre of mass (see page 395 for proof).  Thus:

K =  Kcm + Krot =     Mvcm +    Icmωωωω21
2

1
2

2

∆∆∆∆Esys =  ∆∆∆∆Kcm + ∆∆∆∆Krot + ∆∆∆∆U + ∆∆∆∆Eth =  Wext

and the revised energy equation (Chapter 11) reads:

where ∆∆∆∆Esys is the change in the total energy of the system, ∆∆∆∆U

is the change in potential energy of the system, ∆∆∆∆Eth is the 
change in thermal energy, and Wext is the work done by all 
forces external to the system.
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Example: A solid sphere, a solid cylinder, and a hoop (hollow 
cylinder) roll down an incline.  If each have the same mass and 
radius, which gets to the bottom first?

For any object:  ∆∆∆∆K = Kf – Ki =    Mvcm +   Icmωωωω 2;   ∆∆∆∆U = –Mgh.

No friction  ⇒⇒⇒⇒ ∆∆∆∆Eth = 0;   no external forces  ⇒⇒⇒⇒ Wext = 0.

1
2

1
2

2

Let  I = cMR2.  Since ωωωω =        (no slip),

Icmωωωω 2 = cMvcm ⇒⇒⇒⇒ ∆∆∆∆K =   Mvcm(1 + c)

vcm

R
22 1

2

Thus, ∆∆∆∆K = –∆∆∆∆U ⇒⇒⇒⇒ Mvcm(1 + c) = Mgh21
2

⇒⇒⇒⇒ vcm = 
2gh

1 + c

⇒⇒⇒⇒ vcm is greatest for smallest c.  For a solid 

sphere, c =   , for a solid cylinder, c =   , and
1
2

2
5

for a hoop, c = 1.  Thus the sphere gets down the ramp first.
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example:  The “loop-the-loop” revisited:  A solid sphere of 
radius r rolls without slipping down a ramp and takes a “loop-
the-loop” of radius R r.  At what minimum height, h, must 
the sphere be released in order for it to still make it to the top 
of the loop? This is a This is a This is a This is a GREATGREATGREATGREAT problem.  problem.  problem.  problem.  

It’s one of those pivotal It’s one of those pivotal It’s one of those pivotal It’s one of those pivotal 
problems in first year problems in first year problems in first year problems in first year 
physics that, physics that, physics that, physics that, when you can when you can when you can when you can 
do itdo itdo itdo it, lets you know , lets you know , lets you know , lets you know you’ve you’ve you’ve you’ve 
“arrived”“arrived”“arrived”“arrived”, at least to the first , at least to the first , at least to the first , at least to the first 
station on the track to station on the track to station on the track to station on the track to 
becoming a physicist or an becoming a physicist or an becoming a physicist or an becoming a physicist or an 
engineer.  engineer.  engineer.  engineer.  Expect one like it Expect one like it Expect one like it Expect one like it 
on the exam!on the exam!on the exam!on the exam!

m, r

h
R
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example:  The “loop-the-loop” revisited…

Model: We must treat the sphere as a rigid body, since some of the kinetic 
energy is “used up” in rotation.  The fact that R    r is not telling us to treat 
the sphere as a point particle; it’s needed later when calculating ∆∆∆∆U.

Visualise:  To “barely” make it to the top of the loop does not mean the 
sphere is at rest there!  In fact, we know from Chapter 7 that the sphere 
has a “critical speed” at the top of the loop, which we’ll recompute here.

Barely making it to the top means:

1.  the sphere is still traveling in a 
circular path (as opposed to the 
parabolic trajectory it would have 
had it left the track);

2.  the normal force exerted on the 
sphere by the track is zero there.

m, r

h
R
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+    =
7
10

1
2

1
5

in fact, Uf = mg(2R-r), but we’re told R    r

Solve: 1.  What is the speed at the top of the loop?
mg

ac

y

From the FBD, we have  –mg = –mac = –m       ⇒⇒⇒⇒ v2 = gR
v2

R

2.  Use the energy equation.  Let the system be sphere + track + earth.  
With no dissipation and no external forces, conserve mechanical energy.

EM,i = Ui + Ki = mgh

EM,f = Uf + Kf = mg(2R) +   mv2 +   Iωωωω 21
2

1
2

⇒⇒⇒⇒ EM,f = 2mgR +     mv27
10

for no slippingI =    mr2,  ωωωω =

⇒⇒⇒⇒ Iωωωω 2 =    mv2

2
5

1
5

v
r

1
2

m, r

h
R

example:  The “loop-the-loop” revisited…
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in fact, Uf = mg(2R-r), but we’re told R    r

Solve: 1.  What is the speed at the top of the loop?
mg

ac

y

From the FBD, we have  –mg = –mac = –m       ⇒⇒⇒⇒ v2 = gR
v2

R

2.  Use the energy equation.  Let system be sphere + track + earth.  With 
no dissipation and no external forces, conserve mechanical energy.

EM,i = Ui + Ki = mgh

EM,f = Uf + Kf = mg(2R) +   mv2 +   Iωωωω 21
2

1
2

⇒⇒⇒⇒ EM,f = 2mgR +     mv2 = 2.7mgR
7
10

I =    mr2,  ωωωω =

⇒⇒⇒⇒ Iωωωω 2 =    mv2

2
5

1
5

v
r

1
2

m, r

h
R

example:  The “loop-the-loop” revisited…
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We just now need to equate EM,i to EM,f, and solve for h:

EM,i =  EM,f ⇒⇒⇒⇒ mgh = 2.7mgR  ⇒⇒⇒⇒ h = 2.7R

m, r

h
R Q

1.  What is the normal force 
exerted by the track on the 
sphere at point Q?

2.  If the sphere is released 
from h = 4R, what is the 
normal force exerted by the 
track on the sphere at the 
top of the loop?

Variations on a theme:

example:  The “loop-the-loop” revisited…
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Consider a particle on a trajectory with momentum 
p being watched by an observer at O.

As the particle swings by, the observer turns her 

head in order to keep her eye on it, even if that 

particle is moving in a straight line.  

Thus, one ought to be able to describe the motion 

with angular variables as well as linear variables.  

Angular momentum (L) (a different approach from your text)

F

φφφφ

ττττ =  rFsinφφφφ =  rmasinφφφφ

This is entirely analogous 

to how torque was defined:

Provisional mathematical definition of angular momentum:

L =  rpsinββββ =  rmvsinββββ

O

m

ββββp = mv

r
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Like torque, angular momentum depends upon:

1.  the magnitude of the linear momentum, p, of the particle;

2.  The magnitude of the displacement, r, between the “origin” (could be 
a rotation axis but need not be) to the point mass;

3.  The angle between r and p.

Angular momentum of a rigid body about a rotation axis:

Every point rotates with the same angular 
speed, ωωωω.  Thus, vi = ri ωωωω.

Each particle in the object 
has linear momentum as 
the object rotates.

β β β β = 90°°°° for each point  ⇒⇒⇒⇒ sinββββ = 1

Ltot =      rimi vi =      mi ri
2 ω ω ω ω =  Iωωωω

I

ΣΣΣΣ
i=1

N

ΣΣΣΣ
i=1

N
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tangential m
omentum 

⇒⇒⇒⇒
r is

 constant

r

dpt

dt
=  r 

Link between angular momentum and torque:

1.  For solid body rotation:

=             =  I =  Iαααα =  ττττnet

dL

dt

dωωωω
dt

d(Iωωωω)
dt

2.  For a point particle on a trajectory:

O

m

p
F

φφφφ ββββ

r

= 
dL

dt

d(rpsinββββ)
dt

pt = p sinββββ

d(rpt)
dt

=

=  rFt =  rFcosφφφφ = ττττnet

In general, ββββ =φφφφ! 

Ft = F sinφφφφ

φφφφ

Thus, we have: ττττnet =
dL

dt
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13.9  The vector description of rotational motion

Angular velocity:  ωωωω =  (ωωωω, direction given by right hand rule)

Angular acceleration:  αααα =  (αααα, direction given by R H rule)

Rotation confined to the x-y plane: 

ccw rotation  ⇒⇒⇒⇒ +z direction

cw rotation   ⇒⇒⇒⇒ –z direction

Why should ωωωω and αααα point in the z-direction 
if the motion is in the x-y plane?

What direction in the x-y plane would one 
choose?  The direction of motion keeps 
changing there!

The z-direction is the only unique direction 
implicated by rotation in the x-y plane.
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The vector description of rotational motion, continued…

Angular momentum:  L =  (L, direction given by R H rule)

Torque:  ττττ =  (ττττ, direction given by right hand rule)

Krot =    Iωωωω21
2

Klin =    mv21
2

∆∆∆∆x =  v0∆∆∆∆t +   a∆∆∆∆t21
2

∆∆∆∆θθθθ =  ωωωω0∆∆∆∆t +   αααα ∆∆∆∆t21
2

Fnet =         =  ma
dp

dt
ττττnet =          =  Iαααα

dL

dt

p =  mv L =  Iωωωω

links linear mechanics angular mechanics

Mechanics table

ττττ =  rFsinφφφφ

L =  rpsinββββ

vt = ωωωωr; at = αααα r

I  =      miri
2ΣΣΣΣ

i=1

N
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Our third conservation law: Conservation of angular momentum.

In a system in which there are no external torques, angular 
momentum is conserved.

if           =  ττττnet =  0   ⇒⇒⇒⇒ L = constant
dL

dt

A figure skater, I0 = 0.80 kg m2 about his central 
axis, spins at 2 rev s-1 holding out two masses, m
= 5 kg, at ri = 0.70 m.  What is his angular speed 
when he brings the masses to rf = 0.25 m?

Ii =  I0 + 2mri
2 =  5.70 kg m2

If =  I0 + 2mrf
2 =  1.43 kg m2

Conserve L: Lf =  Li ⇒⇒⇒⇒ If ωωωωf =  Ii ωωωωi

Ii

If

⇒⇒⇒⇒ ωωωωf =     ωωωωi

=  4.0ωωωωi =  8 rev s-1

}
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ββββ

r

p

m
I

ωωωω

example: A pinwheel with moment of inertia about its axis, Ip, and radius 
r is struck by a mass of chewing gum, m, with momentum p at an angle ββββ
as shown.  If the gum sticks to the pinwheel, what is its angular speed, ωωωω, 
immediately after collision?

Use conservation of angular momentum.

For such problems, it’s critical to use the 
same reference point for both “before” and 
“after” states.  

Since the pinwheel spins about its axis in 
the “after” state, we use the axis as the 
reference point for both states.

Li =  rp sinββββ

Lf =  Iωωωω

I  = Ip + mr2 ⇒⇒⇒⇒ ωωωω =
rp sinββββ

Ip + mr2

Lf =  Li ⇒⇒⇒⇒ Iωωωω =  rp sinββββ
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negative sign because ωωωω0 is cw

This is my very favourite problem!  (But don’t worry, you won’t see it 

on the exam!)

To put “top English” on a billiard ball, you strike it sharply with a level 
cue near the top of the ball, as in the diagram.  If the ball is struck at 
height h = 4r/5 above its centre and given an initial speed v0, what is its 
speed when it stops slipping?

θθθθ

ββββ

r h

v0

h = 
4r

5

sinββββ = sinθθθθ =     = 
h
r

4
5

First response:  Are you kidding me?
Cue imparts an impulse

J = ∆∆∆∆p = mv0 to the cue ball.

⇒⇒⇒⇒ ∆∆∆∆L = –r∆∆∆∆psinββββ = – mv0r

= Iωωωω0 =    mr2ωωωω0

⇒⇒⇒⇒ ωωωω0 = – (1)

4
5

2
5

2v0

r
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greatest physics problem ever, continued…

⇒⇒⇒⇒ ball’s surface 
speed is 2v0 in 
ball’s reference 
frame… 

ωωωω0 = –
2v0

r v0+

add centre of mass velocity v0…

2v0

–2v0

ωωωω0

and bottom of 
ball moves 
backwards at 
–v0 just after 
impact  ⇒⇒⇒⇒ the 
kinetic friction 
points right!

=

3v0

–v0

v0

fk

fk =  ma >  0  ⇒⇒⇒⇒ ball speeds up!

ττττk =  rfk = Iαααα >  0  ⇒⇒⇒⇒ slows 
negative angular velocity.

a =          αααα = 
fk

m

rfk

I

Kinematics

vf =  v0 + at =  v0 + 

⇒⇒⇒⇒ fkt =  m(vf – v0)      (2)

fkt

m

ωωωωf =  ωωωω0 + αααα t =  – +            (3)
2v0

r

rfkt

I
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greatest physics problem ever, continued…

Condition for when final velocity is reached: when no-slip conditions 
are established which ceases fk.

ωωωωf =  – (cw ⇒⇒⇒⇒ negative)
vf

r
fkt =  m(vf – v0)      (2)

ωωωωf =  – +            (3)
2v0

r

rfkt

I

set this to (3), and substitute (2) for fkt:

ωωωωf =  – +                     =  –
2v0

r

r m(vf – v0) 

mr22
5

vf

r

⇒⇒⇒⇒ –2v0 +    vf – v0 = –vf
5
2

5
2

⇒⇒⇒⇒ vf =     v0 ⇒⇒⇒⇒ vf =    v0
7
2

9
2

9
7

from last slide…

and that’s all she wrote!

☺☺☺
ended here, 27/11/08
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The remaining slides define angular mechanics in terms of 
vectors, including the cross product.  This material will not 
be on the final exam, and is included here only for your 
information.

The only real thing you should know here is that our 
“provisional” definitions of torque and angular 
momentum are fine for single particles and uniform rigid 
bodies of suitable symmetry.  The general problem of 
rotational dynamics requires intimate knowledge of vector 
and indeed tensor analysis, much of which is beyond the 
scope of a first year course in physics.
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The “cross product”

The cross (vector) product multiplies two vectors together and 
gives another vector. Let A and B be two vectors.  Then

A B = (ABsinφφφφ, direction given by the right hand rule)

where φφφφ is the smaller angle (less than 180°) between A and B
positioned with their tails together.

φ
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The “cross product”, continued…

Thus, for the unit vectors, i, j, and k, we have:

i j =  k

j k =  i

k i =  j

j i =  –k

k j =  –i

i k =  –j

i i =  j    j  =  k    k  =  0

φ
φφ

φ
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The “cross product”, continued…

Calculating the cross product with components:

A =  Ax i + Ay j + Azk B =  Bx i + By j + Bzk 

⇒⇒⇒⇒ A B =  (Axi + Ay j + Azk)    (Bx i + By j + Bzk)

=  AxBx i i + AxBy i j + AxBz i k

+ AyBx j i + AyBy j j + AyBz j k

+ AzBx k i + AzBy k j + AzBz k k

Note that  A B = –B A (direct result of the right-hand rule)
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The “cross product”, continued…

Calculating the cross product with components:

A =  Ax i + Ay j + Azk B =  Bx i + By j + Bzk 

⇒⇒⇒⇒ A B =  (Axi + Ay j + Azk)    (Bx i + By j + Bzk)

=  AxBx i i + AxBy i j + AxBz i k

+ AyBx j i + AyBy j j + AyBz j k

+ AzBx k i + AzBy k j + AzBz k k

(0)

(0)

(0)

Note that  A B = –B A (direct result of the right-hand rule)
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The “cross product”, continued…

Note that  A B = –B A (direct result of the right-hand rule)

Calculating the cross product with components:

A =  Ax i + Ay j + Azk B =  Bx i + By j + Bzk 

⇒⇒⇒⇒ A B =  (Axi + Ay j + Azk)    (Bx i + By j + Bzk)

=  AxBx i i + AxBy i j + AxBz i k

+ AyBx j i + AyBy j j + AyBz j k

+ AzBx k i + AzBy k j + AzBz k k

(0)

(0)

(0)

( i )

( j )

( k )

(–i )

(–k )

(–j )

⇒⇒⇒⇒ A B = (AyBz – AzBy) i + (AzBx – AxBz) j + (AxBy – AyBx) k
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A =  2 i + 3 j          =  (2, 3, 0)

B =  2 i + 3 j + 2k  =  (2, 3, 2)

quick example:

⇒⇒⇒⇒ A B  =  (6 – 0) i + (0 – 4) j + (6 – 6) k

=  6 i – 4 j + 0k  

=  (6, –4, 0)

Differentiation of cross products follows the product rule:

d

dt
(A B)  =           B + A

dA

dt

dB

dt
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13.9  The vector description of rotational motion

Angular velocity:  ωωωω =  (ωωωω, direction given by right hand rule)

Angular acceleration:  αααα =  (αααα, direction given by R H rule)

Rotation confined to the x-y plane: 

ccw rotation  ⇒⇒⇒⇒ +z direction

cw rotation   ⇒⇒⇒⇒ –z direction

Why should ωωωω and αααα point in the z-direction 
if the motion is in the x-y plane?

What direction in the x-y plane would one 
choose?  The direction of motion keeps 
changing there!

The z-direction is the only unique direction 
implicated by rotation in the x-y plane.
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The vector description of Torque

Torque:  τ τ τ τ =  r F  =  (rFsinφφφφ, direction given by R H rule)

Caution: need to move the tails of the vectors 

together before using right hand rule!
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Angular momentum of a particle

L =  r p  =  (rmvsinββββ, direction given by R H rule)

v   p

0
=  ττττ

d

dt
=      (r p)  =          p + r          =  v    p + r    F

dL

dt

dr

dt

dp

dt

dL

dt
⇒⇒⇒⇒ = ττττ compare with        = F

dp

dt
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