More Angular Momentum, then Statics

Physics 1425 Lecture 23

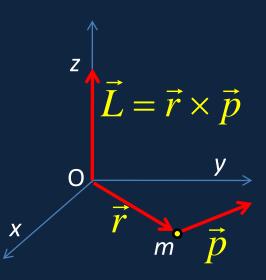
Michael Fowler, UVa

Vector Angular Momentum of a Particle

- A particle with momentum \vec{p} is at position \vec{r} from the origin O.
- Its angular momentum about the origin is

$$\vec{L} = \vec{r} \times \vec{p}$$

 This is in line with our definition for part of a rigid body rotating about an axis: but also works for a particle flying through space.



Viewing the x-axis as coming out of the slide, this is a "right-handed" set of axes: $\hat{i} \times \hat{j} = +\hat{k}$

- A particle moves along a straight line at constant speed. The line does not pass through the origin. Is the particle's angular momentum about the origin constant?
- A. Yes
- B. No

Rotational Motion of a Rigid Body

• For a collection of interacting particles, we've seen that $d\vec{L} / dt = \sum_{i} \vec{\tau}_{i}$

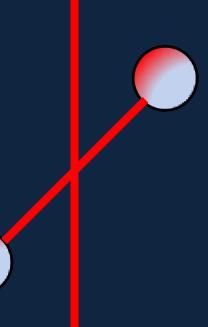
the vector sum of the applied torques, \vec{L} and the $\vec{\tau}_i$ being measured about a fixed origin O.

- A rigid body is equivalent to a set of connected particles, so the same equation holds.
- It is also true (proof in book) that even if the CM is accelerating,

$$d\vec{L}_{\rm CM} / dt = \sum \vec{\tau}_{\rm CM}$$

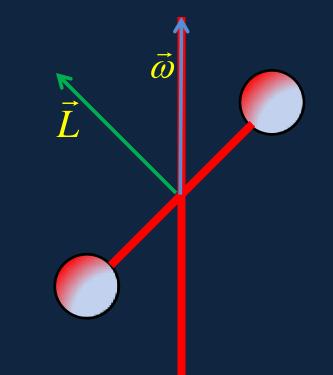
A dumbbell (two small masses at the ends of a light rigid rod) is mounted on a fixed axle through its center, at an angle θ . It is set in steady rotation. The direction of the angular momentum of the system is:

- A. Along the axle
- B. Along the dumbbell rod
- C. Neither of the above.



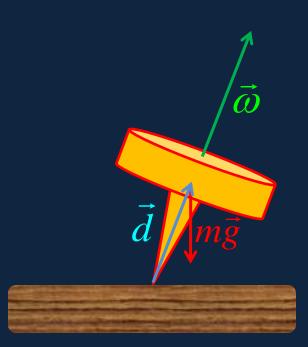
A Bit More About \vec{L} and $\vec{\omega}$...

- We've used $\vec{L} = I \vec{o}$ a lot.
- We see from this example it's not always true that *L*, *o* are parallel vectors.
- What's going on?
- The answer is that *L*, *o* are only parallel if the spinning body is symmetric about the axis of rotation—which is usually the case.
- For more complicated cases, you will still see $\vec{L} = \vec{lo}$, but that fat I denotes a tensor or matrix.



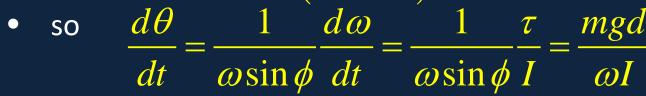
Spinning Top

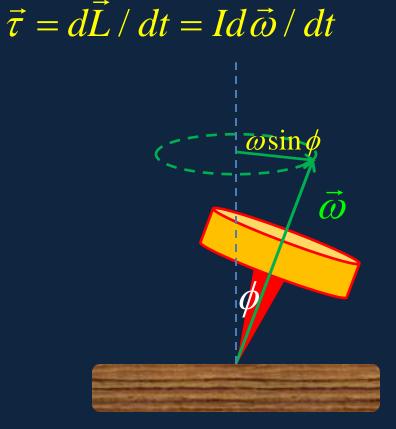
- Pointing your right thumb in the direction of the angular velocity vector *o*, your curling fingers point in the direction of rotation.
- Gravity exerts a torque about the pivot point $\vec{\tau} = \vec{d} \times m\vec{g}$, evidently directed inwards.
- From $\vec{\tau} = d\vec{L} / dt = Id\vec{\omega} / dt$ $d\vec{\omega}$ will be inwards, the tip of $\vec{\omega}$ is describing a horizontal circle: this is "precession".



Precession Rate

- The horizontal component of the angular velocity vector $\vec{\omega}$ has length $\omega \sin \phi$ and it precesses around a circle centered above the pivot point.
- The precession angular velocity is written $\Omega = d\theta / dt$, where θ measures angle around the horizontal circle.
- If in time *dt* there is precession through $d\theta$, $d\omega = (\omega \sin \phi) d\theta$





Statics: Conditions for Equilibrium

- For any body, $Md\vec{v}_{CM} / dt = \sum \vec{F}_i$, the net force causes the CM to accelerate. Hence, if the body is remaining at rest, $\sum \vec{F}_i = 0$
- To eliminate *angular* acceleration, there must be zero torque about any axis. If all forces are in one plane, it's enough to prove zero torque about one axis perpendicular to the plane:

$$\sum_{i} \vec{\tau}_{i} = 0$$

Free Body Diagrams

- To apply Newton's Laws to find how a body moves, we must focus on that body alone and add all the (vector) forces acting on it.
- The diagram showing all the forces on one body (or even part of a body) is called a "free body diagram"—we've "freed" the body from the rest of the system, representing everything else just by the forces on this body.
- The net (total) force then goes into $\Sigma \vec{F} = m\vec{a}$.

Flat Forces?

- If a body in equilibrium is acted on by three and only three forces, do the force vectors have to lie in a plane?
- A. Yes
- B. No

Flat Forces

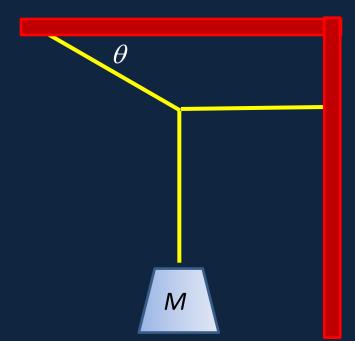
 If just three forces are acting on a body, and it's in equilibrium, they must all lie in the same plane, because if we choose the plane defined by two of them, and the third force has a component perpendicular to that plane, nothing is balancing this perpendicular force.

- A body is in equilibrium. It is acted on by three forces, lying in a plane.
- Do the lines of action of the three forces all pass through the same point?
- A. Yes
- B. No

Three Force Equilibrium

• If a body is in equilibrium when acted on by three forces, the three forces must lie in the same plane AND all pass through a common point. If they don't, taking a perpendicular axis through a point where two of them meet, the third force gives an unbalanced torque about that point, so the body will have angular acceleration.

- What is the tension *T* in the horizontal string?
- A. $Mg\cos\theta$
- B. Mgtan θ
- C. $Mg \cot \theta$
- D. None of the above.



- What is the approx tension *T* in the top string, given the mass is 2 kg, and it's hung from the midpoint of the rod, which is light and hinged, the angle is 30°?
- A. 10 N
- B. 20 N
- C. 20√3 N

D. 40 N

