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Darcy’s Law experiments

Dijon, why is it now a 
famous city?

- Famous industry?

- Football Team?

- Other solution?

-….



We know that groundwater flows from one point to another when 
there is a difference in hydraulic head h between these points. We 
now want to examine how fast it is doing it.
We will consider the simplest case: a regular and slow flow of water 
through a network of pores or cracks; network that is, if we average 
on a small volume, the same in each point and in each direction.
In this case one can use the law formulated by the French engineer 
Henry Darcy in 1856.

Darcy’s Law experiments
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The law predicts the volume of water per second, the flow rate 
Q, which passes through a column of the material (length L, area 
A) if a difference in hydraulic load h2 - h1 is maintained between 
the two ends
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Darcy’s Law - Experiments

Pratice 1 : discovery of Darcy’s law 



It measures the permeability of the granular medium, that is to 
say the ease with which water circulates. One will also find the 
hydraulic conductivity denoted K.
If we measure the flow rate Q in m3 / s, the load h in m, the length 
L in m and the area A in m2, then K is measured in m / s. But K is 
not a speed because h is not a classical height.
Here are some typical conducƟvity values   (m / s):

Darcy’s law-Permeability

rocks sands shales clays

Cracks in clays
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solution stationnaire / t=0, u(r, ,x)=u(r), P(x)
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Steady state
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solution stationnaire / t=0, u(r, ,x)=u(r), P(x)
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We have demonstrated Poiseuille flow ! Let’s 
go level 2
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Steady state
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Flow rate

If we use



Upscaling? 

Darcy velocity is an apparent velocity (denoted by vf , vD or simply v) as if the 
whole cross-section would be available for the water transfer. 

The porous medium is replaced by a representative continuum derived from a 
macroscopic concept  Darcy's law provides thus a global description of the 
microscopic behavior. 

Darcy’s flux is an average value of the microscopic fluxes from a Representative 
Elementary Volume (REV. 

The microscopic concept would involve the use of the microscopic velocities, 
associated with the actual paths of the water particles. Because in practice it is 
impossible to measure the real microscopic velocities, an average value of the 
real velocities is accepted. 



Several models allow us to determine permeability:

a) Capillary: 

b) Hele Shaw:

c) Kozeny (1927) : 

d) Kozeny- Carman (1937) 
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Darcy’s Law- Validity



where: 
R
e is dimensionless

ρ the fluid density (M/L3 ; kg/m3)
q specific discharge (L/T ; m/s)
d usually, the mean grain diameter or the mean pore dimension (L; m)
μ 

dynamic viscosity (M/T.L ; kg/s.m)

ν kinetic viscosity (L2/T ; m2/s)

The ratio between the inertial forces and the viscous forces 
driving the flow is computed by the Reynolds number, 
which is used as a criterion to distinguish between the laminar flow, 
the turbulent flow and the transition zone. 

For porous media, the Reynolds number is defined as:



According to Bear (1972), Darcy' law which supposes a laminar flow 
is valid for Reynolds number less than 1, but the upper limit can be 
extended up to 10

Figure. Range of validity of Darcy's law

The inception of the turbulent flow can be located at Reynolds 
numbers greater than 60…100. Between the laminar and the turbulent 
flow there is a transition zone, where the flow is laminar but non-
linear. 
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Quadratic correction of the Darcy’ law : Forchheimer relation
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If Re<<1, Darcy’s law appears
Take this with care, β depends on the flow rate



Darcy’s law-Continuity



If we don’t have deformations of the porous medium and no 
compressibility effects, we can write:
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If we don’t have deformations of the porous medium and no 
compressibility effects, we can write:
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