Sixième partie

CTL – logique temporelle arborescente

Systèmes de transition 1 / 31

Plan

- 1 CTL
 - Syntaxe
 - Sémantique
- 2 Expressivité
 - Exemples
 - Propriétés classiques

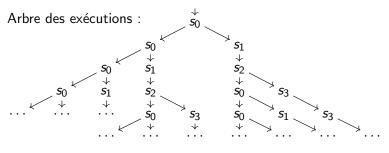
Ensemble des exécutions vs arbre des exécutions

Soit le système de transition : $\longrightarrow s_0$

Ensemble des exécutions :

$$\langle (s_0^+ \to s_1 \to s_2)^* \to s_0^\omega \rangle, \langle (s_0^+ \to s_1 \to s_2)^\omega \rangle, \langle (s_0^+ \to s_1 \to s_2)^+ \to s_3^\omega \rangle$$

$$ou \left\{ \begin{array}{l} s_0 \to s_0 \to \cdots, s_0 \to s_1 \to s_2 \to s_0 \to \cdots, \\ s_0 \to s_1 \to s_2 \to s_0 \to \cdots, s_0 \to s_1 \to s_2 \to s_0 \to \cdots, \\ s_0 \to s_1 \to s_2 \to s_3 \to s_3 \to \cdots, \dots \end{array} \right\}$$



Modèles

Une formule CTL se rapporte toujours à un état donné s d'un système, duquel partent des traces Traces(s). Les états de S constituent les modèles de cette logique.

La différence (syntaxiquement parlant) avec LTL réside dans l'apparition dans les opérateurs temporels de quantificateurs de traces.

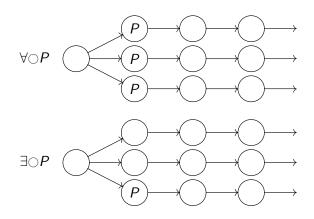
Syntaxe de la CTL

ノノノ

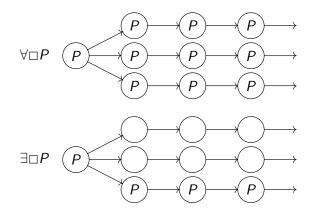
Quantification universelle			
formule	interprétation (pour s un état)		
	pour toute trace partant de s		
$\forall \bigcirc P$	P est vrai à l'instant suivant		
$\forall \Box P$	P est toujours vrai à chaque état		
$\forall \Diamond P$	P finit par être vrai (dans le futur)		
$P \forall \mathcal{U} \mathcal{Q}$	Q finit par être vrai, et en attendant P reste vrai		

Quantification existentielle			
formule	interprétation (pour s un état)		
	pour <mark>au moins une</mark> trace partant de <i>s</i>		
$\exists \bigcirc P$	P est vrai à l'instant suivant		
$\exists \Box P$	P est toujours vrai à chaque état		
∃◇P	P finit par être vrai (dans le futur)		
$P \exists \mathcal{U} Q$	Q finit par être vrai, et en attendant P reste vrai		

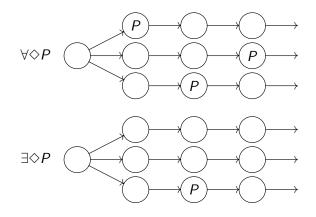
Intuition sémantique $\forall \bigcirc$, $\exists \bigcirc$



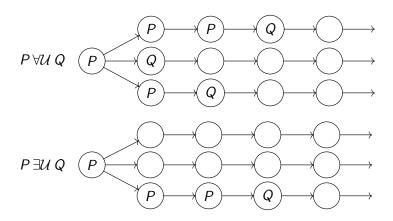
Intuition sémantique $\forall \Box$, $\exists \Box$



Intuition sémantique $\forall \Diamond$, $\exists \Diamond$



Intuition sémantique $\forall \mathcal{U}, \; \exists \mathcal{U}$



Opérateurs minimaux

Un ensemble d'opérateurs minimaux est $\forall \bigcirc$, $\forall \mathcal{U}$ et $\exists \mathcal{U}$:

- $\exists \cap P \triangleq \neg \forall \cap \neg P$
- $\forall \Diamond P \triangleq True \forall \mathcal{U} P$
- $\exists \Diamond P \triangleq True \exists \mathcal{U} P$
- $\forall \Box P \triangleq \neg \exists \Diamond \neg P$
- $\exists \Box P \triangleq \neg \forall \Diamond \neg P$

(autres ensembles minimaux : $\{\exists\bigcirc,\exists\Box,\exists\mathcal{U}\}\$ ou $\{\forall\diamondsuit,\exists\mathcal{U},\exists\bigcirc\}\$)

Syntaxe alternative

Syntaxe alternative

On trouve très fréquemment une autre syntaxe :

- $\forall \longleftrightarrow A (all)$
- $\exists \leftrightarrow \mathsf{E} \; (\mathsf{exists})$
- $\Box \qquad \leftrightarrow \mathsf{G} \; (\mathsf{globally})$
- $\diamond \qquad \leftrightarrow \mathsf{F} \; \mathsf{(finally)}$
- \bigcirc \leftrightarrow X (next)

Par exemple:

$$\forall \Box \exists \Diamond P \leftrightarrow \mathsf{AG} \; \mathsf{EF} \; \mathsf{P}$$

$$f \forall \mathcal{U} g \leftrightarrow \mathsf{A}(\mathsf{f} \mathsf{U} \mathsf{g})$$

Opérateur complémentaire waiting-for

$$P \exists W Q \triangleq \exists \Box P \lor P \exists U Q$$

$$P \forall W Q \not\triangleq \forall \Box P \lor P \forall U Q - trop fort$$
$$\triangleq \neg (\neg Q \exists U (\neg P \land \neg Q))$$

La relation de validation sémantique ne fait intervenir que l'état courant.

Vérification par un système

Un système $S = \langle S, \{s_0\}, R \rangle$ vérifie (valide) la formule F ssi l'état initial de S la valide :

$$\frac{s_0 \models F}{S \models F}$$

(la sémantique est moins claire s'il y a plusieurs états initiaux, du fait de l'opérateur \exists : pour tous les états initiaux, ou pour au moins un? En pratique, on peut toujours se ramener à un seul état initial, donc on évite la difficulté)

Sémantique (opérateurs logiques)

$$\overline{s \models s}$$

$$\frac{s \models P \quad s \models Q}{s \models P \land Q}$$

$$\frac{s \models P}{s \models P \lor Q} \quad \frac{s \models Q}{s \models P \lor Q}$$

$$\frac{s \models P}{s \not\models \neg P}$$

Sémantique (opérateurs temporels)

(rappel : pour une trace σ , σ_i est le i-ième élément de σ en commençant à 0, et pour un état s, Traces(s) est l'ensemble des traces issues de s)

$$\frac{\forall \sigma \in \mathit{Traces}(s) : \sigma_1 \models P}{s \models \forall \bigcirc P}$$

$$\frac{\forall \sigma \in \mathit{Traces}(s) : \exists j \geq 0 : \sigma_j \models Q \land \forall i < j : \sigma_i \models P}{s \models P \forall \mathcal{U} Q}$$

$$\frac{\exists \sigma \in \mathit{Traces}(s) : \exists j \geq 0 : \sigma_j \models Q \land \forall i < j : \sigma_i \models P}{s \models P \exists \mathcal{U} Q}$$

Sémantique (opérateurs temporels dérivés)

$$\frac{\exists \sigma \in \mathit{Traces}(s) : \sigma_1 \models P}{s \models \exists \bigcirc P}$$

$$\frac{\forall \sigma \in \mathit{Traces}(s) : \forall i \geq 0 : \sigma_i \models P}{s \models \forall \Box P}$$

$$\frac{\exists \sigma \in \mathit{Traces}(s) : \forall i \geq 0 : \sigma_i \models P}{s \models \exists \Box P}$$

$$\frac{\forall \sigma \in \mathit{Traces}(s) : \exists i \geq 0 : \sigma_i \models P}{s \models \forall \Diamond P}$$
$$\frac{\exists \sigma \in \mathit{Traces}(s) : \exists i \geq 0 : \sigma_i \models P}{s \models \exists \Diamond P}$$

Négation

Contrairement à LTL, pour toute propriété CTL, on a : soit $\mathcal{S} \models F$, soit $\mathcal{S} \models \neg F$, et $\mathcal{S} \not\models F \equiv \mathcal{S} \models \neg F$.

Négation des formules \forall , \exists , \Box , \diamondsuit

La négation d'une formule à base de \forall , \exists , \Box , \diamondsuit se fait simplement en inversant chaque opérateur pour son dual.

exemples:

$$\neg(\forall \Diamond \exists \Box p) = \exists \Box \forall \Diamond \neg p (\forall \Diamond \neg s_0 \Rightarrow \forall \Diamond s_3) = (\exists \Box s_0 \lor \forall \Diamond s_3) \text{ car } (p \Rightarrow q) = (\neg p \lor q)$$

Définition par point-fixe

Une fois définis $\exists \bigcirc$ et $\forall \bigcirc$, chaque opérateur est le plus petit point fixe de sa définition inductive :

$$\forall \Box f = f \land \forall \Box \forall \Box f
\exists \Box f = f \land \exists \Box \exists \Box f
\forall \Diamond f = f \lor \forall \Diamond \forall \Diamond f
\exists \Diamond f = f \lor \exists \Box \exists \Diamond f
f \forall \mathcal{U} g = g \lor (f \land \forall \Box (f \forall \mathcal{U} g))
f \exists \mathcal{U} g = g \lor (f \land \exists \Box (f \exists \mathcal{U} g))$$

(surtout utile pour l'implantation d'un vérificateur de modèles)

Plan

- CTL
 - Syntaxe
 - Sémantique
- 2 Expressivité
 - Exemples
 - Propriétés classiques

Exemples amusants

• $\exists \Box \ \forall \bigcirc \ p$: une exécution avec une "enveloppe" qui vérifie p

• $\exists \bigcirc \forall \Box p \land \exists \bigcirc \forall \Box \neg p$ un état successeur à partir duquel p est toujours et partout vrai,

et un état successeur à partir duquel $\neg p$ est toujours et partout vrai

Exemple

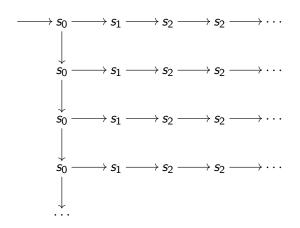
$$\longrightarrow s_0 \longrightarrow s_1 \longrightarrow s_2$$

	pas d'équité	équité faible (s_0, s_1)
$s_0 \land \forall \bigcirc s_0$		
$s_0 \land \exists \bigcirc s_0$		
$\forall \Box (s_0 \Rightarrow \exists \bigcirc s_0)$		
$\forall \Box (s_0 \Rightarrow \exists \Diamond s_2)$		
$\forall \Box (s_0 \Rightarrow \forall \Diamond s_2)$		
$\exists \Diamond \neg s_0$		
$\forall \Diamond \neg s_0$		
$\forall \Box \exists \Diamond s_2$		
$\forall \Box \forall \Diamond s_2$		
$\forall \Diamond \exists \Diamond s_1$		
$\forall \Box \exists \Diamond s_1$		

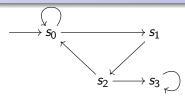
77

Exemple - Arbre des exécutions

Arbre des exécutions du système de transition précédent



Exemple 2



	pas d'équité	faible (s_0, s_1)	forte (s_2, s_3)	forte (s_2, s_3) faible (s_0, s_1)
$\exists \Box s_0$				
$\forall \Box \exists \Diamond s_3$				
$\forall \Box \forall \Diamond s_3$				
$\forall \Diamond \forall \Box s_3$				
$\exists \Box s_0 \lor \forall \Diamond s_3$				
$\forall \Diamond \neg s_0 \Rightarrow \forall \Diamond s_3$				

Invariance, Possibilité

Invariance

Spécifier un sur-ensemble des états accessibles d'un système :

$$\mathcal{S} \models \forall \Box P$$

où P est un prédicat d'état.

Stabilité

Spécifier la stabilité d'une situation si elle survient :

$$\mathcal{S} \models \forall \Box (P \Rightarrow \forall \Box P)$$

où P est un prédicat d'état.

Possibilité

Spécifier qu'il est possible d'atteindre un état vérifiant P:

$$\mathcal{S} \models \exists \Diamond P$$

Possibilité complexe

Séquence

Spécifier qu'un scénario d'exécution $\langle s_1 \to s_2 \to \ldots \to s_n \rangle$ est possible.

$$\mathcal{S} \models s_1 \land \exists \bigcirc (s_2 \land \ldots \land \exists \bigcirc (s_{n-1} \land \exists \bigcirc s_n) \ldots)$$

Réinitialisabilité

Spécifier que quelque soit l'état courant, il est possible de revenir dans un des états initiaux (définis par le prédicat *I*).

$$\mathcal{S} \models \forall \Box \exists \Diamond I$$

Possibilité arbitraire

Spécifier que si P devient vrai, il est toujours possible (mais pas nécessaire) que Q le devienne après.

$$\mathcal{S} \models \forall \Box (P \Rightarrow \exists \Diamond Q)$$

Client/serveur

Réponse

Spécifier qu'un système (jouant le rôle d'un serveur) répond toujours (Q) à une requête donnée (P):

$$\mathcal{S} \models \forall \Box (P \Rightarrow \forall \Diamond Q)$$

Stabilité d'une requête

Spécifier que la requête P d'un système (jouant le rôle d'un client) est stable tant qu'il n'y a pas de réponse favorable Q:

$$\mathcal{S} \models \forall \Box (P \Rightarrow P \,\forall \mathcal{W} \, Q)$$

Infiniment souvent

Spécifier que P est infiniment souvent vrai dans toute exécution : $\mathcal{S}\models\forall\Box\forall\Diamond P$

Finalement toujours

Spécifier que P finit par rester définitivement vrai : impossible! $S \models \forall \Diamond \forall \Box P$ ne convient pas (trop fort)

Soit
$$S = \bigcirc$$
 $\longrightarrow s_0 \longrightarrow s_1 \longrightarrow s_2$
en LTL : $S \models \Diamond \Box (s_0 \lor s_2)$
mais CTL : $S \not\models \forall \Diamond \forall \Box (s_0 \lor s_2)$
(tant qu'on est en s_0 , on $peut$ passer en $s_1 : S \models \forall \Diamond \exists \Diamond s_1$)

Note : $\mathcal{XXP} = \mathcal{XP}$ pour $\mathcal{X} \in \{ \forall \Box, \exists \Box, \forall \diamondsuit, \exists \diamondsuit \}$

Si on utilise une description en intention, et si l'on remplace l'utilisation de l'opérateur $\forall \bigcirc$ par les variables primées, alors on peut spécifier toutes les exécutions permises par un système $\langle S,I,R \rangle$:

$$\mathcal{S} \models I \land \forall \Box R$$

L'utilisation de variables primées n'est pas nécessaire mais simplifie les formules

Par exemple P(x, x') est équivalent à la formule :

$$\forall v : x = v \Rightarrow \forall \bigcirc P(v, x)$$

qui nécessite une quantification sur une variable.

Comparaison CTL vs. LTL

Contrairement à CTL, les opérateurs temporels LTL parlent tous de la même trace. Les combinaisons de connecteurs temporels ont parfois des sens (subtilement) différents.

'				
	CTL	LTL		
$\forall P$, nécessairement P ou $\neg P$	$\mathcal{S} \models P \lor \mathcal{S} \models \neg P$	$S \models P \lor S \models \neg P$		
négation	$S \models \neg P \equiv S \not\models P$	$S = P = S \not\equiv P$		
l'un de <i>P</i> ou <i>Q</i> inévitable	$S = \forall \Diamond P \forall \forall \Diamond Q$	$\mathcal{S} \models \Diamond P \lor \Diamond Q$		
	$\mathcal{S} \models \forall \Diamond (P \lor Q)$			
l'un de P ou Q continu	$S \models \forall \exists (P \lor Q)$	$\mathcal{S} \models \Box P \lor \Box Q$		
	SEYOPYYOQ			
$\neg P$ transitoire	$S = \forall \Diamond \forall \Box P$	$\mathcal{S}\models\Diamond\Box P$		
répétition	$S \models \forall \Diamond (P \land \forall \Diamond P)$	$S \models \Diamond (P \land \bigcirc P)$		
possibilité	$S \models \exists \Diamond P$	S ⇒ ≎P		

Conséquence : l'équité n'est pas exprimable en CTL. Mais on peut vérifier des propriétés CTL sur un ST avec contraintes d'équité.

111

Comparaison LTL vs. CTL

Linear Time Logic

- + Intuitive
- ...sauf la négation
- + Suffisante pour décrire un système de transition
- + y compris l'équité
- Vérification exponentielle en le nombre d'opérateurs temporels

Computational Tree Logic

- Expressivité parfois déroutante
- + Propriétés de possibilité (p.e. réinitialisabilité)
- + Suffisante pour décrire un système de transition
- ...sauf l'équité non exprimable (mais utilisable)
- + Vérification linéaire en le nombre d'opérateurs temporels

CTL* autorise tout mélange des quantificateurs de traces \forall , \exists et d'états \Box , \diamondsuit , \bigcirc , \mathcal{U} .

Exemple : $\exists ((\Box \Diamond P) \land (\Diamond Q)) = \text{il existe une exécution où } P \text{ est infiniment souvent vrai, et où } Q \text{ sera vrai.}$

CTL* est strictement plus expressif que CTL et LTL. L'usage pratique est rare (hors les fragments correspondant à CTL et LTL).

