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The hype
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Intro

AI

Deep learning (2018)
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Intro

AI Simulation

Generative AI 
Foundation models



Data Science
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Data science

Statistic analysis ex: estimators, correlation, 
unsupervised clustering…

Machine learning
- decision trees 
- artificial neural 

networks 
- support vector 

machines 

- supervised clustering 
- reinforcement 

learning 
- genetic algorithms

Data mining and processing

Big data

Deep learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



Data Sciences
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Data science

Statistic analysis ex: estimators, correlation, 
unsupervised clustering…

Machine learning
- decision trees 
- artificial neural 

networks 
- support vector 

machines 

- supervised clustering 
- reinforcement 

learning 
- genetic algorithms

Big data

Deep learning

Data mining and processing

The new cool kids



Intelligence vs Experience
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• One definition of intelligence:

Skill

Experience

Human

Machine 
Learning

Intelligence =
Skill

Experience

1: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017). 
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

Alpha Zero1 needs 21 Million 
games of Go during training 

but
training takes ≈24h

If enough experience can 
be gained, ML eventually 
beats humans

Smart

Dumb

(from F. Chollet)



Uses of AI
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• Shiny « superhuman » 
algorithms make headlines 

• But most applications 
« automate the boring stuff ».

AlphaZero …

300 Million 
Images / Day

100 Billion 
Words / Day
+ …+ …

+ …

Just like 
regular 

programming 
does!

GPT-3
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LA REVANCHE DES NEURONES 
L’invention des machines inductives et la controverse de l’intelligence artificielle 

Dominique CARDON 
Jean-Philippe COINTET 

Antoine MAZIÈRES 

La Découverte | « Réseaux » 2018/5 n° 211 | pages 173 à 220

Just hype?
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Hypothetico-
deductive 
approach

Computer

Inputs

Data
Program

INTEGER :: i 

Inductive 
approach

Computer

Inputs

Program
INTEGER :: i Data

The scientific 
method is 

historically a 
deductive 

approach. The 
data validates 

the model. 

Data-driven 
approaches are 
inductive. The 
model is the 

output.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.

Hypotheses 
(model)

Deductions

Model



A very brief history of AI

13 Cardon, D., Cointet, J.-P. & Mazières, A (2018). La revanche des neurones. Réseaux, 211, 173-220.

Connexionnist

Turing

Hinton

LeCun Symbolic

Σ ∫
McCarthy

Minsky



What is learning?
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Learn by heart
Learn abstract concepts

Learn motor skills

Moravec’s paradox (1988): 

It is comparatively easy to make computers exhibit adult level 
performance on intelligence tests or playing checkers, 

and difficult or impossible to give them the skills of a one-year-old 
when it comes to perception and mobility
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u 0

m a = W = m g
What a powerful tool!

m a = W + D
or



Ball?
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Ball?
Ball?

Ball?

Where’s the ball?
• It’s yellow 
• I has texture 

• It’s round 
• It’s moving
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Are these stripes straight?

YES !

But do you see them straight?
No matter how long you watch, they’ll never look straight…

Your brain performs complex 
unconscious processing.
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Where’s the cat?

Not a cat

Not a cat
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17 × 23 = ?

How much is this?
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17 × 23 = 391

How much is this?
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7

Which 7 did I use?

7

77

7

7
7

7
17 × 23 = 391
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Curious? You can start here:

Nobel prize 
2002

but

Kahneman, Daniel. Thinking, fast and slow. 
Macmillan, 2011.

Coding works well for conscious tasks

We lack an approach to replicate tasks that we 
learn intuitively
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Machines that learn ?



Machine learning

Machine learning means selecting a class of functions.

The exact shape (not just coefficients) is learned from the data

24

Machine learning y =
N

∑
i=0

aixi

Knowledge based 
models y = ax2 + b

Rule based systems y = 3x2



Objective: generalization
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Data Train Test

• Machine learning strategy: 
๏observe the training data to learn 

the features 
๏do not learn the noise 
๏generalize well to the test data 

(good prediction)
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Data Train Test
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Function to learnx y’ ~ y |y’- y| = train error

Function to learnx y’ ~ y |y’- y| = test error

Learned functionx yNew Data

Both 
should be 
minimal



Under / Overfitting
Human fitting :

  « Hey, this looks like a 2nd order polynomial »


N = 1 N = Npoints − 1N = 2

Learned fit : y =
N

∑
i=0

aixi N = ?

27



Under / Overfitting
To know what works, you measure the error on both the train 
and test sets. Here it seems the right capacity N is 2.

Training error Testing errorCorrect capacity

28
N = 1 N = Npoints − 1N = 2



Under / Overfitting

Model capacity

Er
ro

r

Testing error

Training error

Generalization 
gap

Overfitting

Optimal capacity

Underfitting

29
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• Procedure: 
๏Start with prior beliefs (H) 
๏Compute the likelihood of evidence (E) given (H) 
๏Using Bayes’ rule, obtain new posterior beliefs of 

hypothesis given evidence P(H|E) 

• Automating this process leads to selecting the 
beliefs best supported by evidence, i.e. learning

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

PriorLikelihoodPosterior

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn 
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])
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y = ax + b
H

Conclusion: my hypothesis is 
supported by the data, so I’m 

now more confident in it

😁

P(E |H) is high

Conclusion: 
The data doesn’t support H

😡

y = ax2 + bx + c
The no-free lunch theorem [1] 

« there are no a priori distinctions 
between learning algorithms »

😁

Conclusion: 
Nothing works!

Some problems are ill-posed: 
There is a fundamental ambiguity 

that cannot be resolved

😡

😡

😡

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

Machine Learning is the automated process of searching for the hypothesis H that leads to 
the maximum likelihood of the evidence E given H: P(E|H), hence the best posterior P(H|E)
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Function to learnx y’ ~ y

x
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Training Machine 
Learning

Model?

Candidates

d

Model? 
N number of samples 

d dimension of X 
…

2

10

102

105 ???

Can I interest you in a 
dimensionality reduction 

technique?

PCA

Clustering

SOM

…
POD
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What pixels belong to the cat?

Not a cat

Not a cat
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Cat?

Cat?

Yes

No

Context !

Jeez, that’s hard!


How come you knew before?

50 x 50 pixels x 3 (RGB) colors = 7500 dimensions!
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d

Model? 
N number of samples 

d dimension of X 
…

2

10

102

105 ???

Machine Learning

Feature / Representation / Deep 
Learning

Automatic discovery of 
representations needed from raw 

data
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Some Machine learning 
algorithms



Regression

37

Linear Logistic

f(x) = ax + b f(x) =
a

1 + e−b(x−x0)



Support Vector Machines (SVM)

38

(linear)



Decision trees

39



Random forests

40



Machine learning algorithms

41

http://scikit-learn.org

What about neural networks?



« Neural » Networks?

CHAPTER 1. INTRODUCTION
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled

in size roughly every 2.4 years. Biological neural network sizes from ( ).Wikipedia 2015

1. Perceptron ( , , )Rosenblatt 1958 1962

2. Adaptive linear element ( , )Widrow and Hoff 1960

3. Neocognitron (Fukushima 1980, )

4. Early back-propagation network ( , )Rumelhart et al. 1986b

5. Recurrent neural network for speech recognition (Robinson and Fallside 1991, )

6. Multilayer perceptron for speech recognition ( , )Bengio et al. 1991

7. Mean field sigmoid belief network ( , )Saul et al. 1996

8. LeNet-5 ( , )LeCun et al. 1998b

9. Echo state network ( , )Jaeger and Haas 2004

10. Deep belief network ( , )Hinton et al. 2006

11. GPU-accelerated convolutional network ( , )Chellapilla et al. 2006

12. Deep Boltzmann machine (Salakhutdinov and Hinton 2009a, )

13. GPU-accelerated deep belief network ( , )Raina et al. 2009

14. Unsupervised convolutional network ( , )Jarrett et al. 2009

15. GPU-accelerated multilayer perceptron ( , )Ciresan et al. 2010

16. OMP-1 network ( , )Coates and Ng 2011

17. Distributed autoencoder ( , )Le et al. 2012

18. Multi-GPU convolutional network ( , )Krizhevsky et al. 2012

19. COTS HPC unsupervised convolutional network ( , )Coates et al. 2013

20. GoogLeNet ( , )Szegedy et al. 2014a
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Figure 1.10: Initially, the number of connections between neurons in artificial neural

networks was limited by hardware capabilities. Today, the number of connections between

neurons is mostly a design consideration. Some artificial neural networks have nearly as

many connections per neuron as a cat, and it is quite common for other neural networks

to have as many connections per neuron as smaller mammals like mice. Even the human

brain does not have an exorbitant amount of connections per neuron. Biological neural

network sizes from ( ).Wikipedia 2015

1. Adaptive linear element ( , )Widrow and Hoff 1960

2. Neocognitron (Fukushima 1980, )

3. GPU-accelerated convolutional network ( , )Chellapilla et al. 2006

4. Deep Boltzmann machine (Salakhutdinov and Hinton 2009a, )

5. Unsupervised convolutional network ( , )Jarrett et al. 2009

6. GPU-accelerated multilayer perceptron ( , )Ciresan et al. 2010

7. Distributed autoencoder ( , )Le et al. 2012

8. Multi-GPU convolutional network ( , )Krizhevsky et al. 2012

9. COTS HPC unsupervised convolutional network ( , )Coates et al. 2013

10. GoogLeNet ( , )Szegedy et al. 2014a
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• Loosely inspired from 
biological systems 

• Number of neurons 
and connections now 
reaching mammalian 
values

108 D. H. HUBEL AND T. N. WIESEL
Tungsten micro-electrodes were advanced by a hydraulic micro-electrode positioner

(Hubel, 1957, 1959). In searching for single cortical units the retina was continually stimu-
lated with stationary and moving forms while the electrode was advanced. The unresolved
background activity (see p. 129) served as a guide for determining the optimum stimulus.
This procedure increased the number of cells observed in a penetration, since the sampling
was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel. "Receptive 
fields, binocular interaction and functional architecture 

in the cat's visual cortex." The Journal of 
physiology 160.1 (1962): 106-154.

Cat brain (sorry…)

Nobel prize 
1981



Neuron

What is a « neuron »?

w1

w2

w3

wD

Weights Activation Output

x1

x2

x3

xD

…
Inputs

43

Job: introduce non-linearity



Assembling neurons

It’s a 0!

It’s a 2!

44



Is my function a neuron?

45

• Neural nets are just computational graphs 
• Neurons are universal approximators: you can 

represent any operation with neural nets 
• But not all neural nets perform deep learning…

y = max(x1w1 + x2w2, 0)

w1

w2

x1

x2

y



Deep learning

46

Goodfellow, I., Bengio, Y., Courville, A., 
& Bengio, Y. (2016). Deep 

learning (Vol 1). Cambridge: MIT press.

For more, check out the

“Deep Learning Bible”

What’s so great about neural 
networks for machine learning?
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Deep classifiers



Back to MNIST

48



A simple neural net

49

• Simple « Multi-Layer 
Perceptron » (MLP) 
๏28x28 = 784 pixels 

on input 
๏0 → 9: 10 outputs 
๏1 hidden layer

91.5% accuracy

= 8.5% error



Easy right?

With enough neurons and depth, you can replicate any function!

Yes. But, this becomes 
cumbersome fast…

Especially for big input 
images (e.g. 256x256 px)

50

To improve this approach, the neurons can be connected differently



Image filters (Gimp docs)

Image Kernel Result

This is in effect a convolution 
of the image by the filter

51



Base

52



Edge detection

53



Sharpen

54



Building smarter layers

Fully Connected Layer

learned 
weights

Shared weights using 
convolution :

You learn the kernel 
weights, then share over 

the full input

55



Deep MNIST

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning 
applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998

Best result today: 0.21% error
Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus Regularization of Neural 

Network using DropConnect, International Conference on Machine Learning 2013

LeNet-5 (1998) : ~1% error

56

 (less than humans: ~2 %!)



ImageNet

Popular AI challenge: 

- Crowdsourced labeling 
of image database (14 
million labeled images) 

- Competing algorithms 
try to classify them

ImageNet 
classification 

challenge

57



ImageNet

58

• Images are Big Data 
compared to MNIST

AlexNet: ImageNet 
2012 winner

GoogLeNet: ImageNet 
2014 winner



Deeper and deeper…

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

8 layers
8 layers

22 layers
152 layers

59
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How do I use this?

60

• Do not expect to make sense of the function. 
๏GoogLeNet (22 layers) = 11,193,984 parameters 
๏ResNet (153 layers) = 25,636,712 parameters 

• Deep neural classifiers are high performers 

• But deep learning is not just about classification! Can 
it do anything else?
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A few modern networks



Adverserial generators

Discriminator 
( classifier )

NN True

Fake

Once trained, the 
generator can create 
« plausible » images

2 Networks (Generator / 
Discriminator) « fight » for 

best result

Generator
NN

Autoencoding beyond pixels using a learned similarity metric

Input
Reco

nstru
ctio

n

Bald Bangs
Blac

k hair

Blond hair

Bushy eyebrows

Eyeglas
ses

Gray
hair

Heav
y makeup

Male Musta
che

Pale
skin

Figure 5. Using the VAE/GAN model to reconstruct dataset samples with visual attribute vectors added to their latent representations.

Model Cosine similarity Mean squared error
LFW test set 0.9193 14.1987

VAE 0.9030 27.59 ± 1.42
GAN 0.8892 27.89 ± 3.07
VAE/GAN 0.9114 22.39 ± 1.16

Table 2. Attribute similarity scores. To replicate (Yan et al.,
2015), the cosine similarity is measured as the best out of 10 sam-
ples per attribute vector from the test set. The mean squared error
is computed over the test set and statistics are measured over 25
runs.

sentation of the input in Enc, Dec and Dis similar to (Mirza
& Osindero, 2014). For Enc and Dis, the attribute vector is
concatenated to the input of the top fully connected layer.
Our regression network has almost the same architecture
as Enc. We train using the LFW training set, and during
testing, we condition on the test set attributes and sample
faces to be propagated through the regression network. Fig-
ure 6 shows faces generated by conditioning on attribute
vectors from the test set. We report regressor performance
numbers in Table 2. Compared to an ordinary VAE, the
VAE/GAN model yields significantly better attributes vi-
sually that leads to smaller recognition error. The GAN
network performs suprisingly poorly and we suspect that
this is caused by instabilities during training (GAN mod-
els are very difficult to train reliably due to the minimax
objective function). Note that our results are not directly
comparable with those of Yan et al. (2015) since we do not
have access to their preprocessing scheme nor regression
model.

Query

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,
Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.

VAE

GAN

VAE/GAN

Query

Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.

VAE

GAN

VAE/GAN

Figure 6. Generating samples conditioned on the LFW attributes
listed alongside their corresponding image.

noise

62

Real data



GAN examples
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Larsen, Anders Boesen Lindbo, et al. "Autoencoding beyond pixels using a learned similarity 
metric." arXiv preprint arXiv:1512.09300 (2015).

Autoencoding beyond pixels using a learned similarity metric

Input
Reco

nstru
ctio

n

Bald Bangs
Blac

k hair

Blond hair

Bushy eyebrows

Eyeglas
ses

Gray
hair

Heav
y makeup

Male Musta
che

Pale
skin

Figure 5. Using the VAE/GAN model to reconstruct dataset samples with visual attribute vectors added to their latent representations.

Model Cosine similarity Mean squared error
LFW test set 0.9193 14.1987

VAE 0.9030 27.59 ± 1.42
GAN 0.8892 27.89 ± 3.07
VAE/GAN 0.9114 22.39 ± 1.16

Table 2. Attribute similarity scores. To replicate (Yan et al.,
2015), the cosine similarity is measured as the best out of 10 sam-
ples per attribute vector from the test set. The mean squared error
is computed over the test set and statistics are measured over 25
runs.

sentation of the input in Enc, Dec and Dis similar to (Mirza
& Osindero, 2014). For Enc and Dis, the attribute vector is
concatenated to the input of the top fully connected layer.
Our regression network has almost the same architecture
as Enc. We train using the LFW training set, and during
testing, we condition on the test set attributes and sample
faces to be propagated through the regression network. Fig-
ure 6 shows faces generated by conditioning on attribute
vectors from the test set. We report regressor performance
numbers in Table 2. Compared to an ordinary VAE, the
VAE/GAN model yields significantly better attributes vi-
sually that leads to smaller recognition error. The GAN
network performs suprisingly poorly and we suspect that
this is caused by instabilities during training (GAN mod-
els are very difficult to train reliably due to the minimax
objective function). Note that our results are not directly
comparable with those of Yan et al. (2015) since we do not
have access to their preprocessing scheme nor regression
model.

Query

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,
Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.

VAE

GAN

VAE/GAN

Query

Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.

VAE

GAN

VAE/GAN

Figure 6. Generating samples conditioned on the LFW attributes
listed alongside their corresponding image.

State of art 2015



GAN examples
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Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved 
quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

State of art 2017



GAN examples
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https://thispersondoesnotexist.com

Karras, T., Laine, S., Aittala, 
M., Hellsten, J., Lehtinen, J., 
& Aila, T. (2020). Analyzing 

and improving the image 
quality of stylegan. 

In Proceedings of the IEEE/
CVF Conference on Computer 

Vision and Pattern 
Recognition (pp. 8110-8119).

State of art 2019



GAN examples
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https://thispersondoesnotexist.com

Karras, T., Laine, S., Aittala, 
M., Hellsten, J., Lehtinen, J., 
& Aila, T. (2020). Analyzing 

and improving the image 
quality of stylegan. 

In Proceedings of the IEEE/
CVF Conference on Computer 

Vision and Pattern 
Recognition (pp. 8110-8119).

State of art 2019



SRGAN

Super - Resolution GAN 

Output: 64x64 images (from 
the Large-scale 
CelebFaces 
Attributes dataset) 

Input: degraded 16x16 
image 

GAN learns to reproduce 
« credible » images

16x16

64x64bicubic 
interpolation

SRGAN

67



Style Transfer

68

Picasso van Gogh Monnet



Many kinds of generators

69 https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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« A language model is a probability distribution 
over sequences of words. »

Jurafsky, Dan; Martin, James H. (2021). "N-gram Language Models” 
https://web.stanford.edu/~jurafsky/slp3/

Natural Language Processing



Learning language tasks

71 https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent models

LSTM = Long Short Term Memory



Attention

72

Jianpeng Cheng, Li Dong, and Mirella Lapata. “Long short-term memory-networks for machine reading." EMNLP 2016.

https://lilianweng.github.io/posts/2018-06-24-attention/
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by jointly learning to align and translate." ICLR 2015.

https://arxiv.org/pdf/1601.06733.pdf
https://arxiv.org/pdf/1409.0473.pdf
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Transformers -> Large Language Models
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175 B params

PaLM

540 B params

Fixing code

ChatGPT
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“AI system[s] that can create realistic images and art from a 
description in natural language.”

https://openai.com/dall-e-2/



DALL-E 2

77 https://openai.com/dall-e-2/

"An astronaut riding a horse in a photorealistic style”



DALL-E 2 : Outpainting
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DALL-E 2 : Outpainting

79 https://openai.com/blog/dall-e-introducing-outpainting/



Stable diffusion
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Try it yourself! :
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≈ 300 m

Truth
Threshold

Fieldwork campaign organized by Prof. Martin Wooster (Dept of Geog. University College London) 
in Kruger National Park, 2014 South Africa. 

Ongoing work performed at Cerfacs by R. Paugam, N. Cazard, M. Rochoux

Radiance

Pixels

Pixels

???

Radiance

Mask
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0 minutes
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CNN
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Neural network

CNN Neural network

460 images

Human time: ≈ 4h instead of 160h !
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Validation fire 1

Training fire 1

Epochs

Loss

Transfer learning
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2. Forest fire front tracking

Early stop point

Fire 1
Fire 2

Train

Validation

Test
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CNN
Threshold

Fieldwork campaign organized by Prof. Martin Wooster (Dept of Geog. University College London) 
in Kruger National Park, 2014 South Africa. 

Work performed at Cerfacs by R. Paugam, N. Cazard, M. Rochoux

Context 
awareness is 
crucial here

Deep Learning enables automatic 
extraction of features from context 
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Cellier, A. et al. “Detection of Precursors of Combustion Instability using Convolutional Recurrent Neural Networks” Combustion and Flame (accepted for publication) (2021).
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Physics-Informed Learning



90
Karniadakis, George Em, et al. "Physics-informed machine learning." Nature Reviews Physics 3.6 (2021): 422-440.



Constraints
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PINNs (soft constraints)

92

Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics 
informed deep learning (part i): Data-driven solutions of nonlinear partial 

differential equations." arXiv preprint arXiv:1711.10561 (2017).

ut + 𝒩[u; λ] = 0Generic PDE form:

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

Example: Burgers’ equation 𝒩[u; λ] = λ1uux − λ2uxx

Suppose you have imperfect observations of the system (e.g. noisy measurements). 
- Question 1: given fixed λ, can we estimate u(t, x) ?   (Data driven PDE solving) 
- Question 2: what λ best describes the data ?              (System identification)

f := ut + 𝒩[u]Focus on Q1:

u(t, x) -> Deep Neural Network

f(t, x) -> Physics-Informed Neural Network



PINNs
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L = wdataLdata + wPDELPDE

Ldata =
1

Ndata

Ndata

∑
i=1

(u(ti, xi) − ui)2

LPDE =
1

NPDE

NPDE

∑
j=1

( ∂u
∂t

+ 𝒩(u))
2

tj,xj
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Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for 
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

To train through the solver, 
it must be differentiable.
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What about CFD?
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∂
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∂
∂t

Models

Time- 
stepping

Results

End-to-end 
Surrogates

Faster / automatic 
Mesh optimization

Better gradient 
estimation

More accurate 
models

Larger timesteps / 
Less iterations (Poisson)

Inverse problems

Where should we look? 
Unclear: literature still hesitant

Much research on hybrid 
techniques
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28/06/2021

• The goal is to assess the development of data-based shear stress models for 
the wall-modelled large-eddy simulation of separated flows.

• We used a database that includes:
– two fully developed channel flows: at Reτ = 180 (data provided by ICL) and 
Reτ = 950 (from Jimenez et al. database);
– the flow over a backward-facing step (in-house LES);
– the flow in a 3D diffuser (TC05, provided by BSC).

• However, the backward-facing step simulation is excluded from the training 
database for testing purpose, which means the model is only trained with 
the channel flow simulations and the 3D diffuser simulation.

2

Training Database
Post-mortem

In the loop

A priori Testing

28/06/2021

• The goal is to assess the development of data-based shear stress models for 
the wall-modelled large-eddy simulation of separated flows.

• We used a database that includes:
– two fully developed channel flows: at Reτ = 180 (data provided by ICL) and 
Reτ = 950 (from Jimenez et al. database);
– the flow over a backward-facing step (in-house LES);
– the flow in a 3D diffuser (TC05, provided by BSC).

• However, the backward-facing step simulation is excluded from the training 
database for testing purpose, which means the model is only trained with 
the channel flow simulations and the 3D diffuser simulation.

2

A posteriori Testing

Train for your objective 
directly through the 

solver

Reinforcement Learning 

(c.f. talk this afternoon) 

=> Search for behaviour 
that maximises your true 

objective 
(here: in code performance)
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Inputs
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Time- 
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Results

End-to-end 
Surrogates

Faster / automatic 
Mesh optimization

Better gradient 
estimation

More accurate 
models

Larger timesteps / 
Less iterations (Poisson)

Inverse problems

An example of training through the solver
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Fully resolved physicsWhat I can pay for
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Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.
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Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.
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Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for 
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

To train through the solver, 
it must be differentiable.
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CFD Filtered CFDCFD + NN

CFD solver 
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differentiable 
framework)
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Unstructured numerical scheme: 
Two-step Taylor-Galerkin type C 

TTGC
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Unequally spaced
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Global optimal is not a local optimal

Allow  to change locally in the mesh 

Differentiate TTGC solver 
Supply gradients to NLopt (optimizer)

𝛾



107

Unequally spaced
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Unequally spaced
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WIP: extension to higher dimension

Ongoing PhD of Luciano Drozda, Cerfacs
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Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time- 
stepping

Results

End-to-end 
Surrogates

Faster / automatic 
Mesh optimization

Better gradient 
estimation

More accurate 
models

Larger timesteps / 
Less iterations (Poisson)

Inverse problems

An example of training through the solver



Context
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• Second order linear Elliptic Partial Differential Equations equations 

•  + + F  + G= 0  where 

 

• Simplest cases: 
๏Poisson and Laplace equation:   
๏ Frequently seen in multiple physics problems: 

Incompressible Navier Stokes  

Electrostatics  ( = Scalar electric potential field) 

Newton Gravity  
…

𝐴 
𝜕2𝑢
𝜕𝑥2

+ 𝐵
𝜕2𝑢
𝜕𝑦2

C
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐷

𝜕𝑢
𝜕𝑥

+ 𝐸
𝜕𝑢
𝜕𝑦

𝑢

𝐵2 − 4 𝐴𝐶 < 0

∆  𝜑 = 𝑓 

𝛻2𝑝 = 𝑓(𝜈,  𝑉 ) 
∆ 𝜑 = −

𝜌
𝜀

𝜑 

∆ 𝜙 = 4 𝜋 𝐺 𝜌 (𝜙 = Scalar gavitational potential)



Strategy
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Advection

Pressure 
Correction

xi

xi+1

> fast classical 
solver

[1] Tompson, Jonathan, et al. "Accelerating eulerian fluid simulation with convolutional networks." 
Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

Neural network 
replaces this

Strategy originally proposed as « FluidNet » [1]

> slow iterative solver 
(up to 80% total 

computation time)



Fully neural pressure
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• A fully neural pressure strategy (à la FluidNet)

CNN Jacobi 200



Fully neural pressure
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• Interesting results but robustness problems 

• How could we guarantee the accuracy of the pressure correction? => Hybrid

CNNJacobi 200



Hybrid strategy
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Ongoing PhD work of Ekhi Ajuria. ISAE-Supaéro - CERFACS 
Supervision: Bénédicte Cuenot (CERFACS), Michaël Bauerheim (ISAE)

Advection

Pressure 
Correction

xi

xi+1

> fast classical 
solver

> slow iterative 
solver

> neural 
network initial guess

Iterative solver 
converges to 

precision if needed

CNNJacobi 200 CNNJacobi 200



Re 6000 3D Von Karman vortex street

116 Ongoing PhDs of E. Ajuria (Cerfacs - ISAE-Supaéro), L. Cheng and G. Bogopolski (Cerfacs)
(a) Neural network (b) Linear system

Figure 20: Comparison of electron density and electric field norm at 1.6 ns for neural network and linear system Poisson
solver. The computational domain has been mirrored from the central axis.

(a) Neural network (b) Linear system

Figure 21: Comparison of electron density and electric field norm at 2.8 ns for neural network and linear system Poisson
solver. The computational domain has been mirrored from the central axis.

The network architecture has been chosen accordingly to the prescribed optimal parameters of Eqs.(26) and (27). These
have been adapted to the present case as the geometry is now rectangular and not squared so that a receptive field in
each direction can be defined. To achieve these guidelines on the 401 ⇥ 101 mesh, receptive fields of RFG = 800 and
RFH = 200 have been chosen with =1 = 5 branches and around 100 000 parameters.

The strong background electric field imposed in the whole domain allows ionization of air through collisions and the
propagation of two streamers, one going to the left (negative streamer) and the other to the right (positive streamer). The
UNet5-RFG800-RFH200 and linear system Poisson solver results are compared in Figs. 20 and 21. At the beginning
of the propagation, the neural network and the linear system yield similar fields (Fig. 20). After a while the absolute
values of maximum of electric field and electron density are underestimated by the neural network, where the electric
field and electron density profiles are slightly diffused by the network (Fig. 21). Overall, a good agreement is found to
be satisfactory as the UNet5 manages to predict correctly the electric field E, which then drives the propagation of the
two streamers.

21

electron density and 
electric field norm 
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Weather forecasting: a paradigm 
shift?
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Use of physics

Use of data

Traditional Physics 
Solvers (incl. CFD) Learned emulators

Physics-Informed Learning 
(NeuralOps, soft constraints)

Learned sub-models 
(= “hybrid”, hard constraints)

Cost Accuracy
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FourCastNet 
Fourier Neural Operator 

Physics-informed

https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-learning-weather-forecasting

Feb 
2022 2023

PanguWeather 
Transformer 
No physics

Nov 

GraphCast 
Graph Neural Network 

No physics

Dec 

FengWu 
Transformer 
No physics

Apr 

ClimaX 
Transformer 

Foundation model 
Multi-resolution 

No physics

Jan 

SwinRDM 
Diffusion model 

No Physics

Jun 

6

FourCastNet

Pathak et al. (22 Feb. 2022), Nvidia. FourCastNet: A Global Data-driven
High-resolution Weather Model using Adaptive Fourier Neural Operators.

I First to produce forecast at NWP
resolution 0.25º (previous were �
1º), quantitatively evaluate extreme,
use transformers.

I Adaptative Fourier Neural Operator
(AFNO)

I ”The FourCastNet model can
compute a 100-member 24-hour
forecast in 7 seconds” using four
A100 GPUs Example of forecast: 10m wind at 96h lead

time
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Use of physics

Use of data

Traditional Physics 
Solvers (incl. CFD) Learned emulators

Physics-Informed Learning 
(NeuralOps, soft constraints)

Learned sub-models 
(= “hybrid”, hard constraints)

Cost Accuracy
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Use of physics

Use of data

Traditional Physics 
Solvers (incl. CFD) Learned emulators

Physics-Informed Learning 
(NeuralOps, soft constraints)

Learned sub-models 
(= “hybrid”, hard constraints)

Cost Accuracy
New Data-Driven 

Weather Models (DDWM)
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Key Enabler: 
ECMWF Reanalysis v5 (ERA5)

10 PB high-quality reanalysis 
• Hourly estimates of a large number of atmospheric, land and oceanic 

climate variables 1940 - present.
• The data cover the Earth on a 30km grid (1 million nodes) and resolve the 

atmosphere using 137 levels from the surface up to a height of 80km
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Supervised training paradigm

x → y

x → y

Task 2

x → y
x → y

x → y
x → y

Task 1
x → y
x → yx → y
x → y

Good training results Poor training results

x
x
x
x
x
xx

x
x
x
x
x
x

Unlabeled

?? Unused
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FourCastNet 
Fourier Neural Operator 

Physics-informed

Feb 
2022 2023

PanguWeather 
Transformer 
No physics

Nov 

GraphCast 
Graph Neural Network 

No physics

Dec 

FengWu 
Transformer 
No physics

Apr 

ClimaX 
Transformer 

Foundation model 
Multi-resolution 

No physics

Jan 

SwinRDM 
Diffusion model 

No Physics

Jun 

https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-learning-weather-forecasting

Foundation model
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Supervised training paradigm

x → y

x → y

Task 2

x → y
x → y

x → y
x → y

Task 1
x → y
x → yx → y
x → y

Good training results Poor training results

x
x
x
x
x
xx

x
x
x
x
x
x

Unlabeled

?? Unused

Self-Supervised training paradigm

x
x
x
x
x
xx

x
x
x
x
x
x

Unlabeled

Pretraining

a.k.a “foundation models”

x → y

x → y

Task 2

x → y
x → y

x → y
x → y

Task 1
x → y
x → yx → y
x → y

Fine-tuning

Large Language Models (LLMs): 
BERT, GPT-2/3/4, PaLM, LLaMA…

Diffusion Models: 
DALL-E, Midjourney, 

StableDiffusion…

                            internship + PhD open between CERFACS / La Sorbonne to apply 
     this to general CFD. Come see me if interested!Shameless ad
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Conclusion



Why does it work?

127

Henry W. Lin, Max Tegmark, and David Rolnick, Why does deep and cheap 
learning work so well? Journal of Statistical Physics (2017)

« All » functions

ANN 
favoured 
functions

Functions 
solution to the 
laws of physics



When should we use it?
R

es
ul

t /
 €

Complexity

Rule based Traditional machine 
learning Deep learning

128



For what problems?
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• When you have an analytical 
solution, use it! 

• But many problems (current 
and to be formulated) don’t. 
Then, if you have data, there 
might be hope…
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What does it look like?
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np

input_img = Input(shape=(28, 28, 1))

model = keras.Sequential(
    [
        keras.Input(shape=input_shape),
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
    ]
)

# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

batch_size = 128
epochs = 15

model.compile(loss=“categorical_crossentropy",
              optimizer=“adam",
              metrics=["accuracy"])

model.fit(x_train, y_train,
          batch_size=batch_size, epochs=epochs, validation_split=0.1)

A simple convolutional 
classifier

A few lines of python / lua / 
java… and you’re off

2
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26/09 Python

3/10 Introduction to the 
course

17/10 - 
5/12

ML and the Rocket  
Combustion Project

12/12 Oral presentation 
on Rocket Project

12/12 Intro to Neural 
Networks

19/12 - 
23/01 Satellite Project

30/01 Oral presentation 
on Satellite Project

30/01 Conference

4/02 Written report on 
Satellite Project

20%

20%

60%

Evaluation

2023 - UIAP Course Summary


