UE Vision, Réalité Augmentée et Applications

Matière: Vision Partie II (Cours)

Sylvie CHAMBON schambon@toulouse-inp.fr

26 septembre et 2 octobre 2024

Plan

Détection de points d'intérêt

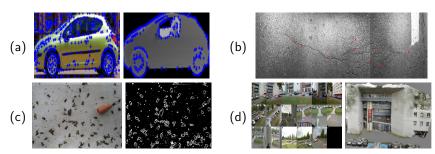
Introduction

Notations

Construction d'une pyramide

Principe d'un détecteur

- **primitive** = élément pouvant être extrait d'une image afin d'obtenir une information caractéristique de la scène comme la présence d'un objet, une distance, un relief ...
- primitives = pixels, régions, contours, polygones, tout ensemble de points permettant d'obtenir l'information recherchée
- primitive d'intérêt points d'intérêt



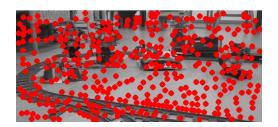
Applications

(g)

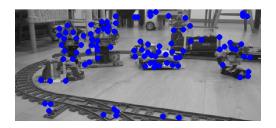
Image originale

(1) Réponse

(2) Sélection des points après suppression non-maxima locaux



(3) Affinement de la sélection



Fonctionnement d'un détecteur : analyse

- Sans suppression des non maxima locaux Nous avons un risque de points mal répartis
- Sans Affinement mais avec suppression des non maxima locaux
 - Points bien répartis sur toute l'image
 - Mais certains points n'auront pas des caractéristiques suffisamment saillantes pour être suivis correctement (risque élevé d'erreurs de suivi)
 - Certaines zones de l'image ne posséderont aucun point suivi

Qualité du résultat ?

La répétabilité d'une primitive correspond à sa capacité à être détectée quelle que soit l'image ou la donnée dans laquelle elle apparaît. Plus précisément, si une primitive est détectée dans une représentation donnée, alors, elle doit également être détectée dans une autre représentation.

Si nous notons:

- \mathbf{p} , un point dans une image I_1
- \mathbf{p}' son correspondant théorique dans une autre image, l_2 alors ce point est répétable s'il existe un point \mathbf{q} , détecté dans l_2 et tel que :

$$\|\mathbf{p}^{'}-\mathbf{q}\|\leq\epsilon.$$

Qualité du résultat ?

Taux de répétabilité entre deux images, noté $R(I_1, I_2)$

$$R(\mathcal{P}_{D,1}, \mathcal{P}_{D,2}) = \frac{R(\mathcal{P}_{D,1} \to \mathcal{P}_{D,2}) + R(\mathcal{P}_{D,2} \to \mathcal{P}_{D,1})}{2}$$
(1)

avec

$$R(\mathcal{P}_{D,i} \to \mathcal{P}_{D,j}) = \frac{\#\{\text{Points répétables de } \mathcal{P}_{D,i} \text{ vers } \mathcal{P}_{D,j}\}}{\#\{\mathcal{P}_{D,i}\}}$$
(2)

Qualité du résultat ?

 Détection exacte et précise : la localisation peut être imprécise, cela est dû aux différents opérateurs de lissage ou d'approximation utilisés.

De nombreuses méthodes avec une étape de relocalisation.

- Robustesse à certaines difficultés :
 - Définition locale pour permettre la robustesse aux occultations
 - Invariant, ou co-variant, aux transformations d'images
 - Robuste à tous types de dégradations de l'image : bruits, flou, discrétisation ou encore compression.
 - Assurance d'une grande quantité de primitives d'intérêt
 - Détection rapide

Détection versus description

Quelle est le rôle du descripteur par rapport au détecteur ?

Détection *versus* description

Quelle est le rôle du descripteur par rapport au détecteur ?

- Détecteur
- Opérateur pour déterminer si c'est un point d'intérêt ou non
- Descripteur
- = Toutes les caractéristiques exploitées pour réaliser le suivi/la mise en correspondance
 - Beaucoup plus de détecteurs que de descripteurs
 - Exploiter la réponse pour faire le suivi est peu efficace Deux solutions
 - 1. Simple mesure de corrélation dans le voisinage
 - 2. Définir des caractéristiques plus élaborées qu'un simple voisinage couleur (SIFT)

Est-ce que les points d'intérêt détectés sur des images à petites échelles se retrouvent sur des images à plus grande échelle et de la même manière avec des images multi-resolution

Est-ce que les points d'intérêt détectés sur des images à petites échelles se retrouvent sur des images à plus grande échelle et de la même manière avec des images multi-resolution

L'objectif de la multirésolution est d'obtenir des points différents dans les différentes échelles et résolution.

Donc, nous ne retrouvons pas les mêmes points.

Toutefois, en pratique, un même point d'intérêt peut être détecté sur quelques échelles consécutives et cet aspect peut même être utilisé pour sélectionner les points d'intérêt invariants sur plusieurs échelles.

Comment les fusions multi-échelle sont elles réalisées ?

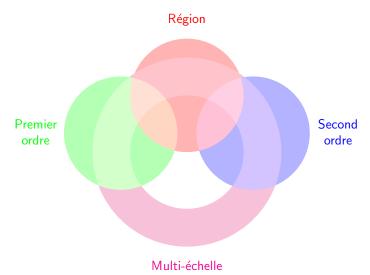
Comment les fusions multi-échelle sont elles réalisées ?

Cela dépend du détecteur.

Dans SIFT, on va juste prendre toutes les détections à toutes les échelles.

Dans MSER, on va favoriser les détections qui ont lieu à plusieurs échelles successives.

Classement des détecteurs



Classement des détecteurs

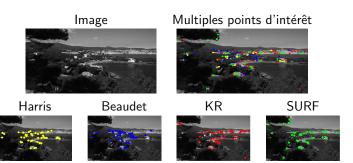
	Premier ordre	Région	Second ordre
Mono- échelle	Moravec 1980, Harris 1988	SUSAN 1997, FAST 2006, MSER Matas2002, IBR 2004	Beaudet 1978, Kitchen 1982
Multi- échelle	Harris-laplace 2004	Kadir 2004, EBR 2004	Hessien- Laplace 2004, SIFT 2004, SURF 2008, CSS 1998, <i>MFC</i> 2017
		PCBR 2007	

Détection de points d'intérêt 00000000000000

Invariance des détecteurs

Détecteur	Affines photométriques	Géométriques non affine	Affines géométriques	Changement d'échelle
Moravec, Harris				
Harris-laplace				×
SUSAN				
FAST				
MSER	×	×		
IBR	×	×	×	
Kadir	×	×	×	×
EBR	×	×	×	×
PCBR				×
Beaudet				
Kitchen1982				
Hessien- Laplace				×
SIFT		×		×
SURF				×
CSS	×	×	×	×
MFC			4 🗆 b 4 f	7

Complémentarité des détecteurs



Détection de points d'intérêt

Notations

- 1. *I* : une image qui à chaque point/pixel **p** associe un niveau de gris noté I(x, y)
- 2. $I_x, I_y, I_{xx}, I_{yy}, I_{xy}$: images des dérivées premières et secondes de l'image
- 3. $I_x(x,y), \ldots, I_{xy}(x,y)$: valeurs des dérivées premières et secondes au point **p**
- 4. Pour simplifier, on notera I_x pour $I_x(x, y)$...

Construction d'une pyramide

 But : produire à partir d'une image, un ensemble d'images de résolution de plus en plus faibles

Construction d'une pyramide

- But : produire à partir d'une image, un ensemble d'images de résolution de plus en plus faibles
- Plusieurs techniques développées dans le domaine de la compression d'images

Construction d'une pyramide

- But : produire à partir d'une image, un ensemble d'images de résolution de plus en plus faibles
- Plusieurs techniques développées dans le domaine de la compression d'images
- Différents types de pyramides : Pyramides régulières ou irrégulières

• Soit n la résolution courante à calculer (qui est plus faible que la résolution n-1)

$$I^{n}(i,j) = \underset{(i',j') \in \mathsf{ZV}(i,j)}{\mathsf{reduction}} f_{r}(I^{n-1}(i',j')), \tag{3}$$

• Soit n la résolution courante à calculer (qui est plus faible que la résolution n-1)

$$I^{n}(i,j) = \underset{(i',j') \in \mathsf{ZV}(i,j)}{\mathsf{reduction}} f_{r}(I^{n-1}(i',j')), \tag{3}$$

• $\mathsf{ZV}(i,j) = \mathsf{voisinage} \ \mathsf{de} \ \mathsf{r\'eduction}$

• Soit n la résolution courante à calculer (qui est plus faible que la résolution n-1)

$$I^{n}(i,j) = \underset{(i',j') \in \mathsf{ZV}(i,j)}{\mathsf{reduction}} f_{r}(I^{n-1}(i',j')), \tag{3}$$

- $\mathsf{ZV}(i,j) = \mathsf{voisinage}$ de réduction Fonction qui permet de retourner l'ensemble des pixels considérés au niveau n-1 pour évaluer la valeur d'un pixel au niveau n
- f_r fonction à appliquer aux pixels pris en compte (pondération)

• Soit n la résolution courante à calculer (qui est plus faible que la résolution n-1)

$$I^{n}(i,j) = \underset{(i',j') \in ZV(i,j)}{\text{reduction}} f_{r}(I^{n-1}(i',j')), \tag{3}$$

- ZV(i,j) = voisinage de réduction
 Fonction qui permet de retourner l'ensemble des pixels considérés au niveau n 1 pour évaluer la valeur d'un pixel au niveau n
- f_r fonction à appliquer aux pixels pris en compte (pondération)
- reduction : fusion des valeurs des pixels voisins du niveau n-1 pour obtenir le niveau n

- Pyramides gaussiennes Lissage par un filtre gaussien, puis sous-échantillonnage, en récupérant un pixel sur quatre
- Pyramides moyennes Moyenne sur un voisinage 2 × 2

Plan

Détecteurs du premier ordre

Détecteurs du premier ordre : vers le multi-échelle

Moravec

Point quelconque

Moravec

Point quelconque

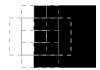
Moravec

Point quelconque

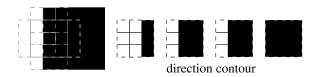
Point quelconque

Point contour

Point contour



Point contour

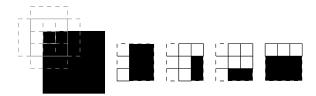


Point contour

Point de type coin

Point de type coin

Point de type coin



Point de type coin

Moravec : définition

Soit (u, v) un déplacement, l'impact de ce déplacement se mesure par :

$$E_{(u,v)}(x,y) = \sum_{x,y} w(x,y) (I(x+u,y+v) - I(x,y))^2$$

où:

- 1. *w* : poids
- 2. $E_{(u,v)}(x,y) =$ moyenne du changement si on déplace la fenêtre

Moravec : définition

Soit (u, v) un déplacement, l'impact de ce déplacement se mesure par :

$$\mathsf{E}_{(u,v)}(x,y) = \sum_{x,y} w(x,y) (I(x+u,y+v) - I(x,y))^2$$

où:

- 1. w : poids
- 2. $E_{(u,v)}(x,y) =$ moyenne du changement si on déplace la fenêtre La réponse du détecteur est donc la valeur minimale parmi toutes les directions testées :

$$Mor(x,y) = \min_{(u,v)} \mathsf{E}_{(u,v)}(x,y)$$

Moravec : définition

Soit (u, v) un déplacement, l'impact de ce déplacement se mesure par :

$$\mathsf{E}_{(u,v)}(x,y) = \sum_{x,y} w(x,y) (I(x+u,y+v) - I(x,y))^2$$

où:

- 1. *w* : poids
- 2. $E_{(u,v)}(x,y) =$ moyenne du changement si on déplace la fenêtre La réponse du détecteur est donc la valeur minimale parmi toutes les directions testées :

$$Mor(x, y) = \min_{(u,v)} \mathsf{E}_{(u,v)}(x, y)$$

s'il existe une direction où le déplacement implique peu de changement alors, ce n'est pas un point d'intérêt

1. La réponse est bruitée en raison des poids binaires : utilisation des poids Gaussiens, de moyennes nulles

- 1. La réponse est bruitée en raison des poids binaires : utilisation des poids Gaussiens, de moyennes nulles
- 2. La réponse du détecteur est anisotrope (dépendant de la direction)

- 1. La réponse est bruitée en raison des poids binaires : utilisation des poids Gaussiens, de moyennes nulles
- 2. La réponse du détecteur est anisotrope (dépendant de la direction)

FT

3. La réponse est trop forte/ambiguë au niveau des contours

développement de Taylor à l'ordre 2 au voisinage de (x, y)

$$I(x+u,y+v) = I(x,y) + u\frac{\partial I}{\partial u} + v\frac{\partial I}{\partial v} + o(u^2,v^2)$$

développement de Taylor à l'ordre 2 au voisinage de (x, y)

$$I(x+u,y+v) = I(x,y) + u\frac{\partial I}{\partial u} + v\frac{\partial I}{\partial v} + o(u^2,v^2)$$

D'où, dans cette équation :

$$\mathsf{E}^{\mathsf{modifiée}}_{(u,v)}(x,y) = \sum_{x,y} w(x,y) (u \frac{\partial I}{\partial u} + v \frac{\partial I}{\partial v} + o(u^2,v^2))^2$$

développement de Taylor à l'ordre 2 au voisinage de (x, y)

$$I(x+u,y+v) = I(x,y) + u\frac{\partial I}{\partial u} + v\frac{\partial I}{\partial v} + o(u^2,v^2)$$

D'où, dans cette équation :

$$\mathsf{E}^{\mathsf{modifiée}}_{(u,v)}(x,y) = \sum_{x,y} w(x,y) (u \frac{\partial I}{\partial u} + v \frac{\partial I}{\partial v} + o(u^2,v^2))^2$$

On obtient:

$$\mathsf{E}_{\mathsf{modifi\acute{e}e}} = Au^2 + 2Cuv + Bv^2,$$

avec
$$A = \frac{\partial I^2}{\partial u} \otimes w$$
, $B = \frac{\partial I^2}{\partial v} \otimes w$ et $C = \frac{\partial I}{\partial u} \frac{\partial I}{\partial v} \otimes w$
 $\otimes =$ convolution

1. En repartant de l'équation (4)

$$\mathsf{E}^{\mathsf{modifi\acute{e}e}}_{(u,v)}(x,y) = (u,v)M(u,v)^T,$$

avec
$$M = \begin{pmatrix} A & C \\ C & B \end{pmatrix}$$
.

1. En repartant de l'équation (4)

$$\mathsf{E}^{\mathsf{modifi\acute{e}e}}_{(u,v)}(x,y) = (u,v)M(u,v)^T,$$

avec
$$M = \begin{pmatrix} A & C \\ C & B \end{pmatrix}$$
.

- 2. Les valeurs propres de la matrice M correspondent aux courbures principales associées à E
 - deux courbures faibles = région homogène
 - une des courbures est forte et l'autre est faible = un contour
 - deux courbures fortes = un coin, un point d'intérêt

$$R(x,y) = Det(M) - kTrace(M)^2$$

avec $Det(M) = AB - C^2$ et $Trace(M) = A + B$

$$R(x, y) = \text{Det}(M) - k\text{Trace}(M)^2$$

avec
$$Det(M) = AB - C^2$$
 et $Trace(M) = A + B$

1. on s'est affranchi du choix de la direction!

$$R(x, y) = \text{Det}(M) - k \text{Trace}(M)^2$$

avec
$$Det(M) = AB - C^2$$
 et $Trace(M) = A + B$

- 1. on s'est affranchi du choix de la direction!
- 2. Les valeurs de R sont
 - positives au voisinage d'un coin
 - négatives au voisinage d'un contour
 - faibles dans une région d'intensité constante

- 1. Calcul de la réponse de Harris à plusieurs échelles Extrema locaux estimées en (x, y, σ)
- 2. Affinement de la sélection des points d'intérêt dans l'espace échelle du laplacien

- 1. Calcul de la réponse de Harris à plusieurs échelles Extrema locaux estimées en (x, y, σ)
- 2. Affinement de la sélection des points d'intérêt dans l'espace échelle du laplacien
- 3. Algorithme itératif appliqué pour chaque candidat retenu
- 4. Soient (i_0, j_0, σ_0) , les coordonnées et l'échelle initiale

- 1. Calcul de la réponse de Harris à plusieurs échelles Extrema locaux estimées en (x, y, σ)
- 2. Affinement de la sélection des points d'intérêt dans l'espace échelle du laplacien
- Algorithme itératif appliqué pour chaque candidat retenu
- 4. Soient (i_0, j_0, σ_0) , les coordonnées et l'échelle initiale
 - 4.1 Recherche d'un extremum dans l'espace échelle du laplacien pour les échelles comprises dans $[c^{-1}\sigma_{l_k}; c\sigma_{l_k}]$,
 - 4.2 Intervalle inter-échelle guidé par $c_2 < c$ Si un extremum n'est pas trouvé alors ce candidat est rejeté Sinon, on note σ_u , l'échelle à laquelle cet extremum a été trouvé

- 1. Calcul de la réponse de Harris à plusieurs échelles Extrema locaux estimées en (x, y, σ)
- 2. Affinement de la sélection des points d'intérêt dans l'espace échelle du laplacien
- Algorithme itératif appliqué pour chaque candidat retenu
- 4. Soient (i_0, j_0, σ_0) , les coordonnées et l'échelle initiale
 - 4.1 Recherche d'un extremum dans l'espace échelle du laplacien pour les échelles comprises dans $[c^{-1}\sigma_{l_k}; c\sigma_{l_k}]$,
 - 4.2 Intervalle inter-échelle guidé par $c_2 < c$ Si un extremum n'est pas trouvé alors ce candidat est rejeté Sinon, on note σ_u , l'échelle à laquelle cet extremum a été trouvé
 - 4.3 Détection de la position (i_{k+1}, j_{k+1}) du maximum de la réponse de Harris le plus proche de (i_k, j_k) à l'échelle σ_{ii}

- 1. Calcul de la réponse de Harris à plusieurs échelles Extrema locaux estimées en (x, y, σ)
- 2. Affinement de la sélection des points d'intérêt dans l'espace échelle du laplacien
- Algorithme itératif appliqué pour chaque candidat retenu
- 4. Soient (i_0, j_0, σ_0) , les coordonnées et l'échelle initiale
 - 4.1 Recherche d'un extremum dans l'espace échelle du laplacien pour les échelles comprises dans $[c^{-1}\sigma_{l_k}; c\sigma_{l_k}]$,
 - 4.2 Intervalle inter-échelle guidé par $c_2 < c$ Si un extremum n'est pas trouvé alors ce candidat est rejeté Sinon, on note σ_u , l'échelle à laquelle cet extremum a été trouvé
 - 4.3 Détection de la position (i_{k+1}, j_{k+1}) du maximum de la réponse de Harris le plus proche de (i_k, j_k) à l'échelle σ_u Nouvelle itération si $\sigma_k \neq \sigma_{k+1}$ et $(i_k, j_k) \neq (i_{k+1}, j_{k+1})$

Remarques

• Une version moins coûteuse : seuillage de la réponse

Remarques

- Une version moins coûteuse : seuillage de la réponse
- Hessien-Laplace : même algorithme appliqué au détecteur de Beaudet (que nous verrons par la suite)

Plan

Détecteurs de régions

Vers le multi-échelle : Détecteur de Kadir

Vers le multi-échelle : EBR, Edge-Based Regions

Vers le multi-échelle : PCBR, Principal Curvature-Based Regions

Détecteurs de régions

Les détecteurs de type régions ne détectent pas les coins ou des angles dans l'image. Ils considèrent le centre des régions détectées comme étant le point d'intérêt.

Détecteur SUSAN (Smallest Univalue Segment Assimilating Nucleus)

Les principes

- 1. Notion de noyau, nucleus = pixel étudié
- 2. Notion de région d'intérêt autour de ce noyau = masque circulaire
- Notion de sous-région, segment, autour du noyau, photométriquement proche du noyau
- 4. Forme et taille de cette sous-région = caractérise le point et indique sa particularité

SUSAN: masque circulaire

- o: pixel étudié
- * : pixel pris en compte dans le voisinage
- : pixel non pris en compte dans le voisinage

SUSAN: définition de l'USAN

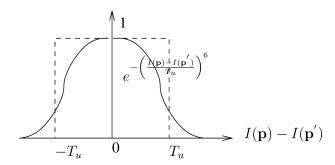
$$f: \mathbb{N}^2 \to \mathbb{R}$$

$$\mathbf{p} \to f(\mathbf{p}) = \sum_{\mathbf{p}' \in \mathcal{V}(\mathbf{p})} e^{-\left(\frac{I(\mathbf{p}) - I(\mathbf{p}')}{T_u}\right)^6}$$

T_u correspond au contraste maximal autorisé

USAN = région d'intérêt/région d'appartenance du pixel étudié Le barycentre de l'USAN = le centre

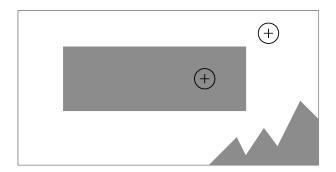
SUSAN : Comportement de la fonction de similarité

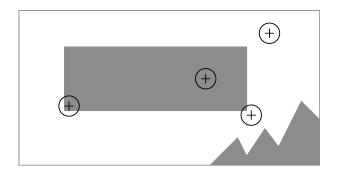


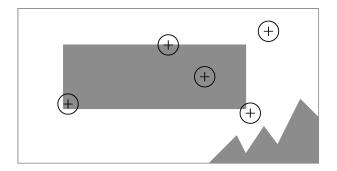
SUSAN : définition de la réponse

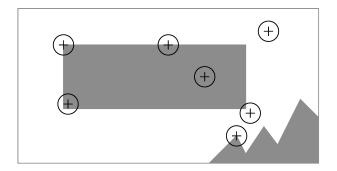
$$SU(\mathbf{p}) = \begin{cases} T_g - f(\mathbf{p}) & \text{si } f(\mathbf{p}) < T_g \\ 0 & \text{sinon} \end{cases}$$

 T_g est un seuil géométrique.









Comportement du détecteur

Comportement "idéal"

- Surface de l'USAN proche de la surface du voisinage = zone homogène
- Surface de l'USAN proche de la moitié de la surface du voisinage = contour
- Surface de l'USAN plus petite que la moitié de la surface du voisinage = point d'intérêt

Comportement du détecteur

Comportement "idéal"

- Surface de l'USAN proche de la surface du voisinage = zone homogène
- Surface de l'USAN proche de la moitié de la surface du voisinage = contour
- Surface de l'USAN plus petite que la moitié de la surface du voisinage = point d'intérêt

Ainsi, souvent, $T_g = \frac{s_{max}}{2}$ où s_{max} est la surface maximale de l'USAN étant donnée la taille du voisinage considéré.

Comportement du détecteur

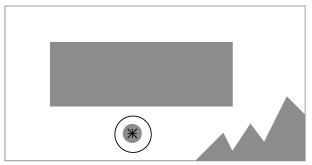
Comportement "idéal"

- Surface de l'USAN proche de la surface du voisinage = zone homogène
- Surface de l'USAN proche de la moitié de la surface du voisinage = contour
- Surface de l'USAN plus petite que la moitié de la surface du voisinage = point d'intérêt

Ainsi, souvent, $T_g = \frac{s_{max}}{2}$ où s_{max} est la surface maximale de l'USAN étant donnée la taille du voisinage considéré.

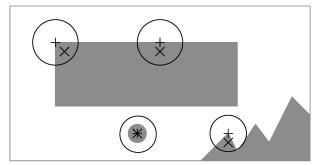
Bien sûr, il y a des cas où le respect de cette contrainte n'est pas corrélé au fait que le point étudié est un point d'intérêt ← nécessité d'ajouter des contraintes

SUSAN: Contrainte du centre



- + Noyaux× Centres

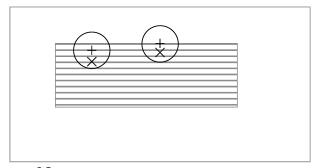
SUSAN: Contrainte du centre



- + Noyaux× Centres

SUSAN : Contrainte de continuité

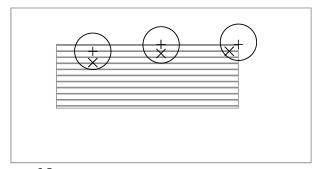
Quelle est la différence entre le noyau et le centre d'une région ?



- + Noyaux × Centres

SUSAN : Contrainte de continuité

Quelle est la différence entre le noyau et le centre d'une région ?



- + Noyaux
- × Centres

SUSAN: Conclusion

Plus on ajoute de contraintes, plus on élimine de "mauvais" points d'intérêt mais plus on risque d'éliminer de "bons" points d'intérêt !

SUSAN FAST, Features from Accelerated Segment Test

- Proche de SUSAN
- Zone circulaire : Algorithme du cercle de Bresenham de rayon 3
- → 16 points sur le périmètre de ce cercle
 - Ensembles de pixels de même intensité qui forment une région connexe
 - Vérification d'une de ces hypothèses, pour T à choisir :
 - 1. $\exists Np = 12$ pixels connexes tels que I(x', y') < I(x, y) T
 - 2. $\exists Np = 12$ pixels connexes tels que I(x', y') > I(x, y) T
 - Version plus rapide avec 4 pixels et vérification de 3/4 pixels
 - Inconvénient : comment choisir les *n* pixels significatives ?

Solution Apprentissage

Maximally Stable Extremal Regions (MSER)

- Principe: intensité varie rapidement aux bords des objets régions = composantes connexes de l'image seuillée (ligne de partage des eaux)
- Propriétés: invariant aux transformations monotones d'intensité et aux transformations géométriques homographiques ou non linéaires mais continues
- **Inconvénient :** sensible au flou (intensité sur les frontières mal définie)

Étapes

- 1. Détection des extrema locaux de l'intensité lumineuse de l'image I
- 2. Caractérisation de la région autour de ces extrema

Étapes

- 1. Détection des extrema locaux de l'intensité lumineuse de l'image I
- 2. Caractérisation de la région autour de ces extrema

Caractérisation

1. Fonction d'intensité le long des rayons issus de cet extremum

$$f_{I}(t) = \frac{|I(t) - I(0)|}{\max(d, \frac{1}{t} \int_{0}^{t} |I(x) - I(0)| dx}$$
(4)

Étapes

- 1. Détection des extrema locaux de l'intensité lumineuse de l'image I
- 2. Caractérisation de la région autour de ces extrema

Caractérisation

1. Fonction d'intensité le long des rayons issus de cet extremum

$$f_{I}(t) = \frac{|I(t) - I(0)|}{\max(d, \frac{1}{t} \int_{0}^{t} |I(x) - I(0)| dx}$$
(4)

2. Extremum chaînés entre eux

Étapes

- 1. Détection des extrema locaux de l'intensité lumineuse de l'image I
- 2. Caractérisation de la région autour de ces extrema

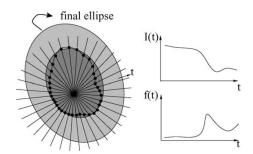
Caractérisation

1. Fonction d'intensité le long des rayons issus de cet extremum

$$f_{I}(t) = \frac{|I(t) - I(0)|}{\max(d, \frac{1}{t} \int_{0}^{t} |I(x) - I(0)| dx}$$
(4)

- 2. Extremum chaînés entre eux
- 3. Détermination de l'ellipse

Illustration de la région



Analyse

- Notion de blob : proche de l'approche définie dans SUSAN
- Taille de l'ellipse doublée
- Robuste sur les documents imprimés
- Invariant par les transformations affines géométriques et photométriques

Détecteur de Kadir

- Entropie de la distribution des valeurs des pixels au voisinage du point considéré
- = Plus le voisinage est désordonné plus il est discriminant

$$\mathcal{H}: \mathbb{N}^{2} \to \mathbb{R}$$

$$\mathbf{p} \mapsto -\sum_{k,l} p(\mathbf{p}) \log (p(\mathbf{p}))$$
(5)

avec $(k, l) \in \mathbb{N}^2$

- et $(k-i)^2 + (l-i)^2 < r^2$ où r est le rayon du voisinage considéré
- et probabilité $p(\mathbf{p}) = \text{distribution des valeurs des pixels du voisinage}$
 - La réponse est donnée par :

$$KA(\mathbf{p}) = \mathcal{H}(\mathbf{p}) \frac{\sigma^2}{2\sigma - 1} \sum_{\mathbf{p}, l} \left| \frac{\partial p(\mathbf{p})}{\partial \sigma} \right|.$$
 (6)

- Invariant aux transformations photométriques (biais), géométriques affines
- = indépendant du point de vue

- Contours stables aux changement de point de vue et de conditions d'éclairage
- Conséquence : Utilisation de la géométrie locale : droites et parallélogrammes

Étapes

- 1. Coins localisés avec Harris
- 2. Contours détectés avec Deriche
- 3. Pour chaque coin, analyse des contours passant par ce coin

Principe

• Un coin p et deux points $p_1(l_1)$ et $p_2(l_2)$ se déplaçant le long des contours partant de ce coin

Principe

- Un coin p et deux points $p_1(l_1)$ et $p_2(l_2)$ se déplaçant le long des contours partant de ce coin
- Distance curviligne $l_{1,2}$ de chaque point $p_{1,2}$ au coin p = surface entre le contour et la droite joignant le coin et le point $p_{1,2}$

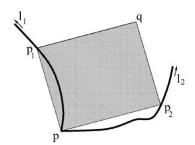
Principe

- Un coin p et deux points $p_1(l_1)$ et $p_2(l_2)$ se déplaçant le long des contours partant de ce coin
- Distance curviligne $l_{1,2}$ de chaque point $p_{1,2}$ au coin p = surface entre le contour et la droite joignant le coin et le point $p_{1,2}$
- Distance invariante aux transformations affines

Principe

- Un coin p et deux points $p_1(l_1)$ et $p_2(l_2)$ se déplaçant le long des contours partant de ce coin
- Distance curviligne $l_{1,2}$ de chaque point $p_{1,2}$ au coin p = surface entre le contour et la droite joignant le coin et le point $p_{1,2}$
- Distance invariante aux transformations affines
- Un coin p et deux points p₁(l₁) et p₂(l₂) = une famille de parallélogrammes

Analyse des coins

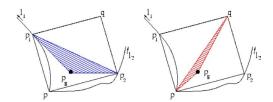


 Dans cette famille de parallélogrammes, sélection de celui qui a une valeur minimale d'une fonction photométrique

- Dans cette famille de parallélogrammes, sélection de celui qui a une valeur minimale d'une fonction photométrique
- Fonction : distance entre le centre de gravité et les diagonales du parallélogramme

- Dans cette famille de parallélogrammes, sélection de celui qui a une valeur minimale d'une fonction photométrique
- Fonction : distance entre le centre de gravité et les diagonales du parallélogramme
- Premiers pas vers une réponse invariante à l'échelle ...

Illustration du critère associé



PCBR Principal Curvature-Based Regions

- Estimer les courbures principales estimées à différentes échelles
- Améliorer cette détection en utilisant
 - 1. des opérateurs morphologiques pour fermer les contours
 - 2. un seuillage par hystérésis des courbures
 - 3. la conservation uniquement si la courbure est élevée sur différentes échelles
- Détecter des lignes de partages des eaux (à partir des courbures)

Plan

Détecteurs du second ordre

Vers le multi-échelle : SIFT Scale Invariant Feature Transform

Vers une variante accélérée de SIFT : SURF

Détecteur de Beaudet

Courbure de la surface : minimiser le déterminant de la matrice hessienne

$$\mathsf{Beaudet}(x,y) = \mathsf{det} \begin{pmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{pmatrix} = I_{xx}I_{yy} - I_{xy}^2$$

Détecteur de Kitchen et Rosenfeld

Courbure du contour pondéré par la norme du gradient

$$KR(x,y) = \frac{I_{xx}I_y^2 - 2I_{xy}I_xI_y + I_{yy}I_x^2}{I_x^2 + I_y^2}$$

Principe : recherche les extrema de la fonction courbure le long des contours en utilisant une approche multi-échelle

Courbure et espace d'échelle : Curvature Scale Space (CSS)

- **Principe :** recherche les extrema de la fonction courbure le long des contours en utilisant une approche multi-échelle
- Étapes
 - 1. Détection par Canny
 - 2. Fusion des contours proches
 - 3. Calcul de la courbure des contours avec lissage par une gaussienne
 - 4. Détection des extrema dans cet espace

Courbure et espace d'échelle : Curvature Scale Space (CSS)

- Principe : recherche les extrema de la fonction courbure le long des contours en utilisant une approche multi-échelle
- Étapes
 - 1. Détection par Canny
 - 2. Fusion des contours proches
 - 3. Calcul de la courbure des contours avec lissage par une gaussienne
 - 4. Détection des extrema dans cet espace
- Variante : Distinction entre contours courts et longs (détermination automatique du seuil de décision)

Courbure et espace d'échelle : Curvature Scale Space (CSS)

- Principe : recherche les extrema de la fonction courbure le long des contours en utilisant une approche multi-échelle
- Étapes
 - 1. Détection par Canny
 - 2. Fusion des contours proches
 - 3. Calcul de la courbure des contours avec lissage par une gaussienne
 - 4. Détection des extrema dans cet espace
- Variante : Distinction entre contours courts et longs (détermination automatique du seuil de décision)
- Invariance : Transformations affines géométriques et photométriques

SIFT Scale Invariant Feature Transform

1. Détection des extremums en échelle et en espace

SIFT Scale Invariant Feature Transform

- 1. Détection des extremums en échelle et en espace
- 2. Caractérisation par une **orientation principale** = gradient dominant dans le voisinage du point considéré, avec prise en compte du bruit

SIFT Scale Invariant Feature Transform

- 1. Détection des extremums en échelle et en espace
- 2. Caractérisation par une **orientation principale** = gradient dominant dans le voisinage du point considéré, avec prise en compte du bruit
- 3. Ajout d'un descripteur associé prenant en compte un histogramme local de ces orientations

Propriétés intéressantes

1. **Détecteur complet :** un descripteur associé permettant mettre en correspondance de manière robuste

- 1. **Détecteur complet :** un descripteur associé permettant mettre en correspondance de manière robuste
- 2. De nombreuses propriétés
 - 2.1 Localisation précise
 - 2.2 robustes aux occultations et aux bruits
 - 2.3 invariance aux changements de luminosité
 - 2.4 robustesse aux changements de points de vue

Propriétés intéressantes

- 1. **Détecteur complet :** un descripteur associé permettant mettre en correspondance de manière robuste
- 2. De nombreuses propriétés
 - 2.1 Localisation précise
 - 2.2 robustes aux occultations et aux bruits
 - 2.3 invariance aux changements de luminosité
 - 2.4 robustesse aux changements de points de vue

MAIS

3. Non invariant aux transformations affines

Étapes

- 1. Détection des extremums en échelle et en espace
- 2. Localisation des points
- 3. Affectation d'une orientation
- 4. Estimation des descripteurs

Étapes

- 1. Détection des extremums en échelle et en espace : Détection
- 2. Localisation des points : Affinement de la détection
- 3. Affectation d'une orientation : Caractérisation
- 4. Estimation des descripteurs : Pour la mise en correspondance

Approche par filtres en cascade

- Approche par filtres en cascade
- Estimation de différences de gaussiennes = approximation du laplacien

$$DoG(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$

= $L(x, y, k\sigma) - L(x, y, \sigma)$

où $G(x, y, \sigma)$ est la fonction gaussienne

- Approche par filtres en cascade
- Estimation de différences de gaussiennes = approximation du laplacien

$$DoG(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$
$$= L(x, y, k\sigma) - L(x, y, \sigma)$$

où $G(x, y, \sigma)$ est la fonction gaussienne

• Pour des valeurs successives de σ : laplacien normalisé en échelle

Définition d'une octave = Ensemble d'échelles ensemble des images lissées par un filtre gaussien à différentes échelles pour une résolution donnée

Pour passer d'une octave à l'autre = double la valeur de σ

Donc : si on souhaite *n* échelles par octave, alors il faut fixer $k = 2^{1/n}$

Définition d'une octave = Ensemble d'échelles ensemble des images lissées par un filtre gaussien à différentes échelles pour une résolution donnée

Pour passer d'une octave à l'autre = double la valeur de σ Donc : si on souhaite *n* échelles par octave, alors il faut fixer

 $k = 2^{1/n}$

maxima/minima locaux pour chaque octave Voisinage 3×3 + échelles inférieure et supérieure

Détection

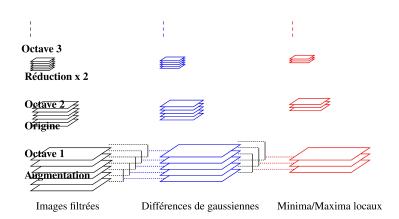
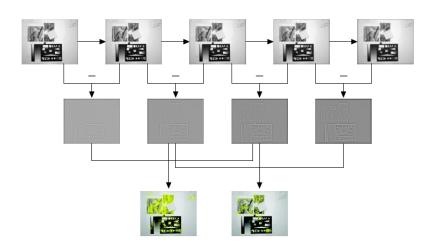


Illustration sur une octave



Algorithme complet de la détection (sans affinement)

- 1. Calculer une pyramide gaussienne d'images
- 2. Pour chaque octave o (chaque image de la pyramide) faire

Pour chaque valeur de k faire Calculer en chaque point (x, y), $G(x, y, k\sigma)$

- 3. Pour chaque octave o faire Pour chaque échelle $s \in [2, n]$ faire Calculer en chaque point (x, y), $DoG(x, y, \sigma)$
- 4. Pour chaque octave o faire Pour chaque échelle $s \in [2, n-1]$ faire Extraire les minima/maxima locaux

Affinement et correction de la localisation des points

1. Calcul de la position au sous-pixel Estimation du décalage et re-calage si nécessaire

Affinement et correction de la localisation des points

- 1. Calcul de la position au sous-pixel Estimation du décalage et re-calage si nécessaire
- 2. Suppression des points faiblement contrastés Différence (après filtrage) entre le point initial et le point re-localisé

Affinement et correction de la localisation des points

- 1. Calcul de la position au sous-pixel Estimation du décalage et re-calage si nécessaire
- 2. Suppression des points faiblement contrastés Différence (après filtrage) entre le point initial et le point re-localisé
- 3. Suppression des points contours Utilisation de la matrice Hessienne (comme Harris)

En quoi consiste la relocalisation lorsque la détection n'est pas optimale au cours du test de la répétabilité ?

• But : Contrecarrer les effets des lissages

En quoi consiste la relocalisation lorsque la détection n'est pas optimale au cours du test de la répétabilité ?

- **But :** Contrecarrer les effets des lissages
- Position calculée au sous-pixel : Développement de Taylor à l'ordre 2

$$D(\hat{\mathbf{p}}) = D(\mathbf{p}) + \frac{\partial D(\mathbf{p})^{T}}{\partial \mathbf{p}} + \frac{1}{2} \mathbf{p}^{T} \frac{\partial^{2} D(\mathbf{p})}{\partial \mathbf{p}^{2}} \mathbf{p},$$
(7)

En quoi consiste la relocalisation lorsque la détection n'est pas optimale au cours du test de la répétabilité ?

- But : Contrecarrer les effets des lissages
- Position calculée au sous-pixel : Développement de Taylor à l'ordre 2

$$D(\hat{\mathbf{p}}) = D(\mathbf{p}) + \frac{\partial D(\mathbf{p})^{T}}{\partial \mathbf{p}} + \frac{1}{2} \mathbf{p}^{T} \frac{\partial^{2} D(\mathbf{p})}{\partial \mathbf{p}^{2}} \mathbf{p},$$
(7)

 Localisation précise de l'extremum = passage par zéro de la dérivée suivant p

$$\hat{\mathbf{p}} = -\frac{\partial^2 D(\mathbf{p})^{-1}}{\partial \mathbf{p}^2} \frac{\partial D(\mathbf{p})}{\partial \mathbf{p}}.$$
 (8)

En quoi consiste la relocalisation lorsque la détection n'est pas optimale au cours du test de la répétabilité ?

- **But :** Contrecarrer les effets des lissages
- Position calculée au sous-pixel : Développement de Taylor à l'ordre 2

$$D(\hat{\mathbf{p}}) = D(\mathbf{p}) + \frac{\partial D(\mathbf{p})^{T}}{\partial \mathbf{p}} + \frac{1}{2} \mathbf{p}^{T} \frac{\partial^{2} D(\mathbf{p})}{\partial \mathbf{p}^{2}} \mathbf{p},$$
(7)

 Localisation précise de l'extremum = passage par zéro de la dérivée suivant **p**

$$\hat{\mathbf{p}} = -\frac{\partial^2 D(\mathbf{p})^{-1}}{\partial \mathbf{p}^2} \frac{\partial D(\mathbf{p})}{\partial \mathbf{p}}.$$
 (8)

• Si le décalage est plus grand que 0.5 dans chaque direction = relocalisation

Première contrainte pour la sélection des minima/maxima locaux Élimination des points dont le contraste est trop faible

Première contrainte pour la sélection des minima/maxima locaux Élimination des points dont le contraste est trop faible

• Si on utilise :

$$D(\hat{\mathbf{p}}) = D(\mathbf{p}) + \frac{1}{2} \frac{\partial D(\mathbf{p})^T}{\partial \mathbf{p}} \hat{\mathbf{p}}$$
 (9)

Première contrainte pour la sélection des minima/maxima locaux Élimination des points dont le contraste est trop faible

• Si on utilise :

$$D(\hat{\mathbf{p}}) = D(\mathbf{p}) + \frac{1}{2} \frac{\partial D(\mathbf{p})^T}{\partial \mathbf{p}} \hat{\mathbf{p}}$$
 (9)

• Expérimentalement : élimination des points tels que $|D(\hat{\mathbf{p}})| < 0.03$ En supposant une variation entre 0 et 1 Deuxième contrainte pour la sélection des minima/maxima locaux Points sur les contours

Deuxième contrainte pour la sélection des minima/maxima locaux Points sur les contours

Même chose que pour l'approche de Harris

Deuxième contrainte pour la sélection des minima/maxima locaux Points sur les contours

- Même chose que pour l'approche de Harris
- Seuls les points où le rapport entre la plus grande et la plus petite valeur propre est inférieur à un seuil r sont conservés

$$\frac{\mathsf{Trace}(M)^2}{\mathsf{Det}(M)} < \frac{(r+1)^2}{r} \tag{10}$$

•
$$r = 10$$

Speeded Up Robust Features, SURF

Intérêt : Multi-échelle moins coûteux mais équivalent à SIFT

Speeded Up Robust Features, SURF

- Multi-échelle moins coûteux mais équivalent à SIFT
- **Réponse :** approximation du déterminant de la matrice hessienne à plusieurs échelles

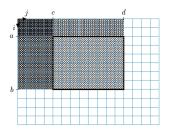
Speeded Up Robust Features, SURF

- Multi-échelle moins coûteux mais équivalent à SIFT
- **Réponse:** approximation du déterminant de la matrice hessienne à plusieurs échelles
- Outils
 - Lissage gaussien réalisé par des box filter
 - Utilisation des images intégrales

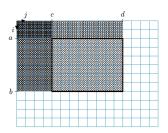
Speeded Up Robust Features, SURF

- Multi-échelle moins coûteux mais équivalent à SIFT
- **Réponse:** approximation du déterminant de la matrice hessienne à plusieurs échelles
- Outils
 - Lissage gaussien réalisé par des box filter
 - Utilisation des images intégrales
- En pratique
 - Calcul par convolution est déjà une approximation
- MAIS Résultats exploitables
 - Utilisation d'une implémentation moins coûteuses

Notion d'image intégrale



$$I_{int}(i,j) = \sum_{k=0}^{k< i} \sum_{l=0}^{l< j} I(k,l).$$
 (11)



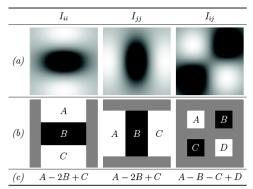
$$I_{int}(i,j) = \sum_{k=0}^{k < i} \sum_{l=0}^{l < j} I(k,l).$$
 (11)

Permet de rendre rapide le calcul de sommes dans un rectangle donné

$$\sum_{i=a}^{b} \sum_{i=c}^{a} I(i,j) = I_{int}(b,d) - I_{int}(a,d) - I_{int}(b,c) + I_{int}(a,c).$$
 (12)

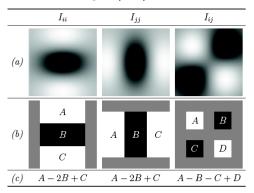
Box filtering

Masque des dérivées = combinaisons de sommes de valeurs de pixels situés dans différents rectangles (box)



Box filtering

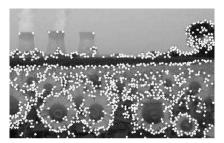
Masque des dérivées = combinaisons de sommes de valeurs de pixels situés dans différents rectangles (box)



 L'utilisation de l'image intégrale réduit le nombre d'opérations arithmétiques

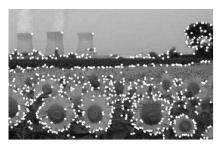
BRISK

- Considération d'un voisinage circulaire
- Sélection d'un ensemble de points bien répartis dans ce voisinage
- Comparaison des intensités de ces points avec le point étudié
- Le descripteur = chaîne de bits indiquant le signe des comparaisons



Beaudet

SUSAN



Harris

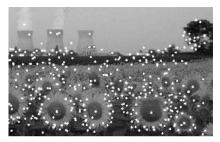
EBR

MSER

IBR

CSS

SIFT



SURF

- Certains détecteurs n'ont pas de descripteur et/ou méthode d'appariement spécifiques associés.
- On peut donc choisir toutes les techniques que l'on souhaite parmi celles présentées dans la partie IV, sur la mise en correspondance.