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Foreword

By Olivier Faugeras

Making a computer see was something that leading experts in the field of Artificial
Intelligence thought to be at the level of difficulty of a summer student’s project back
in the sixties. Forty years later the task is still unsolved and seems formidable. A
whole field, called Computer Vision, has emerged as a discipline in itself with strong
connections to mathematics and computer science and looser connections to physics,
the psychology of perception and the neuro sciences.

One of the likely reasons for this half-failure is the fact that researchers had over-
looked the fact, perhaps because of this plague called naive introspection, that percep-
tion in general and visual perception in particular are far more complex in animals and
humans than was initially thought. There is of course no reason why we should pattern
Computer Vision algorithms after biological ones, but the fact of the matter is that

(i) the way biological vision works is still largely unknown and therefore hard to
emulate on computers, and

(i) attempts to ignore biological vision and reinvent a sort of silicon-based vision
have not been so successful as initially expected.

Despite these negative remarks, Computer Vision researchers have obtained some
outstanding successes, both practical and theoretical.

On the side of practice, and to single out one example, the possibility of guiding vehi-
cles such as cars and trucks on regular roads or on rough terrain using computer vision
technology was demonstrated many years ago in Europe, the USA and Japan. This
requires capabilities for real-time three-dimensional dynamic scene analysis which are
quite elaborate. Today, car manufacturers are slowly incorporating some of these func-
tions in their products.

On the theoretical side some remarkable progress has been achieved in the area of
what one could call geometric Computer Vision. This includes the description of the
way the appearance of objects changes when viewed from different viewpoints as a
function of the objects’ shape and the cameras parameters. This endeavour would not
have been achieved without the use of fairly sophisticated mathematical techniques en-
compassing many areas of geometry, ancient and novel. This book deals in particular
with the intricate and beautiful geometric relations that exist between the images of ob-
jects in the world. These relations are important to analyze for their own sake because

X1



xii 0 Foreword

this is one of the goals of science to provide explanations for appearances; they are also
important to analyze because of the range of applications their understanding opens up.

The book has been written by two pioneers and leading experts in geometric Com-
puter Vision. They have succeeded in what was something of a challenge, namely to
convey in a simple and easily accessible way the mathematics that is necessary for
understanding the underlying geometric concepts, to be quite exhaustive in the cover-
age of the results that have been obtained by them and other researchers worldwide, to
analyze the interplay between the geometry and the fact that the image measurements
are necessarily noisy, to express many of these theoretical results in algorithmic form
so that they can readily be transformed into computer code, and to present many real
examples that illustrate the concepts and show the range of applicability of the theory.

Returning to the original holy grail of making a computer see we may wonder
whether this kind of work is a step in the right direction. I must leave the readers
of the book to answer this question, and be content with saying that no designer of
systems using cameras hooked to computers that will be built in the foreseeable future
can ignore this work. This is perhaps a step in the direction of defining what it means
for a computer to see.



Preface

Over the past decade there has been a rapid development in the understanding and mod-
elling of the geometry of multiple views in computer vision. The theory and practice
have now reached a level of maturity where excellent results can be achieved for prob-
lems that were certainly unsolved a decade ago, and often thought unsolvable. These
tasks and algorithms include:

e Given two images, and no other information, compute matches between the images,
and the 3D position of the points that generate these matches and the cameras that
generate the images.

e Given three images, and no other information, similarly compute the matches be-
tween images of points and lines, and the position in 3D of these points and lines
and the cameras.

e Compute the epipolar geometry of a stereo rig, and trifocal geometry of a trinocular
rig, without requiring a calibration object.

e Compute the internal calibration of a camera from a sequence of images of natural
scenes (i.e. calibration “on the fly”).

The distinctive flavour of these algorithms is that they are uncalibrated — it is not
necessary to know or first need to compute the camera internal parameters (such as the
focal length).

Underpinning these algorithms is a new and more complete theoretical understand-
ing of the geometry of multiple uncalibrated views: the number of parameters involved,
the constraints between points and lines imaged in the views; and the retrieval of cam-
eras and 3-space points from image correspondences. For example, to determine the
epipolar geometry of a stereo rig requires specifying only seven parameters, the camera
calibration is not required. These parameters are determined from the correspondence
of seven or more image point correspondences. Contrast this uncalibrated route, with
the previous calibrated route of a decade ago: each camera would first be calibrated
from the image of a carefully engineered calibration object with known geometry. The
calibration involves determining 11 parameters for each camera. The epipolar geome-
try would then have been computed from these two sets of 11 parameters.

This example illustrates the importance of the uncalibrated (projective) approach —
using the appropriate representation of the geometry makes explicit the parameters

Xiii



Xiv Preface

that are required at each stage of a computation. This avoids computing parameters
that have no effect on the final result, and results in simpler algorithms. It is also
worth correcting a possible misconception. In the uncalibrated framework, entities (for
instance point positions in 3-space) are often recovered to within a precisely defined
ambiguity. This ambiguity does not mean that the points are poorly estimated.

More practically, it is often not possible to calibrate cameras once-and-for-all; for
instance where cameras are moved (on a mobile vehicle) or internal parameters are
changed (a surveillance camera with zoom). Furthermore, calibration information is
simply not available in some circumstances. Imagine computing the motion of a cam-
era from a video sequence, or building a virtual reality model from archive film footage
where both motion and internal calibration information are unknown.

The achievements in multiple view geometry have been possible because of develop-
ments in our theoretical understanding, but also because of improvements in estimating
mathematical objects from images. The first improvement has been an attention to the
error that should be minimized in over-determined systems — whether it be algebraic,
geometric or statistical. The second improvement has been the use of robust estimation
algorithms (such as RANSAC), so that the estimate is unaffected by “outliers” in the
data. Also these techniques have generated powerful search and matching algorithms.

Many of the problems of reconstruction have now reached a level where we may
claim that they are solved. Such problems include:

(i) Estimation of the multifocal tensors from image point correspondences, par-
ticularly the fundamental matrix and trifocal tensors (the quadrifocal tensor
having not received so much attention).

(i) Extraction of the camera matrices from these tensors, and subsequent projective
reconstruction from two, three and four views.

Other significant successes have been achieved, though there may be more to learn
about these problems. Examples include:

(i) Application of bundle adjustment to solve more general reconstruction prob-
lems.
(i) Metric (Euclidean) reconstruction given minimal assumptions on the camera
matrices.
(iii)) Automatic detection of correspondences in image sequences, and elimination
of outliers and false matches using the multifocal tensor relationships.

Roadplan. The book is divided into six parts and there are seven short appendices.
Each part introduces a new geometric relation: the homography for background, the
camera matrix for single view, the fundamental matrix for two views, the trifocal tensor
for three views, and the quadrifocal tensor for four views. In each case there is a
chapter describing the relation, its properties and applications, and a companion chapter
describing algorithms for its estimation from image measurements. The estimation
algorithms described range from cheap, simple, approaches through to the optimal
algorithms which are currently believed to be the best available.



Preface XV

Part 0: Background. This part is more tutorial than the others. It introduces the
central ideas in the projective geometry of 2-space and 3-space (for example
ideal points, and the absolute conic); how this geometry may be represented,
manipulated, and estimated; and how the geometry relates to various objectives
in computer vision such as rectifying images of planes to remove perspective
distortion.

Part 1: Single view geometry. Here the various cameras that model the perspective
projection from 3-space to an image are defined and their anatomy explored.
Their estimation using traditional techniques of calibration objects is described,
as well as camera calibration from vanishing points and vanishing lines.

Part 2: Two view geometry. This part describes the epipolar geometry of two
cameras, projective reconstruction from image point correspondences, methods
of resolving the projective ambiguity, optimal triangulation, transfer between
views via planes.

Part 3: Three view geometry. Here the trifocal geometry of three cameras is de-
scribed, including transfer of a point correspondence from two views to a third,
and similarly transfer for a line correspondence; computation of the geometry
from point and line correspondences, retrieval of the camera matrices.

Part 4: N-views. This part has two purposes. First, it extends three view geometry
to four views (a minor extension) and describes estimation methods applica-
ble to N-views, such as the factorization algorithm of Tomasi and Kanade for
computing structure and motion simultaneously from multiple images. Sec-
ond, it covers themes that have been touched on in earlier chapters, but can
be understood more fully and uniformly by emphasising their commonality.
Examples include deriving multi-linear view constraints on correspondences,
auto-calibration, and ambiguous solutions.

Appendices. These describe further background material on tensors, statistics, pa-
rameter estimation, linear and matrix algebra, iterative estimation, the solution
of sparse matrix systems, and special projective transformations.

Acknowledgements. We have benefited enormously from ideas and discussions with
our colleagues: Paul Beardsley, Stefan Carlsson, Olivier Faugeras, Andrew Fitzgibbon,
Jitendra Malik, Steve Maybank, Amnon Shashua, Phil Torr, Bill Triggs.

If there are only a countable number of errors in this book then it is due to Antonio
Criminisi, David Liebowitz and Frederik Schaffalitzky who have with great energy and
devotion read most of it, and made numerous suggestions for improvements. Similarly
both Peter Sturm and Bill Triggs have suggested many improvements to various chap-
ters. We are grateful to other colleagues who have read individual chapters: David
Capel, Lourdes de Agapito Vicente, Bob Kaucic, Steve Maybank, Peter Tu.

We are particularly grateful to those who have provided multiple figures: Paul Beard-
sley, Antonio Criminisi, Andrew Fitzgibbon, David Liebowitz, and Larry Shapiro; and
for individual figures from: Martin Armstrong, David Capel, Lourdes de Agapito Vi-
cente, Eric Hayman, Phil Pritchett, Luc Robert, Cordelia Schmid, and others who are
explicitly acknowledged in figure captions.
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1

Introduction —a Tour of Multiple View Geometry

This chapter is an introduction to the principal ideas covered in this book. It gives an
informal treatment of these topics. Precise, unambiguous definitions, careful algebra,
and the description of well honed estimation agorithms is postponed until chapter 2
and the following chaptersin the book. Throughout this introduction we will generally
not give specific forward pointers to these later chapters. The materia referred to can
be located by use of the index or table of contents.

1.1 Introduction —the ubiquitous projective geometry

We are all familiar with projective transformations.When we look at a picture, we see
squares that are not squares, or circles that are not circles. The transformation that
maps these planar objects onto the pictureis an example of a projective transformation.

So what properties of geometry are preserved by projective transformations? Cer-
tainly, shape is not, since a circle may appear as an ellipse. Neither are lengths since
two perpendicular radii of acircle are stretched by different amounts by the projective
transformation. Angles, distance, ratios of distances — none of these are preserved,
and it may appear that very little geometry is preserved by a projective transformation.
However, a property that is preserved is that of straightness. It turns out that this is
the most general requirement on the mapping, and we may define a projective trans-
formation of a plane as any mapping of the points on the plane that preserves straight
lines.

To see why we will require projective geometry we start from the familiar Euclidean
geometry. Thisis the geometry that describes angles and shapes of objects. Euclidean
geometry is troublesome in one major respect — we need to keep making an exception
to reason about some of the basic concepts of the geometry — such as intersection of
lines. Two lines (we are thinking here of 2-dimensional geometry) almost always meet
inapoint, but there are some pairs of linesthat do not do so —those that we call parallel.
A common linguistic device for getting around thisisto say that parallel lines meet “ at
infinity”. However thisis not altogether convincing, and conflicts with another dictum,
that infinity does not exist, and is only a convenient fiction. We can get around this by

1



2 1 Introduction —a Tour of Multiple View Geometry

enhancing the Euclidean plane by the addition of these points at infinity where parallel
lines meet, and resolving the difficulty with infinity by calling them “ideal points.”

By adding these points at infinity, the familiar Euclidean space is transformed into a
new type of geometric object, projective space. Thisis avery useful way of thinking,
sincewe are familiar with the properties of Euclidean space, involving concepts such as
distances, angles, points, lines and incidence. There is nothing very mysterious about
projective space — it is just an extension of Euclidean space in which two lines always
meet in a point, though sometimes at mysterious points at infinity.

Coordinates. A point in Euclidean 2-space is represented by an ordered pair of real
numbers, (z,y). We may add an extra coordinate to this pair, giving atriple (z,y, 1),
that we declare to represent the same point. This seems harmless enough, since we
can go back and forward from one representation of the point to the other, simply by
adding or removing the last coordinate. We now take the important conceptual step
of asking why the last coordinate needs to be 1 — after all, the others two coordinates
are not so constrained. What about a coordinate triple (x,y,2). It is here that we
make a definition and say that (z,y, 1) and (2z, 2y, 2) represent the same point, and
furthermore, (kx, ky, k) represents the same point as well, for any non-zero value k.
Formally, points are represented by equivalence classes of coordinate triples, where
two triples are equivalent when they differ by acommon multiple. These are called the
homogeneous coordinates of the point. Given a coordinate triple (kz, ky, k), we can
get the original coordinates back by dividing by & to get (z, y).

The reader will observe that although (x, y, 1) represents the same point as the co-
ordinate pair (z,y), thereis no point that corresponds to the triple (z,y,0). If wetry
to divide by the last coordinate, we get the point (x/0,y/0) which isinfinite. Thisis
how the points at infinity arise then. They are the points represented by homogeneous
coordinates in which the last coordinate is zero.

Once we have seen how to do this for 2-dimensional Euclidean space, extending it
to a projective space by representing points as homogeneous vectors, it is clear that we
can do the same thing in any dimension. The Euclidean space IR™ can be extended to
aprojective space IP" by representing points as homogeneous vectors. It turns out that
the points at infinity in the two-dimensional projective space form aline, usualy called
the line at infinity. In three-dimensions they form the plane at infinity.

Homogeneity. In classical Euclidean geometry al points are the same. There is no
distinguished point. The whole of the space is homogeneous. When coordinates are
added, one point is seemingly picked out as the origin. However, it is important to
realize that thisisjust an accident of the particular coordinate frame chosen. We could
just as well find a different way of coordinatizing the plane in which a different point
is considered to be the origin. In fact, we can consider a change of coordinates for the
Euclidean space in which the axes are shifted and rotated to a different position. We
may think of thisin another way asthe spaceitself trandating and rotating to adifferent
position. The resulting operation is known as a Euclidean transform.

A more general type of transformation is that of applying a linear transformation



1.1 Introduction — the ubiquitous projective geometry 3

to IR", followed by a Euclidean transformation moving the origin of the space. We
may think of this as the space moving, rotating and finally stretching linearly possibly
by different ratios in different directions. The resulting transformation is known as an
affine transformation.

The result of either a Euclidean or an affine transformation is that points at infin-
ity remain at infinity. Such points are in some way preserved, at least as a set, by
such transformations. They are in some way distinguished, or special in the context of
Euclidean or affine geometry.

From the point of view of projective geometry, points at infinity are not any dif-
ferent from other points. Just as Euclidean space is uniform, so is projective space.
The property that points at infinity have final coordinate zero in a homogeneous co-
ordinate representation is nothing other than an accident of the choice of coordinate
frame. By analogy with Euclidean or affine transformations, we may define a projec-
tive transformation of projective space. A linear transformation of Euclidean space IR"
is represented by matrix multiplication applied to the coordinates of the point. In just
the same way a projective transformation of projective space IP" is a mapping of the
homogeneous coordinates representing a point (an (n + 1)-vector), in which the coor-
dinate vector is multiplied by a non-singular matrix. Under such a mapping, points at
infinity (with final coordinate zero) are mapped to arbitrary other points. The points at
infinity are not preserved. Thus, a projective transformation of projective space IP” is
represented by alinear transformation of homogeneous coordinates

X' = Hin41)x (n+1)X-

In computer vision problems, projective space is used as a convenient way of repre-
senting the real 3D world, by extending it to the 3-dimensional (3D) projective space.
Similarly images, usually formed by projecting the world onto a 2-dimensional repre-
sentation, are for convenience extended to be thought of aslying in the 2-dimensional
projective space. In redlity, the real world, and images of it do not contain points at
infinity, and we need to keep our finger on which are the fictitious points, namely the
line at infinity in the image and the plane at infinity in the world. For this reason, al-
though we usually work with the projective spaces, we are aware that the line and plane
at infinity are in some way special. This goes against the spirit of pure projective ge-
ometry, but makesit useful for our practical problems. Generally wetry to have it both
ways by treating all points in projective space as equals when it suits us, and singling
out the line at infinity in space or the plane at infinity in the image when that becomes
necessary.

1.1.1 Affineand Euclidean Geometry

We have seen that projective space can be obtained from Euclidean space by adding
aline (or plane) at infinity. We now consider the reverse process of going backwards.
This discussion is mainly concerned with two and three-dimensional projective space.

Affine geometry. We will take the point of view that the projective space is initially
homogeneous, with no particular coordinate frame being preferred. In such a space,
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there is no concept of parallelism of lines, since parallel lines (or planesin the three-
dimensional case) are ones that meet at infinity. However, in projective space, thereis
no concept of which points are at infinity — all points are created equal. We say that
paralelism is not a concept of projective geometry. It is ssmply meaningless to talk
about it.

In order for such a concept to make sense, we need to pick out some particular line,
and decide that this is the line at infinity. This results in a situation where although
all points are created equal, some are more equal than others. Thus, start with a blank
sheet of paper, and imagine that it extends to infinity and forms a projective space
IP2. What we see is just a small part of the space, that looks alot like a piece of the
ordinary Euclidean plane. Now, let us draw a straight line on the paper, and declare
that this is the line at infinity. Next, we draw two other lines that intersect at this
distinguished line. Since they meet at the “line at infinity” we define them as being
paralel. The situation is similar to what one sees by looking at an infinite plane. Think
of a photograph taken in a very flat region of the earth. The points at infinity in the
plane show up in the image as the horizon line. Lines, such as railway tracks show
up in the image as lines meeting at the horizon. Points in the image lying above the
horizon (the image of the sky) apparently do not correspond to points on the world
plane. However, if we think of extending the corresponding ray backwards behind the
camera, it will meet the plane at a point behind the camera. Thus there is a one-to-one
relationship between points in the image and points in the world plane. The points at
infinity in the world plane correspond to a real horizon line in the image, and parallel
linesin the world correspond to lines meeting at the horizon. From our point of view,
the world plane and its image are just aternative ways of viewing the geometry of a
projective plane, plus a distinguished line. The geometry of the projective plane and a
distinguished line is known as affine geometry and any projective transformation that
maps the distinguished line in one space to the distinguished line of the other space is
known as an affine transformation.

By identifying aspecial lineasthe“line at infinity” we are able to define parallelism
of straight lines in the plane. However, certain other concepts make sense as well, as
soon as we can define parallelism. For instance, we may define equalities of intervals
between two points on parallel lines. For instance, if A, B, C and D are points, and
the lines AB and C'D are parallel, then we define the two intervals AB and C'D to
have equal length if thelines AC' and BD are also parallel. Similarly, two intervals on
the same line are equal if there exists another interval on aparalel line that is equal to
both.

Euclidean geometry. By distinguishing a special line in a projective plane, we gain
the concept of parallelism and with it affine geometry. Affine geometry is seen as
specialization of projective geometry, in which we single out a particular line (or plane
—according to the dimension) and call it the line at infinity.

Next, we turn to Euclidean geometry and show that by singling out some special
feature of the line or plane at infinity affine geometry becomes Euclidean geometry. In
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doing so, we introduce one of the most important concepts of this book, the absolute
conic.

We begin by considering two-dimensional geometry, and start with circles. Note that
acircleisnot aconcept of affine geometry, since arbitrary stretching of the plane, which
preserves the line at infinity, turnsthe circleinto an ellipse. Thus, affine geometry does
not distinguish between circles and ellipses.

In Euclidean geometry however, they are distinct, and have an important difference.
Algebraically, an ellipse is described by a second-degree equation. It is therefore ex-
pected, and true that two ellipses will most generally intersect in four points. However,
it is geometrically evident that two distinct circles can not intersect in more than two
points. Algebraically, we are intersecting two second-degree curves here, or equiva-
lently solving two quadratic equations. We should expect to get four solutions. The
guestion is, what is special about circles that they only intersect in two points.

The answer to this question is of course that there exist two other solutions, the two
circles meeting in two other complex points. We do not have to look very far to find
these two points.

The eguation for a circle in homogeneous coordinates (x, y, w) is of the form

(z — aw)* + (y — bw)?* = r’w?

This represents the circle with centre represented in homogeneous coordinates as
(70, Yo, wo)" = (a,b,1)T. Itisquickly verified that the points (z,y, w)" = (1,4i,0)T
lie on every such circle. To repeat this interesting fact, every circle passes through the
points (1,4i,0)T, and therefore they lie in the intersection of any two circles. Since
their final coordinate is zero, these two points lie on the line at infinity. For obvious
reasons, they are called the circular points of the plane. Note that although the two
circular points are complex, they satisfy a pair of real equations: 22 + 3% = 0; w = 0.

This observation givesthe clue of how we may define Euclidean geometry. Euclidean
geometry arises from projective geometry by singling out first a line at infinity and
subsequently, two points called circular pointslying on thisline. Of course the circular
points are complex points, but for the most part we do not worry too much about
this. Now, we may define a circle as being any conic (a curve defined by a second-
degree equation) that passes through the two circular points. Note that in the standard
Euclidean coordinate system, the circular points have the coordinates (1, +:,0)T. In
assigning a Euclidean structure to a projective plane, however, we may designate any
line and any two (complex) points on that line as being the line at infinity and the
circular points.

As an example of applying this viewpoint, we note that a general conic may be
found passing through five arbitrary points in the plane, as may be seen by counting
the number of coefficients of a general quadratic equation ax? + by? + ... + fw? = 0.
A circle on the other hand is defined by only three points. Another way of looking at
thisisthat it isaconic passing through two special points, the circular points, as well
as three other points, and hence as any other conic, it requires five points to specify it
uniquely.

It should not be a surprise that as a result of singling out two circular points one
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obtains the whole of the familiar Euclidean geometry. In particular, concepts such as
angle and length ratios may be defined in terms of the circular points. However, these
concepts are most easily defined in terms of some coordinate system for the Euclidean
plane, aswill be seen in later chapters.

3D Euclidean geometry. We saw how the Euclidean plane is defined in terms of
the projective plane by specifying aline at infinity and a pair of circular points. The
same idea may be applied to 3D geometry. Asin the two-dimensional case, one may
look carefully at spheres, and how they intersect. Two spheres intersect in a circle,
and not in a general fourth-degree curve, as the algebra suggests, and as two generd
ellipsoids (or other quadric surfaces) do. This line of thought leads to the discovery
that in homogeneous coordinates (X, Y, z, T)T al spheres intersect the plane at infinity
in acurve with the equations: x2 + v2 + z2 = 0; T = 0. Thisisasecond-degree curve
(a conic) lying on the plane at infinity, and consisting only of complex points. It is
known as the absolute conic and is one of the key geometric entitiesin this book, most
particularly because of its connection to camera calibration, as will be seen later.

The absolute conic is defined by the above equations only in the Euclidean coor-
dinate system. In general we may consider 3D Euclidean space to be derived from
projective space by singling out a particular plane as the plane at infinity and specify-
ing a particular conic lying in this plane to be the absolute conic. These entities may
have quite general descriptionsin terms of acoordinate system for the projective space.

We will not here go into details of how the absolute conic determines the complete
Euclidean 3D geometry. A single example will serve. Perpendicularity of lines in
space is not a valid concept in affine geometry, but belongs to Euclidean geometry.
The perpendicularity of lines may be defined in terms of the absolute conic, asfollows.
By extending the lines until they meet the plane at infinity, we obtain two points called
the directions of the two lines. Perpendicularity of the lines is defined in terms of the
relationship of the two directions to the absolute conic. The lines are perpendicular if
the two directions are conjugate points with respect to the absolute conic (see figure
3.8(p83)). The geometry and algebraic representation of conjugate points are defined
in section 2.8.1(p58). Briefly, if the absolute conic isrepresented by a3 x 3 symmetric
matrix Q.., and the directions are the points d,; and d, then they are conjugate with
respect to Q. if d{ 2,,ds = 0. More generally, angles may be defined in terms of the
absolute conic in any arbitrary coordinate system, as expressed by (3.23-p82).

1.2 Camera projections

One of the principal topics of this book is the process of image formation, namely the
formation of atwo-dimensional representation of athree-dimensional world, and what
we may deduce about the 3D structure of what appears in the images.

The drop from three-dimensional world to a two-dimensional image is a projection
process in which we lose one dimension. The usual way of modelling this process is
by central projection in which aray from a point in space is drawn from a 3D world
point through a fixed point in space, the centre of projection. This ray will intersect a
specific plane in space chosen as the image plane. The intersection of the ray with the
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image plane represents the image of the point. If the 3D structure lies on a plane then
thereis no drop in dimension.

This model is in accord with a ssimple model of a camera, in which aray of light
from a point in the world passes through the lens of a camera and impinges on afilm or
digital device, producing an image of the point. Ignoring such effects as focus and lens
thickness, a reasonable approximation is that all the rays pass through a single point,
the centre of the lens.

In applying projective geometry to the imaging process, it is customary to model the
world as a 3D projective space, equal to IR? along with points at infinity. Similarly
the model for the image is the 2D projective plane IP2. Central projection is simply
amap from IP3 to IP2. If we consider pointsin IP? written in terms of homogeneous
coordinates (X, Y,z,T)T and let the centre of projection be the origin (0,0,0,1)T, then
we see that the set of al points (X, Y,z,T)T for fixed x, Y and z, but varying T form
a single ray passing through the point centre of projection, and hence all mapping to
the same point. Thus, the final coordinate of (X, Y, z, T) isirrelevant to where the point
isimaged. In fact, the image point is the point in IP? with homogeneous coordinates
(X,Y,z)T. Thus, the mapping may be represented by a mapping of 3D homogeneous
coordinates, represented by a3 x 4 matrix P with the block structure P = [I3,3|0s],
where 13,3 isthe 3 x 3 identity matrix and 03 a zero 3-vector. Making allowance for a
different centre of projection, and a different projective coordinate frame in the image,
it turns out that the most general imaging projection is represented by an arbitrary 3 x 4
matrix of rank 3, acting on the homogeneous coordinates of the point in IP* mapping it
to theimaged point in IP2. This matrix P is known as the camera matrix.

In summary, the action of a projective camera on a point in space may be expressed
in terms of alinear mapping of homogeneous coordinates as

X

t Y
Y = P34 z
w

T

Furthermore, if all the points lie on a plane (we may choose this as the plane z = 0)
then the linear mapping reduces to

x X

y | =Hsxs | Y

w T
which is a projective transformation.

Cameras as points. In acentral projection, pointsin IP? are mapped to pointsin IP2,
all pointsin aray passing through the centre of projection projecting to the same point
in an image. For the purposes of image projection, it is possible to consider al points
along such aray as being equal. We can go one step further, and think of the ray
through the projection centre as representing the image point. Thus, the set of all
image points is the same as the set of rays through the camera centre. If we represent
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image plane

X1

Fig. 1.1. The camera centre is the essence. (a) Image formation: the image points x; are the inter-
section of a plane with rays from the space points X; through the camera centre C. (b) If the space
points are coplanar then there is a projective transformation between the world and image planes,
x; = H3zx3X;. (€) All images with the same camera centre are related by a projective transformation,
x; = Hf 4x;. Compare (b) and (c) — in both cases planes are mapped to one another by rays through
a centre. In (b) the mapping is between a scene and image plane, in (¢) between two image planes. (d)
If the camera centre moves, then the images are in general not related by a projective transformation,
unless (e) all the space points are coplanar.

the ray from (0,0,0,1)T through the point (x,Y,z,T)T by its first three coordinates
(X,Y,2)T, it is easily seen that for any constant &, the ray k(X,Y,z)" represents the
same ray. Thus the rays themselves are represented by homogeneous coordinates. In
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fact they make up a 2-dimensional space of rays. The set of rays themselves may be
thought of as a representation of the image space IP2. In this representation of the
image, al that is important is the camera centre, for this alone determines the set of
rays forming the image. Different camera matrices representing the image formation
from the same centre of projection reflect only different coordinate frames for the set
of rays forming the image. Thus two images taken from the same point in space are
projectively equivalent. It is only when we start to measure points in an image, that
a particular coordinate frame for the image needs to be specified. Only then does it
become necessary to specify a particular camera matrix. In short, modulo field-of-
view which we ignore for now, all images acquired with the same camera centre are
equivalent —they can be mapped onto each other by a projective transformation without
any information about the 3D points or position of the camera centre. These issues are
illustrated in figure 1.1.

Calibrated cameras. To understand fully the Euclidean relationship between the im-
age and the world, it is necessary to express their relative Euclidean geometry. As
we have seen, the Euclidean geometry of the 3D world is determined by specifying
a particular plane in IP? as being the plane at infinity, and a specific conic 2 in that
plane as being the absolute conic. For acamera not located on the plane at infinity, the
plane at infinity in the world maps one-to-one onto the image plane. This is because
any point in the image defines aray in space that meets the plane at infinity in asingle
point. Thus, the plane at infinity in the world does not tell us anything new about the
image. The absolute conic, however being a conic in the plane at infinity must project
to aconic in the image. The resulting image curve is called the Image of the Absolute
Conic, or IAC. If the location of the IAC is known in an image, then we say that the
camerais calibrated.

In a calibrated camera, it is possible to determine the angle between the two rays
back-projected from two pointsin the image. We have seen that the angle between two
lines in space is determined by where they meet the plane at infinity, relative to the
absolute conic. In acalibrated camera, the plane at infinity and the absolute conic Q.
are projected one-to-one onto the image plane and the IAC, denoted w. The projective
relationship between the two image points and w is exactly equal to the relationship
between the intersections of the back-projected rays with the plane at infinity, and Q..
Consequently, knowing the IAC, one can measure the angle between rays by direct
measurements in the image. Thus, for a calibrated camera, one can measure angles
between rays, compute the field of view represented by an image patch or determine
whether an ellipse in the image back-projects to a circular cone. Later on, we will see
that it helps us to determine the Euclidean structure of a reconstructed scene.

Examplel.1l. 3D reconstructionsfrom paintings

Using techniques of projective geometry, it is possible in many instances to reconstruct
scenes from a single image. This cannot be done without some assumptions being
made about the imaged scene. Typical techniques involve the analysis of features such
as parallel lines and vanishing points to determine the affine structure of the scene, for
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Fig. 1.2. Single view reconstruction. (a) Original painting — &. Jerome in his study, 1630, Hendrick
van Steenwijck (1580-1649), Joseph R. Ritman Private Collection, Amsterdam, The Netherlands. (b)
(c)(d) Views of the 3D model created from the painting. Figures courtesy of Antonio Criminisi.

example by determining the line at infinity for observed planes in the image. Knowl-
edge (or assumptions) about angles observed in the scene, most particularly orthogonal
lines or planes, can be used to upgrade the affine reconstruction to Euclidean.

It is not yet possible for such techniques to be fully automatic. However, projective
geometric knowledge may be built into a system that allows user-guided single-view
reconstruction of the scene.

Such technigues have been used to reconstruct 3D texture mapped graphical models
derived from old-master paintings. Starting in the Renaissance, paintings with ex-
tremely accurate perspective were produced. In figure 1.2 areconstruction carried out
from such a painting is shown. JAN

1.3 Reconstruction from morethan one view

We now turn to one of the major topics in the book — that of reconstructing a scene
from several images. The ssimplest case is that of two images, which we will consider
first. Asa mathematical abstraction, we restrict the discussion to “scenes’ consisting
of points only.

The usual input to many of the algorithms given in this book is a set of point cor-
respondences. In the two-view case, therefore, we consider a set of correspondences
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x; < X, intwo images. It is assumed that there exist some camera matrices, P and P’
and a set of 3D points X; that give rise to these image correspondences in the sense
that PX; = x; and P'X; = x/. Thus, the point X; projects to the two given data points.
However, neither the cameras (represented by projection matrices P and P’), nor the
points X; are known. It is our task to determine them.

Itisclear from the outset that it isimpossible to determine the positions of the points
uniquely. Thisis a general ambiguity that holds however many images we are given,
and even if we have more than just point correspondence data. For instance, given
several images of a cube, it is impossible to tell its absolute position (is it located in
a night-club in Addis Ababa, or the British Museum), its orientation (which face is
facing north) or its scale. We express this by saying that the reconstruction is possible
at best up to asimilarity transformation of the world. However, it turns out that unless
something is known about the calibration of the two cameras, the ambiguity in the
reconstruction is expressed by a more general class of transformations — projective
transformations.

Thisambiguity arises becauseit is possible to apply a projective transformation (rep-
resented by a4 x 4 matrix H) to each point X;, and on the right of each camera matrix
P;, without changing the projected image points, thus:

P,X, = (PH1)(HX,). (11)

Thereis no compelling reason to choose one set of points and cameramatrices over the
other. The choice of H is essentially arbitrary, and we say that the reconstruction has a
projective ambiguity, or is a projective reconstruction.

However, the good news is that this is the worst that can happen. It is possible to
reconstruct a set of points from two views, up to an unavoidable projective ambiguity.
WEell, to be able to say this, we need to make a few qualifications; there must be suffi-
ciently many points, at least seven, and they must not liein one of various well-defined
critical configurations.

The basic tool in the reconstruction of point sets from two views is the fundamental
matrix, which represents the constraint obeyed by image points x and x’ if they are
to be images of the same 3D point. This constraint arises from the coplanarity of the
camera centres of the two views, the images points and the space point. Given the
fundamental matrix F, apair of matching points x; < x; must satisfy

/T —
X, Fx;, = 0

where F isa 3 x 3 matrix of rank 2. These equations are linear in the entries of the
matrix F, which meansthat if F is unknown, then it can be computed from a set of point
correspondences.

A pair of camera matrices P and P’ uniquely determine a fundamental matrix F, and
conversely, the fundamental matrix determines the pair of camera matrices, up to a3D
projective ambiguity. Thus, the fundamental matrix encapsul ates the complete projec-
tive geometry of the pair of cameras, and is unchanged by projective transformation of
3D.
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The fundamental-matrix method for reconstructing the sceneis very simple, consist-
ing of the following steps:

(i) Given severa point correspondences x; < X, across two views, form linear

equations in the entries of F based on the coplanarity equations x/TFx; = 0.

(if) Find F asthe solution to a set of linear equations.

(iif) Compute a pair of camera matrices from F according to the simple formula
given in section 9.5(p253).

(iv) Giventhetwo cameras (P, P’) and the corresponding image point pairsx; < x;,
find the 3D point X; that projects to the given image points. Solving for X in
thisway is known as triangulation.

The agorithm given here is an outline only, and each part of it is examined in de-
tail in this book. The algorithm should not be implemented directly from this brief
description.

1.4 Three-view geometry

Inthelast section it was discussed how reconstruction of aset of points, and therelative
placement of the cameras, is possible from two views of aset of points. The reconstruc-
tion is possible only up to a projective transformation of space, and the corresponding
adjustment to the camera matrices.

In this section, we consider the case of three views. Whereas for two views, the
basic algebraic entity is the fundamental matrix, for three views thisrole is played by
the trifocal tensor. The trifocal tensor isa 3 x 3 x 3 array of numbers that relate the
coordinates of corresponding points or lines in three views. Just as the fundamental
matrix is determined by the two camera matrices, and determines them up to projective
transformation, so in three views, the trifocal tensor is determined by the three camera
matrices, and in turn determines them, again up to projective transformation. Thus, the
trifocal tensor encapsulates the relative projective geometry of the three cameras.

For reasonsthat will be explained in chapter 15 it isusual to write some of the indices
of atensor as lower and some as upper indices. These are referred to as the covariant
and contravariant indices. The trifocal tensor is of the form 7;*, having two upper and
one lower index.

The most basic relationship between image entities in three views concerns a corre-
spondence between two lines and a point. We consider a correspondence x < 1" < 1”
between a point x in one image and two lines 1’ and 1” in the other two images. This
relationship meansthat thereisapoint X in space that mapsto x in thefirst image, and
to points x’ and x” lying on thelines1’ and 1” in the other two images. The coordinates
of these three images are then related via the trifocal tensor relationship:

S 2T = 0. (1.2)
ijk

This relationship gives a single linear relationship between the elements of the tensor.
With sufficiently many such correspondences, it is possible to solve linearly for the
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elements of the tensor. Fortunately, one can obtain more equations from a point corre-
spondence x «— x’ «» x”. Infact, in this situation, one can choose any lines1’ and 1”
passing through the points x” and x” and generate arelation of the sort (1.2). Since it
is possible to choose two independent lines passing through x’, and two others passing
through x”, one can obtain four independent equations in this way. A total of seven
point correspondences are sufficient to compute the trifocal tensor linearly in this way.
It can be computed from a minimum of six point correspondences using a non-linear
method.

The 27 elements of the tensor are not independent, however, but are related by a set
of so called internal constraints. These constraints are quite complicated, but tensors
satisfying the constraints can be computed in various ways, for instance by using the
6 point non-linear method. The fundamental matrix (which is a 2-view tensor) also
satisfiesan internal constraint but arelatively smple one: the elements obey det F = 0.

As with the fundamental matrix, once the trifocal tensor is known, it is possible to
extract the three camera matrices from it, and thereby obtain a reconstruction of the
scene points and lines. As ever, this reconstruction is unique only up to a3D projective
transformation; it is a projective reconstruction.

Thus, we are able to generalize the method for two views to three views. There are
several advantages to using such a three-view method for reconstruction.

(i) Itispossibleto use amixture of line and point correspondences to compute the
projective reconstruction. With two views, only point correspondences can be
used.

(if) Usingthreeviewsgivesgreater stability to the reconstruction, and avoids unsta-
ble configurations that may occur using only two views for the reconstruction.

1.5 Four view geometry and n-view reconstruction

It is possible to go one more step with tensor-based methods and define a quadrifocal
tensor relating entities visible in four views. This method is seldom used, however, be-
cause of the relative difficulty of computing a quadrifocal tensor that obey its internal
constraints. Nevertheless, it does provide a non-iterative method for computing a pro-
jective reconstruction based on four views. The tensor method does not extend to more
than four views, however, and so reconstruction from more than four views becomes
more difficult.

Many methods have been considered for reconstruction from several views, and we
consider a few of these in the book. One way to proceed is to reconstruct the scene
bit by bit, using three-view or two-view techniques. Such a method may be applied to
any image sequence, and with carein selecting the right triples to use, it will generally
succeed.

There are methods that can be used in specific circumstances. Thetask of reconstruc-
tion becomes easier if we are ableto apply asimpler cameramodel, known as the affine
camera. Thiscameramodel isafair approximation to perspective projection whenever
the distance to the scene is large compared with the difference in depth between the
back and front of the scene. If a set of points are visible in all of a set of n views
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involving an affine camera, then a well-known algorithm, the factorization algorithm,
can be used to compute both the structure of the scene, and the specific cameramodels
in one step using the Singular Value Decomposition. This agorithm is very reliable
and ssimple to implement. Its main difficulties are the use of the affine camera model,
rather than a full projective model, and the requirement that all the points be visiblein
al views.

This method has been extended to projective cameras in a method known as projec-
tive factorization. Although this method is generally satisfactory, it can not be proven
to converge to the correct solution in all cases. Besides, it also requires all pointsto be
visiblein al images.

Other methods for n-view reconstruction involve various assumptions, such as
knowledge of four coplanar points in the world visible in al views, or six or seven
pointsthat are visiblein al images in the sequence. Methods that apply to specific mo-
tion sequences, such as linear motion, planar motion or single axis (turntable) motion
have also been devel oped.

The dominant methodology for the general reconstruction problem is bundle adjust-
ment. Thisis an iterative method, in which one attempts to fit a non-linear model to
the measured data (the point correspondences). The advantage of bundle-adjustment is
that it is a very genera method that may be applied to a wide range of reconstruction
and optimization problems. It may be implemented in such away that the discovered
solution isthe Maximum Likelihood solution to the problem, that isasolution that isin
some sense optimal in terms of amodel for the inaccuracies of image measurements.

Unfortunately, bundle adjustment is an iterative process, which can not be guaran-
teed to converge to the optimal solution from an arbitrary starting point. Much research
in reconstruction methods seeks easily computable non-optimal solutions that can be
used asastarting point for bundle adjustment. An initialization step followed by bundle
adjustment is the generally preferred technique for reconstruction. A common impres-
sion is that bundle-adjustment is necessarily a slow technique. The truth is that it is
quite efficient when implemented carefully. A lengthy appendix in this book deals
with efficient methods of bundle adjustment.

Using n-view reconstruction techniques, it is possible to carry out reconstructions
automatically from quite long sequences of images. An exampleisgiven in figure 1.3,
showing areconstruction from 700 frames.

1.6 Transfer

We have discussed 3D reconstruction from a set of images. Another useful application
of projective geometry isthat of transfer: given the position of apoint in one (or more)
image(s), determine where it will appear in all other images of the set. To do this, we
must first establish the relationship between the cameras using (for instance) a set of
auxiliary point correspondences. Conceptually transfer is straightforward given that a
reconstruction is possible. For instance, suppose the point isidentified in two views (at
x and x’) and we wish to know its position x” in athird, then this may be computed by
the following steps:
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(b)
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Fig. 1.3. Reconstruction. (a) Seven frames of a 700 frame sequence acquired by a hand held camera
whilst walking down a street in Oxford. (b)(c) Two views of the reconstructed point cloud and camera
path (the red curve). Figures courtesy of David Capel and 2d3 (wwv. 2d3. com).



16 1 Introduction —a Tour of Multiple View Geometry

Fig. 1.4. Projective ambiguity: Reconstructions of a mug (shown with the true shape in the centre)
under 3D projective transformations in the z direction. Five examples of the cup with different degrees
of projective distortion are shown. The shapes are quite different from the original.

(i) Compute the camera matrices of the three views P, P/, P” from other point cor-
respondences x; < x; < x/.
(if) Triangulate the 3D point X from x and x" using P and P'.
(iii) Project the 3D point into the third view asx” = P”X.

This procedure only requires projective information. An alternative procedure isto use
the multi-view tensors (the fundamental matrix and trifocal tensor) to transfer the point
directly without an explicit 3D reconstruction. Both methods have their advantages.

Suppose the camera rotates about its centre or that al the scene points of interest
lie on a plane. Then the appropriate multiple view relations are the planar projective
transformations between the images. In this case, apoint seenin just one image can be
transferred to any other image.

1.7 Euclidean reconstruction

So far we have considered the reconstruction of a scene, or transfer, for images taken
with a set of uncalibrated cameras. For such cameras, important parameters such as
the focal length, the geometric centre of the image (the principal point) and possibly
the aspect ratio of the pixels in the image are unknown. If a complete calibration of
each of the cameras is known then it is possible to remove some of the ambiguity of
the reconstructed scene.

So far, we have discussed projective reconstruction, which isall that is possible with-
out knowing something about the calibration of the cameras or the scene. Projective
reconstruction isinsufficient for many purposes, such as application to computer graph-
ics, since it involves distortions of the model that appear strange to a human used to
viewing aEuclidean world. For instance, the distortions that projective transformations
induce in asimple object are shown in figure 1.4. Using the technique of projective re-
construction, there is no way to choose between any of the possible shapes of the mug
in figure 1.4, and a projective reconstruction algorithm is as likely to come up with
any one of the reconstructions shown there as any other. Even more severely distorted
models may arise from projective reconstruction.

In order to obtain a reconstruction of the model in which objects have their correct
(Euclidean) shape, it is necessary to determine the calibration of the cameras. It is
easy to see that this is sufficient to determine the Euclidean structure of the scene.
As we have seen, determining the Euclidean structure of the world is equivalent to
specifying the plane at infinity and the absolute conic. In fact, since the absolute conic
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lies in a plane, the plane at infinity, it is enough to find the absolute conic in space.
Now, suppose that we have computed a projective reconstruction of the world, using
calibrated cameras. By definition, this means that the IAC is known in each of the
images; let it be denoted by w; in the i-th image. The back-projection of each w; isa
cone in space, and the absolute conic must lie in the intersection of all the cones. Two
conesin general intersect in afourth-degree curve, but given that they must intersect in
aconic, this curve must split into two conics. Thus, reconstruction of the absolute conic
from two images is not unique — rather, there are two possible solutions in general.
However, from three or more images, the intersection of the conesis uniquein general.
Thus the absolute conic is determined and with it the Euclidean structure of the scene.

Of coursg, if the Euclidean structure of the scene is known, then so is the position of
the absolute conic. In this case we may project it back into each of the images, produc-
ing the IAC in each image, and hence calibrating the cameras. Thus knowledge of the
camera calibration is equivalent to being able to determine the Euclidean structure of
the scene.

1.8 Auto-calibration

Without any knowledge of the calibration of the cameras, it isimpossible to do better
than projective reconstruction. There is no information in a set of feature correspon-
dences across any number of views that can help us find the image of the absolute
conic, or equivalently the calibration of the cameras. However, if we know just alittle
about the calibration of the cameras then we may be able to determine the position of
the absolute conic.

Supposg, for instance that it is known that the calibration is the same for each of the
cameras used in reconstructing a scene from an image sequence. By this we mean the
following. In each image a coordinate system is defined, in which we have measured
the image coordinates of corresponding features used to do projective reconstruction.
Suppose that in all these image coordinate systems, the IAC isthe same, but just where
it islocated is unknown. From this knowledge, we wish to compute the position of the
absolute conic.

One way to find the absolute conic is to hypothesize the position of the IAC in one
image; by hypothesis, its position in the other images will be the same. The back-
projection of each of the conics will be acone in space. If the three conesall meetina
single conic, then this must be a possible solution for the position of the absolute conic,
consistent with the reconstruction.

Note that this is a conceptual description only. The IAC is of course a conic con-
taining only complex points, and its back-projection will be acomplex cone. However,
algebraically, the problem is more tractable. Although it is complex, the IAC may be
described by areal quadratic form (represented by areal symmetric matrix). The back-
projected coneis also represented by areal quadratic form. For some value of the IAC,
the three back-projected cones will meet in aconic curve in space.

Generally given three cameras known to have the same calibration, it is possible
to determine the absolute conic, and hence the calibration of the cameras. However,
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although various methods have been proposed for this, it remains quite a difficult prob-
lem.

Knowing the plane at infinity. One method of auto-calibration is to proceed in steps
by first determining the planeonwhichit lies. Thisisequivalent to identifying the plane
at infinity in the world, and hence to determining the affine geometry of the world. In
a second step, one locates the position of the absolute conic on the plane to determine
the Euclidean geometry of space. Assuming one knows the plane at infinity, one can
back-project a hypothesised IAC from each of a sequence of images and intersect the
resulting cones with the plane at infinity. If the IAC is chosen correctly, the intersection
curve is the absolute conic. Thus, from each pair of images one has a condition that
the back-projected cones meet in the same conic curve on the plane at infinity. It turns
out that this gives alinear constraint on the entries of the matrix representing the IAC.
From a set of linear equations, one can determine the IAC, and hence the absolute
conic. Thus, auto-calibration is relatively simple, once the plane at infinity has been
identified. Theidentification of the plane at infinity itself is substantially more difficult.

Auto-calibration given square pixels in the image. If the cameras are partialy
calibrated, then it is possible to complete the calibration starting from a projective
reconstruction. One can make do with quite minimal conditions on the calibration
of the cameras, represented by the IAC. One interesting example is the square-pixel
constraint on the cameras. What this means is that a Euclidean coordinate system is
known in each image. In this case, the absolute conic, lying in the plane at infinity in
the world must meet the image plane in its two circular points. The circular pointsin a
plane are the two points where the absol ute conic meets that plane. The back-projected
rays through the circular points of the image plane must intersect the absolute conic.
Thus, each image with square pixels determines two rays that must meet the absolute
conic. Given n images, the autocalibration task then becomes that of determining a
space conic (the absolute conic) that meets a set of 2n rays in space. An equivaent
geometric picture is to intersect the set of rays with a plane and require that the set of
intersection pointslie on aconic. By asimple counting argument one may seethat there
are only afinite number of conics that meet eight prescribed rays in space. Therefore,
from four images one may determine the calibration, albeit up to a finite number of
possibilities.

1.9 Thereward | : 3D graphical models

We have now described all the ingredients necessary to compute realistic graphics mod-
els from image sequences. From point matches between images, it is possible to carry
out first a projective reconstruction of the point set, and determine the motion of the
camerain the chosen projective coordinate frame.

Using auto-calibration techniques, assuming some restrictions on the calibration of
the camera that captured the image sequence, the camera may be calibrated, and the
scene subsequently transformed to its true Euclidean structure.
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Fig. 1.5. (@) Three high resolution images (3000 x 2000 pixels) from a set of eleven of the cityhall in
Leuven, Belgium. (b) Three views of a Euclidean reconstruction computed from the image set showing
the 11 camera positions and point cloud.

Knowing the projective structure of the scene, it is possible to find the epipolar ge-
ometry relating pairs of images and this restricts the correspondence search for further
matches to aline — a point in one image defines aline in the other image on which the
(asyet unknown) corresponding point must lie. In fact for suitable scenes, it ispossible
to carry out a dense point match between images and create a dense 3D model of the
imaged scene. This takes the form of a triangulated shape model that is subsequently
shaded or texture-mapped from the supplied images and used to generate novel views.
The steps of this process areillustrated in figure 1.5 and figure 1.6.

1.10 Thereward I1: video augmentation

We finish thisintroduction with afurther application of reconstruction methods to com-
puter graphics. Automatic reconstruction techniques have recently become widely used
in the film industry as a means for adding artificial graphics objects in real video se-
guences. Computer analysis of the motion of the camera is replacing the previously
used manual methods for correctly aligning the artificial inserted object.

The most important requirement for realistic insertion of an artificial objectinavideo
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Fig. 1.6. Dense reconstructions. These are computed from the cameras and image of figure 1.5. (a)
Untextured and (b) textured reconstruction of the full scene. (¢) Untextured and (d) textured close up of
the area shown in the white rectangle of (b). (e) Untextured and (f) textured close up of the area shown
in the white rectangle of (d). The dense surface is computed using the three-view stereo algorithm
described in [ Srecha-02]. Figures courtesy of Christoph Srecha, Frank Verbiest, and Luc Van Gool.
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Fig. 1.7. Augmented video. The animated robot is inserted into the scene and rendered using the
computed cameras of figure 1.3. (a)-(c) Original frames from the sequence. (d)-(f) The augmented
frames. Figures courtesy of 2d3 (www. 2d3. conj.

sequence is to compute the correct motion of the camera. Unless the camera motion
is correctly determined, it is impossible to generate the correct sequences of views of
the graphics model in a way that will appear consistent with the background video.
Generally, it is only the motion of the camerathat isimportant here; we do not need to
reconstruct the scene, since it is already present in the existing video, and novel views
of the scene visible in the video are not required. The only requirement isto be able to
generate correct perspective views of the graphics model.

It is essential to compute the motion of the camera in a Euclidean frame. It is not
enough merely to know the projective motion of the camera. This is because a Eu-
clidean object isto be placed in the scene. Unless this graphics object and the cameras
are known in the same coordinate frame, then generated views of the inserted object
will be seen to distort with respect to the perceived structure of the scene seen in the
existing video.

Once the correct motion of the camera, and its cdibration are known the inserted
object may be rendered into the scene in arealistic manner. If the change of the camera
calibration from frame to frame is correctly determined, then the camera may change
focal length (zoom) during the sequence. It is even possible for the principa point to
vary during the sequence through cropping.

In inserting the rendered model into the video, the task is relatively straight-forward
if itliesinfront of all the existing scene. Otherwise the possibility of occlusions arises,
in which the scene may obscure parts of the model. An example of video augmentation
isshowninfigure 1.7.
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Outline

The four chapters in this part lay the foundation for the representations, terminology,
and notation that will be used in the subsequent parts of the book. The ideas and
notation of projective geometry are central to an analysis of multiple view geometry.
For example, the use of homogeneous coordinates enables non-linear mappings (such
as perspective projection) to be represented by linear matrix equations, and points at
infinity to be represented quite naturaly avoiding the awkward necessity of taking
limits.

Chapter 2 introduces projective transformations of 2-space. These are the transfor-
mations that arise when a plane is imaged by a perspective camera. This chapter is
more introductory and sets the scene for the geometry of 3-space. Most of the concepts
can be more easily understood and visualized in 2D than in 3D. Specializations of pro-
jective transformations are introduced, including affine and similarity transformations.
Particular attention is focussed on the recovery of affine properties (e.g. paralel lines)
and metric properties (e.g. angles between lines) from a perspective image.

Chapter 3 covers the projective geometry of 3-space. This geometry develops in
much the same manner as that of 2-space, though of course there are extra properties
arising from the additional dimension. The main new geometry here is the plane at
infinity and the absolute conic.

Chapter 4 introduces estimation of geometry from image measurements, which is
one of the main topics of this book. The example of estimating a projective transfor-
mation from point correspondencesis used to illustrate the basis and motivation for the
algorithms that will be used throughout the book. The important issue of what should
be minimized in a cost function, e.g. algebraic or geometric or statistical measures, is
described at length. The chapter also introduces the idea of robust estimation, and the
use of such techniquesin the automatic estimation of transformations.

Chapter 5 describes how the results of estimation algorithms may be evaluated. In
particular how the covariance of an estimation may be computed.
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2

Projective Geometry and Transformations of 2D

This chapter introduces the main geometric ideas and notation that are required to un-
derstand the material covered in this book. Some of these ideas are relatively familiar,
such as vanishing point formation or representing conics, whilst others are more es-
oteric, such as using circular points to remove perspective distortion from an image.
These ideas can be understood more easily in the planar (2D) case because they are
more easily visualized here. The geometry of 3-space, which is the subject of the later
parts of this book, isonly asimple generalization of this planar case.

In particular, the chapter covers the geometry of projective transformations of the
plane. These transformations model the geometric distortion which ariseswhen aplane
isimaged by a perspective camera. Under perspective imaging certain geometric prop-
erties are preserved, such as collinearity (a straight line is imaged as a straight line),
whilst others are not, for example paralléel lines are not imaged as parallel lines in
general. Projective geometry models this imaging and also provides a mathematical
representation appropriate for computations.

We begin by describing the representation of points, lines and conics in homoge-
neous notation, and how these entities map under projective transformations. The line
at infinity and the circular points are introduced, and it is shown that these capture the
affine and metric properties of the plane. Algorithms for rectifying planes are then
given which enable affine and metric properties to be computed from images. We end
with a description of fixed points under projective transformations.

2.1 Planar geometry

The basic concepts of planar geometry are familiar to anyone who has studied math-
ematics even at an elementary level. In fact, they are so much a part of our everyday
experience that we take them for granted. At an elementary level, geometry isthe study
of points and lines and their relationships.

To the purist, the study of geometry ought properly to be carried out from a“geomet-
ric” or coordinate-free viewpoint. In this approach, theorems are stated and proved in
terms of geometric primitives only, without the use of algebra. The classical approach
of Euclid is an example of this method. Since Descartes, however, it has been seen that
geometry may be algebraicized, and indeed the theory of geometry may be devel oped
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from an algebraic viewpoint. Our approach in this book will be a hybrid approach,
sometimes using geometric, and sometimes algebraic methods. In the algebraic ap-
proach, geometric entities are described in terms of coordinates and algebraic entities.
Thus, for instance a point is identified with a vector in terms of some coordinate basis.
A line is also identified with a vector, and a conic section (more briefly, a conic) is
represented by a symmetric matrix. In fact, we often carry this identification so far as
to consider that the vector actually is a point, or the symmetric matrix is a conic, at
least for convenience of language. A significant advantage of the algebraic approach
to geometry is that results derived in this way may more easily be used to derive algo-
rithms and practical computational methods. Computation and algorithms are a major
concern in this book, which justifies the use of the algebraic method.

2.2 The 2D projective plane

As we al know, a point in the plane may be represented by the pair of coordinates
(x,y) inIR2. Thus, it is common to identify the plane with IR?. Considering IR? as a
vector space, the coordinate pair (z, y) isavector —apoint isidentified as a vector. In
this section we introduce the homogeneous notation for points and lines on a plane.

Row and column vectors. Later on, we will want to consider linear mappings be-
tween vector spaces, and represent such mappings as matrices. In the usual manner, the
product of a matrix and a vector is another vector, the image under the mapping. This
brings up the distinction between “column” and “row” vectors, since a matrix may be
multiplied on the right by a column and on the |eft by arow vector. Geometric entities
will by default be represented by column vectors. A bold-face symbol such asx always
represents a column vector, and its transpose is the row vector x. In accordance with
this convention, a point in the plane will be represented by the column vector (z,y)T,
rather than its transpose, the row vector (z,y). Wewritex = (x, )7, both sides of this
equation representing column vectors.

2.2.1 Pointsand lines

Homogeneousrepresentation of lines. A lineinthe planeisrepresented by an equa-
tion such asax + by + ¢ = 0, different choices of a, b and ¢ giving riseto different lines.
Thus, aline may naturally be represented by the vector (a, b, ¢)T. The correspondence
between lines and vectors (a, b, ¢)" is not one-to-one, since the lines ax + by + ¢ = 0
and (ka)x + (kb)y + (kc) = 0 are the same, for any non-zero constant k. Thus, the
vectors (a, b, c)" and k(a,b,c)" represent the same line, for any non-zero k. In fact,
two such vectors related by an overall scaling are considered as being equivalent. An
equivalence class of vectors under this equivalence relationship is known as a homo-
geneous vector. Any particular vector (a,b,c)' is a representative of the equivalence
class. The set of equivalence classes of vectorsin IR? — (0,0,0)" forms the projective
space IP?. The notation —(0,0,0)" indicates that the vector (0,0, 0)", which does not
correspond to any line, is excluded.
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Homogeneous representation of points. A point x = (z,y)" lieson thelinel =
(a,b,c)T if and only if ax + by + ¢ = 0. This may be written in terms of an inner
product of vectors representing the point as (x,y,1)(a,b,¢)" = (z,y,1)1 = 0; that is
the point (z,)T in IR? is represented as a 3-vector by adding afinal coordinate of 1.
Note that for any non-zero constant & and line 1 the equation (kz, ky, k)1 = 0 if and
only if (x,y,1)1 = 0. Itisnatural, therefore, to consider the set of vectors (kx, ky, k)T
for varying values of k to be a representation of the point (z,y)T in IR2. Thus, just as
with lines, points are represented by homogeneous vectors. An arbitrary homogeneous
vector representative of apoint is of the form x = (1, 7o, z3)7, representing the point
(11 /3, 79/23) T inIR2. Points, then, as homogeneous vectors are aso elements of 1P2.
One has a simple equation to determine when a point lies on aline, namely

Result 2.1. The point x lieson thelinelif and only if x1 = 0.

Note that the expression x'1 is just the inner or scalar product of the two vectors 1
and x. The scalar product x"1 = 1"x = x.I. In general, the transpose notation 1"x
will be preferred, but occasionally, we will use a . to denote the inner product. We
distinguish between the homogeneous coordinates x = (1, 2, x3) " of apoint, which
is a 3-vector, and the inhomogeneous coordinates (z, y) T, which is a 2-vector.

Degrees of freedom (dof). It is clear that in order to specify a point two values must
be provided, namely its z- and y-coordinates. In a similar manner aline is specified
by two parameters (the two independent ratios {a : b : ¢}) and so has two degrees
of freedom. For example, in an inhomogeneous representation, these two parameters
could be chosen as the gradient and y intercept of the line.

Intersection of lines. Giventwo lines1 = (a,b,¢)T and1’ = (a/, ¥/, )T, we wish to
find their intersection. Define the vector x = 1 x I, where x represents the vector or
cross product. From the triple scalar product identity 1.(1 x 1') = I'.(1 x ') = 0, we
seethat 1"x = 1'Tx = 0. Thus, if x isthought of as representing a point, then x lies on
both lines1 and I', and hence is the intersection of the two lines. This shows:

Result 2.2. Theintersection of two linesl and I’ isthepointx =1 x I'.

Note that the simplicity of thisexpression for theintersection of thetwo linesisadirect
consequence of the use of homogeneous vector representations of lines and points.

Example2.3. Consider the simple problem of determining the intersection of the lines
x=1andy = 1. Thelinexz = 1 isequivalent to —1z + 1 = 0, and thus has
homogeneous representation] = (—1,0,1)". Theliney = 1isequivalentto —1y+1 =
0, and thus has homogeneous representation ' = (0, —1,1)T. From result 2.2 the

intersection point is
i j k 1
x=1x1I=|-1 0 1|=]1
0 -1 1 1

which is the inhomogeneous point (1,1)" as required. A
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Linejoining points. An expression for the line passing through two points x and x’
may be derived by an entirely analogous argument. Defining alinel by 1 = x x x/, it
may be verified that both points x and x’ lieon 1. Thus

Result 2.4. The line through two pointsx and x’ is1 = x x x'.

2.2.2 ldeal pointsand thelineat infinity

Intersection of parallél lines. Consider two linesaz+by+c = 0 and az+by+c’ = 0.
These arerepresented by vectors1 = (a, b, c¢)" and1l’ = (a, b, ¢') T for which thefirst two
coordinates are the same. Computing the intersection of these lines gives no difficulty,
using result 2.2. Theintersectionisl x I’ = (¢ — ¢)(b, —a, 0)T, and ignoring the scale
factor (¢ — ¢), thisisthe point (b, —a, 0)".

Now if we attempt to find the inhomogeneous representation of this point, we ob-
tain (b/0, —a/0)T, which makes no sense, except to suggest that the point of intersec-
tion hasinfinitely large coordinates. In general, points with homogeneous coordinates
(x,9,0)T do not correspond to any finite point in IR2. This observation agrees with the
usual ideathat paralel lines meet at infinity.

Example2.5. Consider thetwo linesx = 1 and x = 2. Here the two lines are parallé€l,
and consequently intersect “at infinity”. In homogeneous notation the lines are 1 =
(—1,0,1)T,7 = (—=1,0,2)T, and from result 2.2 their intersection point is

i j k 0
x=1xlI'=[-10 1|=]1
-1 0 2 0
which isthe point at infinity in the direction of the y-axis. A

Ideal points and the line at infinity. Homogeneous vectors x = (z1, 72, z3)" such
that 23 # 0 correspond to finite pointsin IR2. One may augment IR? by adding points
with last coordinate 3 = 0. The resulting space is the set of al homogeneous 3-
vectors, namely the projective space IP2. The points with last coordinate x5 = 0 are
known as ideal points, or points at infinity. The set of all ideal points may be written
(11,79,0)T, with aparticular point specified by theratio z; : 5. Note that this set lies
on asingle line, the line at infinity, denoted by the vector 1, = (0,0,1)T. Indeed, one
verifiesthat (0,0,1)(x1,2,0)7T = 0.

Using result 2.2 one finds that alinel = (a,b,c)" intersects 1, in the ideal point
(b, —a,0)T (since (b, —a,0)1 = 0). Alinel' = (a,b,c)" parallel to I intersects 1.,
in the same idea point (b, —a,0)T irrespective of the value of ¢’. In inhomogeneous
notation (b, —a)T is a vector tangent to the line, and orthogonal to the line normal
(a,b), and so represents the line's direction. As the line's direction varies the ideal
point (b, —a,0)T varies over 1,,. For these reasons the line at infinity can be thought of
as the set of directions of linesin the plane.

Note how the introduction of the concept of points at infinity serves to simplify the
intersection properties of points and lines. In the projective plane IP?, one may state
without qualification that two distinct lines meet in a single point and two distinct
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X1

Fig. 2.1. A model of the projective plane. Points and lines of IP? are represented by rays and planes,
respectively, through the origin in IR3. Lines lying in the 2, x,-plane represent ideal points, and the
x1x9-plane represents1.,.

points lie on asingle line. Thisis not true in the standard Euclidean geometry of IR?,
inwhich parallel linesform a special case.

The study of the geometry of IP? is known as projective geometry. In a coordinate-
free purely geometric study of projective geometry, one does not make any distinction
between points at infinity (ideal points) and ordinary points. It will, however, serve
our purposes in this book sometimes to distinguish between ideal points and non-ideal
points. Thus, thelineat infinity will at times be considered asaspecial linein projective
Space.

A mode for the projective plane. A fruitful way of thinking of IP? is as a set of
raysin IR®. The set of all vectors k(z1, zo,73)T as k varies forms a ray through the
origin. Such a ray may be thought of as representing a single point in IP2. In this
model, thelinesin IP? are planes passing through the origin. One verifies that two non-
identical rays lie on exactly one plane, and any two planes intersect in one ray. This
is the analogue of two distinct points uniquely defining a line, and two lines always
intersecting in a point.

Points and lines may be obtained by intersecting this set of rays and planes by the
plane x3 = 1. Asillustrated in figure 2.1 the rays representing ideal points and the
plane representing 1, are parallel to the plane x5 = 1.

Duality. The reader has probably noticed how the role of points and lines may be
interchanged in statements concerning the properties of lines and points. In particular,
the basic incidence equation 1'x = 0 for line and point is symmetric, sincel™x = 0
implies x"1 = 0, in which the positions of line and point are swapped. Similarly,
result 2.2 and result 2.4 giving the intersection of two lines and the line through two
points are essentially the same, with the roles of points and lines swapped. One may
enunciate a general principle, the duality principle as follows:
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Result 2.6. Duality principle. To any theorem of 2-dimensional projective geometry
there corresponds a dual theorem, which may be derived by interchanging the roles of
points and linesin the original theorem.

In applying this principle, concepts of incidence must be appropriately translated as
well. For instance, the line through two points is dual to the point through (that is the
point of intersection of) two lines.

Note that is it not necessary to prove the dua of a given theorem once the original
theorem has been proved. The proof of the dual theorem will be the dual of the proof
of the original theorem.

2.2.3 Conicsand dual conics

A conic is a curve described by a second-degree equation in the plane. In Euclidean
geometry conics are of three main types. hyperbola, ellipse, and parabola (apart from
so-called degenerate conics, to be defined later). Classically these three types of conic
arise as conic sections generated by planes of differing orientation (the degenerate con-
ics arise from planes which contain the cone vertex). However, it will be seen that
in 2D projective geometry all non-degenerate conics are equivalent under projective
transformations.
The equation of a conic in inhomogeneous coordinatesis

ar® +bry+cy’ +dr+ey+ f=0

i.e. apolynomial of degree 2. “Homogenizing” this by the replacements:
€T — .Z'l/xg, Yy — l‘z/l’g g|VeS

az1? 4 brxy + cxo® + drixs 4 exors + frz? =0 (2.1

or in matrix form

x"Cx =0 (2.2)
where the conic coefficient matrix C is given by
a b/2 d/2
C=1|b/2 ¢ e/2]. (2.3)
/2 e/2 f

Note that the conic coefficient matrix is symmetric. Asin the case of the homogeneous
representation of points and lines, only the ratios of the matrix elements are important,
since multiplying C by a non-zero scalar does not affect the above equations. ThusC is
ahomogeneous representation of aconic. The conic hasfive degrees of freedom which
can be thought of astheratios{a : b: c:d: e: f} or equivalently the six elements of
asymmetric matrix less one for scale.

Five points define a conic. Suppose we wish to compute the conic which passes
through a set of points, x;. How many points are we free to specify before the conic
is determined uniquely? The gquestion can be answered constructively by providing an
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algorithm to determine the conic. From (2.1) each point x; places one constraint on the
conic coefficients, sinceif the conic passes through (z;, y;) then

ax;® + bry; + cyi® + dr; + ey + f = 0.
This constraint can be written as
(@ 2y v? @ oy 1)e=0

wherec = (a, b, c,d, e, f)T isthe conic C represented as a 6-vector.
Stacking the constraints from five points we obtain

7 iy Yy 1 1
Ty XoYo Y3 T2 Yo 1
T3 wsys Y3 r3 ys 1 |c=0 (2.4)
Ty Tays Yy T4 ys 1
T3 wsYs Y rs Ys 1

and the conic is the null vector of this5 x 6 matrix. This shows that a conic is deter-
mined uniquely (up to scale) by five points in general position. The method of fitting
a geometric entity (or relation) by determining a null space will be used frequently in
the computation chapters throughout this book.

Tangent linesto conics. The line 1 tangent to a conic at a point x has a particularly
simple form in homogeneous coordinates:

Result 2.7. Thelinel tangent to C at a point x on C isgiven by 1 = Cx.

Proof. Thelinel = Cx passes through x, sincel™x = x"Cx = 0. If 1 has one-point
contact with the conic, then it is a tangent, and we are done. Otherwise suppose that 1
meets the conic in another point y. Theny'Cy = 0 and x"Cy = 1Ty = 0. From this
it follows that (x + ay)'C(x + ay) = 0 for al «, which means that the whole line
1 = Cx joining x and y lies on the conic C, which is therefore degenerate (see below).

Dual conics. The conic C defined above is more properly termed a point conic, as it
defines an equation on points. Given the duality result 2.6 of IP? it is not surprising
that there is a'so a conic which defines an equation on lines. This dual (or line) conic
is also represented by a3 x 3 matrix, which we denote as C*. A linel tangent to the
conic C satisfies17¢*1 = 0. The notation C* indicates that C* is the adjoint matrix of C
(the adjoint is defined in section A4.2(p580) of appendix 4(p578)). For anon-singular
symmetric matrix C* = C¢~! (up to scale).

The equation for adual conic is straightforward to derive in the case that C has full
rank: From result 2.7, at a point x on C the tangent is1 = Cx. Inverting, we find the
point x at which thelinel istangent to Cisx = C~'l. Since x satisfiesx"Cx = 0 we
obtain (C7'1)Tc(c™11) = 1T¢c~!1 = 0, the last step following from ¢~ T = ¢! because
C issymmetric.

Dual conics are also known as conic envelopes, and the reason for thisisillustrated
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>

a b

Fig. 2.2. (a) Points x satisfying x"Cx = 0 lie on a point conic. (b) Lines1 satisfying 1"c*1 = 0 are
tangent to the point conic C. The conic C is the envelope of the lines 1.

in figure 2.2. A dual conic has five degrees of freedom. In a similar manner to points
defining a point conic, it follows that five linesin general position define adual conic.

Degener ate conics. If the matrix C isnot of full rank, then the conic is termed degen-
erate. Degenerate point conics include two lines (rank 2), and a repeated line (rank
1).

Example2.8. The conic

C=Im"+ml"

is composed of two lines1 and m. Points on 1 satisfy 1"x = 0, and are on the conic
sincex'Cx = (x'1)(m"x) + (x"m)(I"x) = 0. Similarly, points satisfying m™x = 0
also satisfy x"Cx = 0. The matrix C is symmetric and has rank 2. The null vector is
x = 1 x m which isthe intersection point of 1 and m. JAN

Degenerate line conics include two points (rank 2), and a repeated point (rank 1).
For example, the line conic C* = xy " + yx' hasrank 2 and consists of lines passing
through either of the two points x and y. Note that for matrices that are not invertible

(c) #c.

2.3 Projective transfor mations

In the view of geometry set forth by Felix Klein in his famous “Erlangen Program”,
[Klein-39], geometry is the study of properties invariant under groups of transforma-
tions. From this point of view, 2D projective geometry is the study of properties of
the projective plane IP? that are invariant under a group of transformations known as
projectivities.

A projectivity is an invertible mapping from points in IP? (that is homogeneous 3-
vectors) to pointsin IP? that maps linesto lines. More precisely,

Definition 2.9. A projectivity is an invertible mapping / from P2 to itself such that
three points x;, x» and x3 lie on the samelineif and only if h(x;), h(x2) and h(x3) do.

Projectivitiesform agroup sincetheinverse of aprojectivity isalso aprojectivity, and
so is the composition of two projectivities. A projectivity is aso called a collineation
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(ahelpful name), a projective transformation or a homography: the terms are synony-
mous.

In definition 2.9, a projectivity is defined in terms of a coordinate-free geometric
concept of point line incidence. An equivalent algebraic definition of a projectivity is
possible, based on the following result.

Theorem 2.10. A mapping h : IP? — IP? is a projectivity if and only if there exists a
non-singular 3 x 3 matrix H such that for any point in IP? represented by a vector x it
istruethat i (x) = Hx.

To interpret this theorem, any point in IP? is represented as a homogeneous 3-vector,
x, and Hx is alinear mapping of homogeneous coordinates. The theorem asserts that
any projectivity arises as such alinear transformation in homogeneous coordinates, and
that conversely any such mapping is a projectivity. The theorem will not be proved in
full here. 1t will only be shown that any invertible linear transformation of homoge-
neous coordinates is a projectivity.

Proof. Letx;, x, andx; lieonalinel. Thusl'x; = 0fori =1,...,3. LetHbea
non-singular 3 x 3 matrix. One verifiesthat I"H'Hx; = 0. Thus, the points Hx; all lie
ontheline 1, and collinearity is preserved by the transformation.

The converse is considerably harder to prove, namely that each projectivity arises in
thisway.

As aresult of this theorem, one may give an alternative definition of a projective
transformation (or collineation) as follows.

Definition 2.11. Projective transformation. A planar projective transformation is a
linear transformation on homogeneous 3-vectors represented by a non-singular 3 x 3

matrix:
l’/l hir hiz his X
x’g = | har haoy hos X2 ) (2-5)
Ifo, hs1 hsy hss €3

or more briefly, x’ = Hx.

Note that the matrix H occurring in this equation may be changed by multiplication
by an arbitrary non-zero scale factor without altering the projective transformation.
Consequently we say that H is a homogeneous matrix, since as in the homogeneous
representation of a point, only the ratio of the matrix elementsis significant. There are
eight independent ratios amongst the nine elements of H, and it follows that a projective
transformation has eight degrees of freedom.

A projectivetransformation projects every figureinto aprojectively equivalent figure,
leaving all its projective propertiesinvariant. In the ray model of figure 2.1 a projective
transformation is simply alinear transformation of IR3.
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Fig. 2.3. Central projection maps points on one plane to points on another plane. The projection
also mapslinesto lines as may be seen by considering a plane through the projection centre which inter-
sects with the two planes 7+ and 7’. Since lines are mapped to lines, central projection is a projectivity
and may be represented by a linear mapping of homogeneous coordinates x’ = Hx.

Mappings between planes. As an example of how theorem 2.10 may be applied,
consider figure 2.3. Projection along rays through a common point (the centre of pro-
jection) defines a mapping from one plane to another. It is evident that this point-to-
point mapping preserveslinesin that alinein one planeis mapped to alinein the other.
If a coordinate system is defined in each plane and points are represented in homoge-
neous coordinates, then the central projection mapping may be expressed by x’ = Hx
whereH isanon-singular 3 x 3 matrix. Actually, if the two coordinate systems defined
in the two planes are both Euclidean (rectilinear) coordinate systems then the mapping
defined by central projection is more restricted than an arbitrary projective transforma-
tion. It is called a perspectivity rather than a full projectivity, and may be represented
by atransformation with six degrees of freedom. We return to perspectivitiesin section
A7.4(p632).

Example2.12. Removing the projective distortion from a per spective image of a
plane.

Shape is distorted under perspective imaging. For instance, in figure 2.4a the win-
dows are not rectangular in the image, although the originals are. In general parallel
lines on a scene plane are not paralel in the image but instead converge to a finite
point. We have seen that a central projection image of a plane (or section of a plane)
is related to the original plane via a projective transformation, and so the image is a
projective distortion of the original. It is possible to “undo” this projective transforma-
tion by computing the inverse transformation and applying it to the image. The result
will be a new synthesized image in which the objects in the plane are shown with their
correct geometric shape. This will be illustrated here for the front of the building of
figure 2.4a. Note that since the ground and the front are not in the same plane, the
projective transformation that must be applied to rectify the front is not the same asthe
one used for the ground.

Computation of aprojective transformation from point-to-point correspondences will
be considered in great detail in chapter 4. For now, a method for computing the trans-



2.3 Projective transformations 35

Fig. 2.4. Removing perspective distortion. (a) The original image with perspective distortion — the
lines of the windows clearly converge at a finite point. (b) Synthesized frontal orthogonal view of the
front wall. Theimage (a) of the wall isrelated via a projective transfor mation to the true geometry of the
wall. The inverse transformation is computed by mapping the four imaged window corners to corners
of an appropriately sized rectangle. The four point correspondences deter mine the transformation. The
transformation is then applied to the whole image. Note that sections of the image of the ground are
subject to a further projective distortion. This can also be removed by a projective transformation.

formation is briefly indicated. One begins by selecting a section of the image corre-
sponding to a planar section of the world. Local 2D image and world coordinates are
selected as shown in figure 2.3. Let the inhomogeneous coordinates of apair of match-
ing points x and x’ in the world and image plane be (z,y) and (2, y’) respectively.
We use inhomogeneous coordinates here instead of the homogeneous coordinates of
the points, because it is these inhomogeneous coordinates that are measured directly
from the image and from the world plane. The projective transformation of (2.5) can
be written in inhomogeneous form as

_ x} _ hiix 4 hioy + his o = T4 _ horx + haoy + hog
zh  ha1x + haoy + has’ rh  hsix+ hgoy + hss’

Each point correspondence generates two equations for the elements of H, which
after multiplying out are

t' (hs1z + haoy + has) = hpx + hioy + has
Y (hs1x + haoy + hg3) = hoi1x + haoy + hos.

These equations are linear in the elements of H. Four point correspondences lead to
eight such linear equations in the entries of H, which are sufficient to solve for H up to
an insignificant multiplicative factor. The only restriction is that the four points must
be in “genera position”, which means that no three points are collinear. The inverse
of the transformation H computed in this way is then applied to the whole image to
undo the effect of perspective distortion on the selected plane. The results are shown
infigure 2.4b. A

Three remarks concerning this example are appropriate: first, the computation of
the rectifying transformation H in this way does not require knowledge of any of the
camera's parameters or the pose of the plane; second, it is not always necessary to
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Fig. 2.5. Examples of a projective transformation, x’ = Hx, arising in perspective images. (a)
The projective transformation between two images induced by a world plane (the concatenation of two
projective transformations is a projective transformation); (b) The projective transformation between
two images with the same camera centre (e.g. a camera rotating about its centre or a camera varying its
focal length); (c) The projective transformation between the image of a plane (the end of the building)
and theimage of its shadow onto another plane (the ground plane). Figure (c) courtesy of Luc Van Gool.

know coordinates for four points in order to remove projective distortion: alternative
approaches, which are described in section 2.7, require less, and different types of,
information; third, superior (and preferred) methods for computing projective transfor-
mations are described in chapter 4.

Projective transformations are important mappings representing many more situa-
tions than the perspective imaging of aworld plane. A number of other examples are
illustrated in figure 2.5. Each of these situations is covered in more detail later in the
book.

2.3.1 Transformations of lines and conics

Transformation of lines. It was shown in the proof of theorem 2.10 that if points x;
lieon aline 1, then the transformed points x; = Hx; under a projective transformation
lieon thelinel’ = H~T1. In this way, incidence of points on lines is preserved, since
1'"x} = 1"TH 'Hx; = 0. This gives the transformation rule for lines:

Under the point transformation x’ = Hx, aline transforms as

=1L (2.6)

One may aternatively write I'" = 1TH=!. Note the fundamentally different way
in which lines and points transform. Points transform according to H, whereas lines
(as rows) transform according to H—1. This may be explained in terms of “covariant”
or “contravariant” behaviour. One says that points transform contravariantly and lines
transform covariantly. Thisdistinction will be taken up again, when we discuss tensors
in chapter 15 and isfully explained in appendix 1(p562).

Transformation of conics. Under apoint transformation x’ = Hx, (2.2) becomes

x'cx = xTH'|TcH %/

xTa TcH %/
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Fig. 2.6. Distortions arising under central projection. Images of a tiled floor. (a) Similarity: the
circular patternisimaged asa circle. A squaretile isimaged as a square. Lines which are parallel or
perpendicular have the same relative orientation in the image. (b) Affine: The circle isimaged as an
elipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square
tiles, which are parallel in the world are parallel in the image. (c) Projective: Parallel world lines are
imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

which is a quadratic form x'T¢'x’ with ¢’ = H-TCH™!. This gives the transformation
rule for aconic:

Result 2.13. Under a point transformation x’ = Hx, a conic C transforms to
¢ =HTcH

Thepresence of H~! in this equation may be expressed by saying that aconic transforms
covariantly. The transformation rule for a dual conic is derived in a similar manner.
Thisgives:

Result 2.14. Under a point transformation x’ = Hx, a dual conic C* transforms to
C* = HC*H.

2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation
and their geometric properties. It was shown in section 2.3 that projective transforma-
tionsform agroup. Thisgroup is caled the projective linear group, and it will be seen
that these specializations are subgroups of this group.

The group of invertible n x n matrices with real elementsisthe (real) general linear
group on n dimensions, or GL(n). To obtain the projective linear group the matrices
related by a scalar multiplier are identified, giving PL(n) (thisis a quotient group of
GL(n)). Inthe case of projective transformations of the planen = 3.

The important subgroups of PL(3) include the affine group, which is the subgroup
of PL(3) consisting of matrices for which the last row is (0,0, 1), and the Euclidean
group, which isasubgroup of the affine group for which in addition the upper left hand
2 x 2 matrix is orthogonal. One may also identify the oriented Euclidean group in
which the upper left hand 2 x 2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the
isometries, and progressively generalizing until projective transformations are reached.
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This defines a hierarchy of transformations. The distortion effects of various transfor-
mationsin this hierarchy are shown in figure 2.6.

Some transformations of interest are not groups, for example, perspectivities (be-
cause the composition of two perspectivitiesis a projectivity, not a perspectivity). This
point is covered in section A7.4(p632).

Invariants. An alternative to describing the transformation algebraically, i.e. asama
trix acting on coordinates of apoint or curve, isto describe the transformation in terms
of those elements or quantities that are preserved or invariant. A (scalar) invariant of a
geometric configuration isafunction of the configuration whose value is unchanged by
aparticular transformation. For example, the separation of two points is unchanged by
aEuclidean transformation (translation and rotation), but not by asimilarity (e.g. trans-
lation, rotation and isotropic scaling). Distance is thus a Euclidean, but not similarity
invariant. The angle between two linesis both a Euclidean and a similarity invariant.

2.4.1 Class|: Isometries

|sometries are transformations of the plane IR? that preserve Euclidean distance (from
iSO = same, metric = measure). An isometry is represented as

x ecosf) —sinf t, x
y | = | esinfd cosf t, Yy
1 0 0 1 1

wheree = +1. If e = 1 then the isometry is orientation-preserving and is a Euclidean
transformation (a composition of atrandation and rotation). If e = —1 then the isome-
try reverses orientation. An example is the composition of a reflection, represented by
the matrix diag(—1, 1, 1), with a Euclidean transformation.

Euclidean transformations model the motion of arigid object. They are by far the
most important isometries in practice, and we will concentrate on these. However, the
orientation reversing isometries often arise as ambiguities in structure recovery.

A planar Euclidean transformation can be written more concisely in block form as

R t
x = Hyx = lOT 11){ (2.7)

whereR isa2 x 2 rotation matrix (an orthogonal matrix such that R'TR = RRT = 1),
t atrandation 2-vector, and 0 a null 2-vector. Special cases are a pure rotation (when
t = 0) and apuretrandation (whenR = I). A Euclidean transformation is also known
as a displacement.

A planar Euclidean transformation has three degrees of freedom, one for the rotation
and two for the transglation. Thus three parameters must be specified in order to define
the transformation. The transformation can be computed from two point correspon-
dences.

Invariants. The invariants are very familiar, for instance: length (the distance be-
tween two points), angle (the angle between two lines), and area.
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Groups and orientation.  An isometry is orientation-preserving if the upper left
hand 2 x 2 matrix has determinant 1. Orientation-preserving isometries form a group,
orientation-reversing ones do not. Thisdistinction applies also in the case of similarity
and affine transformations which now follow.

2.4.2 Classll: Similarity transfor mations

A similarity transformation (or more simply asimilarity) isan isometry composed with
anisotropic scaling. In the case of a Euclidean transformation composed with ascaling
(i.e. no reflection) the similarity has matrix representation

x scosf —ssinf t, x
y | =| ssinf scosf t, y |- (2.8)
1 0 0 1 1

This can be written more concisely in block form as

x = Hx = lng{ ;]X (2.9
where the scalar s represents the isotropic scaling. A similarity transformation is also
known as an equi-form transformation, because it preserves “shape’ (form). A planar
similarity transformation has four degrees of freedom, the scaling accounting for one
more degree of freedom than a Euclidean transformation. A similarity can be computed
from two point correspondences.

Invariants. Theinvariants can be constructed from Euclidean invariants with suitable
provision being made for the additional scaling degree of freedom. Angles between
lines are not affected by rotation, tranglation or isotropic scaling, and so are similarity
invariants. In particular parallel lines are mapped to parallel lines. The length between
two points is not a similarity invariant, but the ratio of two lengths is an invariant,
because the scaling of the lengths cancels out. Similarly aratio of areasis an invariant
because the scaling (squared) cancels out.

Metricstructure. A termthat will be used frequently in the discussion on reconstruc-
tion (chapter 10) is metric. The description metric structure implies that the structure
is defined up to a similarity.

2.4.3 Class|lI: Affinetransfor mations

An affine transformation (or more simply an affinity) is a non-singular linear transfor-
mation followed by atranslation. It has the matrix representation

! a1 aip ity T
vy | =1 an ax t, Y (2.10)
1 0 0 1 1
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rotation defor mation

a b

Fig. 2.7. Distortionsarising from a planar affine transformation. (a) Rotation by R(#). (b) A defor-
mation R(—¢) DR(¢). Note, the scaling directions in the deformation are orthogonal.

or in block form

x =H,x = l (fT ; ] X (2.11)
with A a2 x 2 non-singular matrix. A planar affine transformation has six degrees of
freedom corresponding to the six matrix elements. The transformation can be com-
puted from three point correspondences.

A helpful way to understand the geometric effects of the linear component A of
an affine transformation is as the composition of two fundamental transformations,
namely rotations and non-isotropic scalings. The affine matrix A can always be decom-
posed as

A = R(6)R(~9)DR(9) (212)

whereR(#) and R(¢) are rotations by 6 and ¢ respectively, and D is a diagonal matrix:

A1 0
b= l 0 A ] '

This decomposition follows directly from the SVD (section A4.4(p585)): writing A =
UDVT = (UVT)(VDVT) = R(A) (R(—¢) DR(¢)), Since U and V are orthogonal matrices.

The affine matrix A is hence seen to be the concatenation of a rotation (by ¢); a
scaling by A; and )\, respectively in the (rotated) = and y directions; a rotation back
(by —¢); and finally another rotation (by #). The only “new” geometry, compared to
a similarity, is the non-isotropic scaling. This accounts for the two extra degrees of
freedom possessed by an affinity over asimilarity. They are the angle ¢ specifying the
scaling direction, and the ratio of the scaling parameters \; : \,. The essence of an
affinity isthisscaling in orthogonal directions, oriented at a particular angle. Schematic
examples are given in figure 2.7.
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Invariants. Because an affine transformation includes non-isotropic scaling, the sim-
ilarity invariants of length ratios and angles between lines are not preserved under an
affinity. Three important invariants are:

(i) Parallel lines. Consider two paralel lines. These intersect at a point
(m1,22,0)7 at infinity. Under an affine transformation this point is mapped
to another point at infinity. Consequently, the parallel lines are mapped to lines
which still intersect at infinity, and so are parallel after the transformation.

(i) Ratio of lengths of parallel line segments. The length scaling of a line seg-
ment depends only on the angle between the line direction and scaling direc-
tions. Suppose the line is at angle « to the z-axis of the orthogonal scaling
direction, then the scaling magnitude is \/ A? cos? a + A3 sin? a. Thisscaling is
common to all lines with the same direction, and so cancels out in a ratio of
parallel segment lengths.

(iii) Ratio of areas. Thisinvariance can be deduced directly from the decomposi-
tion (2.12). Rotations and trandations do not affect area, so only the scalings by
A1 and \, matter here. The effect isthat areaisscaled by \; A\, whichisequal to
det A. Thusthe area of any shape is scaled by det A, and so the scaling cancels
out for aratio of areas. It will be seen that this does not hold for a projective
transformation.

An affinity isorientation-preserving or -reversing according to whether det A ispositive
or negative respectively. Since det A = A1\, the property depends only on the sign of
the scalings.

2.4.4 Class|V: Projective transformations

A projective transformation was defined in (2.5). It is a general non-singular linear
transformation of homogeneous coordinates. This generalizes an affine transformation,
which is the composition of ageneral non-singular linear transformation of inhomoge-
neous coordinates and a trandation. We have earlier seen the action of a projective
transformation (in section 2.3). Here we examine its block form

At
x =Hpx = [VT U]X (2.13)

where the vector v = (v;,v2)". The matrix has nine elements with only their ratio
significant, so the transformation is specified by eight parameters. Note, it isnot always
possible to scale the matrix such that v is unity since v might be zero. A projective
transformation between two planes can be computed from four point correspondences,
with no three collinear on either plane. See figure 2.4.

Unlike the case of affinities, it is not possible to distinguish between orientation
preserving and orientation reversing projectivities in IP2. We will return to this point
in section 2.6.
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Invariants. The most fundamental projective invariant is the cross ratio of four
collinear points: aratio of lengths on aline is invariant under affinities, but not un-
der projectivities. However, aratio of ratios or cross ratio of lengths on alineis a
projective invariant. We return to properties of thisinvariant in section 2.5.

2.4.5 Summary and comparison

Affinities (6 dof) occupy the middle ground between similarities (4 dof) and projectivi-
ties (8 dof). They generalize similaritiesin that angles are not preserved, so that shapes
are skewed under the transformation. On the other hand their action is homogeneous
over the plane: for a given affinity the det A scaling in area of an object (e.g. asquare)
is the same anywhere on the plane; and the orientation of a transformed line depends
only on itsinitial orientation, not on its position on the plane. In contrast, for a given
projective transformation, area scaling varies with position (e.g. under perspective a
more distant square on the plane has a smaller image than one that is nearer, as in
figure 2.6); and the orientation of a transformed line depends on both the orientation
and position of the source line (however, it will be seen later in section 8.6(p213) that
aline’'s vanishing point depends only on line orientation, not position).

The key difference between a projective and affine transformation is that the vector
v is not null for a projectivity. This is responsible for the non-linear effects of the
projectivity. Compare the mapping of an ideal point (z;, z»,0)" under an affinity and
projectivity: First the affine transformation

[oAT§]<%;)(A<§;>)- (2.14)

Second the projective transformation

[ATq(x;)(A(x;) ) o1
v v 0 V11 + V9o

In thefirst case theideal point remainsideal (i.e. at infinity). In the second it is mapped
to afinite point. It is this ability which allows a projective transformation to model
vanishing points.

2.4.6 Decomposition of a projective transfor mation

A projective transformation can be decomposed into a chain of transformations, where
each matrix in the chain represents a transformation higher in the hierarchy than the
previous one.

sR t K O I 0 At
HszHAszlOTIHOT 1HVTU]=lVT U] (2.16)

with A anon-singular matrix given by A = sRK +tv', and K an upper-triangular matrix
normalized asdet K = 1. This decomposition isvalid provided v # 0, and is unique if
s ischosen positive.
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Each of the matrices Hg, H,, Hy, IS the “essence’ of atransformation of that type (as
indicated by the subscripts S, A, P). Consider the process of rectifying the perspective
image of aplane asin example 2.12: H, (2 dof) moves the line at infinity; H, (2 dof)
affects the affine properties, but does not move the line at infinity; and finally, Hy is a
general similarity transformation (4 dof) which does not affect the affine or projective
properties. The transformation H;, is an elation, described in section A7.3(p631).

Example2.15. The projective transformation

1.707 0.586 1.0
H=| 2.707 8.242 2.0
1.0 20 1.0
may be decomposed as
2cos45° —2sin45° 1 05 1 0 1 00
H=| 2sin45° 2cos45° 2 0 2 0 01 0].
0 0 1 0 01 1 21

A

This decomposition can be employed when the objective is to only partially deter-
mine the transformation. For example, if one wants to measure length ratios from the
perspective image of a plane, then it is only necessary to determine (rectify) the trans-
formation up to asimilarity. We return to this approach in section 2.7.

Taking theinverseof Hin (2.16) givesH! = Ho'H ' H.!. SinceH, !, H, ! andH ! are
still projective, affine and similarity transformations respectively, a general projective
transformation may also be decomposed in the form

I 0 K O sR t
H:HPHAHS:[VT 1HOT 1HOT 1] (2.17)
Note that the actual values of K, R, t and v will be different from those of (2.16).

2.4.7 Thenumber of invariants

The question naturally arises as to how many invariants there are for a given geometric
configuration under a particular transformation. First the term “number” needs to be
made more precise, for if aquantity isinvariant, such aslength under Euclidean trans-
formations, then any function of that quantity is invariant. Consequently, we seek a
counting argument for the number of functionally independent invariants. By consid-
ering the number of transformation parameters that must be eliminated in order to form
aninvariant, it can be seen that:

Result 2.16. The number of functionally independent invariantsis equal to, or greater
than, the number of degrees of freedom of the configuration less the number of degrees
of freedom of the transformation.
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Group Matrix Distortion Invariant properties
Concurrency, collinearity, order of contact:

o h11  hiz his intersection (1 pt contact); tangency (2 pt con-
gng ?C“Ve [ hot hoo  hos ] tact); inflections
0 h31 hsa hss (3 pt contact with line); tangent discontinuities
and cusps. crossratio (ratio of ratio of lengths).
a “ " Parallelism, ratio of areas, ratio of lengths on
Affine a“ a12 o collinear or paralle lines (e.g. midpoints), lin-
6 dof (2)1 (2)2 4 ear combinations of vectors (e.g. centroids).

Ratio of lengths, angle. Thecircular points, I, J

— . Sr11 STi12 tw
Similarity [Srm . ty]

q
/
N
D The line at infinity, ...
Il
[ ]
Q
]

4 dof 0 Al (see section 2.7.3).
: rin Tz ta

Euclidean ror Tas ty Length, area

3 dof 0 0 1

Table 2.1. Geometric properties invariant to commonly occurring planar transformations. The
matrix A = [a;;] isaninvertible 2 x 2 matrix, R = [r;;] isa 2D rotation matrix, and (¢,,t,) a 2D trans-
lation. The distortion column shows typical effects of the transformations on a square. Transformations
higher in the table can produce all the actions of the ones below. These range from Euclidean, where
only translations and rotations occur, to projective where the square can be transformed to any arbitrary
quadrilateral (provided no three points are collinear).

For example, aconfiguration of four pointsin general position has 8 degrees of freedom
(2 for each point), and so 4 similarity, 2 affinity and zero projective invariants since
these transformations have respectively 4, 6 and 8 degrees of freedom.

Table 2.1 summarizes the 2D transformation groups and their invariant properties.
Transformations lower in the table are specializations of those above. A transformation
lower in the table inherits the invariants of those above.

2.5 The projective geometry of 1D

The development of the projective geometry of aline, IP!, proceeds in much the same
way as that of the plane. A point x on the line is represented by homogeneous coordi-
nates (z1,z,) ", and apoint for which z, = 0 isan ideal point of the line. We will use
the notation x to represent the 2-vector (x,, z,)T. A projective transformation of aline
isrepresented by a2 x 2 homogeneous matrix,

%' = HyyoX

and has 3 degrees of freedom corresponding to the four elements of the matrix less one
for overall scaling. A projective transformation of aline may be determined from three
corresponding points.
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Fig. 2.8. Projectivetransformationsbetween lines. Thereare four sets of four collinear pointsin this
figure. Each set isrelated to the others by a line-to-line projectivity. Sncethe crossratio isaninvariant
under a projectivity, the cross ratio has the same value for all the sets shown.

Thecrossratio. The crossratio isthe basic projective invariant of IP!. Given 4 points

X; the crossratio is defined as

Cr0$<)_(1, )_(2, }_(3, )_(4) - |)f1>f2 | ’i(?)}fd
|X1X3[XaX4]

where

_ i1 T
|Xin| = det ! J .
Ti2  Tj2

A few comments on the cross ratio:

(i) Thevaue of the crossratio is not dependent on which particular homogeneous
representative of a point x; is used, since the scale cancels between numerator
and denominator.

(i) If each point x; is afinite point and the homogeneous representative is chosen
such that z, = 1, then |x;X;| represents the signed distance from x; to x;.

(iii) The definition of the cross ratio is also valid if one of the points x; is an ideal
point.

(iv) The value of the cross ratio is invariant under any projective transformation of
theline: if X’ = HyyoX then

S/ G/

Cross(X, X5, X5, X, ) = Cross(x;, Xz, X3, X4). (2.18)

The proof is |eft as an exercise. Equivalently stated, the cross ratio is invariant
to the projective coordinate frame chosen for the line.

Figure 2.8 illustrates a number of projective transformations between lines with equiv-
alent crossratios.

Under a projective transformation of the plane, a 1D projective transformation is
induced on any linein the plane.

Concurrent lines. A configuration of concurrent lines is dua to collinear points on
aline. This means that concurrent lines on a plane also have the geometry IP!. In
particular four concurrent lines have a cross ratio as illustrated in figure 2.9a.
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Fig. 2.9. Concurrent lines. (a) Four concurrent lines 1; intersect the line 1 in the four points x;. The
cross ratio of these lines is an invariant to projective transformations of the plane. Its value is given
by the cross ratio of the points, Cross(x1, X2, X3, X4). (b) Coplanar points x; are imaged onto a line1
(also in the plane) by a projection with centre c. The cross ratio of the image points x; is invariant to
the position of theimage line 1.

Note how figure 2.9b may be thought of as representing projection of pointsin IP?
into a 1-dimensional image. In particular, if c represents a camera centre, and the line
1 represents an image line (1D analogue of the image plane), then the points x; are the
projections of points x; into the image. The cross ratio of the points x; characterizes
the projective configuration of the four image points. Note that the actual position
of the image line is irrelevant as far as the projective configuration of the four image
pointsis concerned — different choices of image line give rise to projectively equivalent
configurations of image points.

The projective geometry of concurrent lines isimportant to the understanding of the
projective geometry of epipolar linesin chapter 9.

2.6 Topology of the projective plane

We make brief mention of the topology of IP2. Understanding of this section is not
required for following the rest of the book.

We have seen that the projective plane IP? may be thought of as the set of al ho-
mogeneous 3-vectors. A vector of thistype x = (1, 79, z3)T may be normalized by
multiplication by a non-zero factor so that z3 + 3 + 22 = 1. Such apoint lies on the
unit spherein IR3. However, any vector x and —x represent the same point in IP?, since
they differ by a multiplicative factor, —1. Thus, there is a two-to-one correspondence
between the unit sphere S? in IR® and the projective plane IP2. The projective plane
may be pictured as the unit sphere with opposite points identified. In this representa-
tion, alinein IP? ismodelled asagreat circle on the unit sphere (as ever, with opposite
points identified). One may verify that any two distinct (non-antipodal) points on the
sphere lie on exactly one great circle, and any two great circles intersect in one point
(since antipodal points are identified).

In the language of topology, the sphere S? is a 2-sheeted covering space of IP2. This
impliesthat IP? is not simply-connected, which means that there are loopsin IP2 which
cannot be contracted to a point inside IP2. To be technical, the fundamental group of
IP? isthe cyclic group of order 2.
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Fig. 2.10. Topology of surfaces. Common surfaces may be constructed from a paper square (topo-
logically a disk) with edges glued together. In each case, the matching arrow edges of the square are to
be glued together in such a way that the directions of the arrows match. One obtains (a) a sphere, (b)
atorus, (c) a Klein bottle and (d) a projective plane. Only the sphere and torus are actually realizable
with a real sheet of paper. The sphere and torus are orientable but the projective plane and Klein bottle
are not.

In the model for the projective plane as a sphere with opposite points identified one
may dispense with the lower hemisphere of S?, since points in this hemisphere are
the same as the opposite points in the upper hemisphere. In this case, IP? may be
constructed from the upper hemisphere by identifying opposite points on the equator.
Since the upper hemisphere of S? is topologicaly the same as a disk, IP? is simply
a disk with opposite points on its boundary identified, or glued together. Thisis not
physically possible. Constructing topological spaces by gluing the boundary of a disk
isacommon method in topology, and in fact any 2-manifold may be constructed in this
way. Thisisillustrated in figure 2.10.

A notable feature of the projective plane IP? isthat it is non-orientable. This means
that it isimpossible to define alocal orientation (represented for instance by a pair of
oriented coordinate axes) that is consistent over the whole surface. Thisis illustrated
in figure 2.11 in which it is shown that the projective plane contains an orientation-
reversing path.

The topology of IP'. In asimilar manner, the 1-dimensional projective line may be
identified as a 1-sphere S! (that is, a circle) with opposite pointsidentified. If we omit
the lower half of the circle, as being duplicated by the top half, then the top half of a
circleistopologically equivalent to aline segment. ThusIP! istopologically equivalent
to aline segment with the two endpoints identified — namely acircle, S!.

2.7 Recovery of affine and metric propertiesfrom images

We return to the example of projective rectification of example 2.12(p34) where the
aim was to remove the projective distortion in the perspective image of a plane to the
extent that similarity properties (angles, ratios of lengths) could be measured on the
original plane. In that example the projective distortion was completely removed by
specifying the position of four reference points on the plane (a total of 8 degrees of
freedom), and explicitly computing the transformation mapping the reference points to
their images. In fact this overspecifies the geometry — a projective transformation has
only 4 degrees of freedom more than a similarity, so it is only necessary to specify 4
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Fig. 2.11. Orientation of surfaces. A coordinate frame (represented by an L in the diagram) may
be transported along a path in the surface eventually coming back to the point where it started. (@)
represents a projective plane. In the path shown, the coordinate frame (represented by a pair of axes) is
reversed when it returns to the same point, since the identification at the boundary of the square swaps
the direction of one of the axes. Such a path is called an orientation-reversing path, and a surface that
contains such a path is called non-orientable. (b) shows the well known example of a Mobius strip
obtained by joining two opposite edges of a rectangle (M.C. Escher’s “ Moebius Strip Il [Red Ants]”,
1963. (©2000 Cordon Art B.V. — Baarn-Holland. All rights reserved). As can be verified, a path once
around the strip is orientation-reversing.

degrees of freedom (not 8) in order to determine metric properties. In projective geom-
etry these 4 degrees of freedom are given “ physical substance” by being associated with
geometric objects: the line at infinity 1, (2 dof), and the two circular points (2 dof)
on 1l,,. Thisassociation is often a more intuitive way of reasoning about the problem
than the equivalent description in terms of specifying matrices in the decomposition
chain (2.16).

In the following it is shown that the projective distortion may be removed once the
image of 1, is specified, and the affine distortion removed once the image of the circu-
lar points is specified. Then the only remaining distortion is a similarity.

2.7.1 Thelineat infinity

Under a projective transformation ideal points may be mapped to finite points (2.15),
and consequently 1., is mapped to afinite line. However, if the transformation is an
affinity, then 1, is not mapped to afinite line, but remains at infinity. Thisis evident
directly from the line transformation (2.6—p36):

0 0

T

v — H;Tlm:[_ﬁTA_T (” 0|=1{0]=1.
1 1

The converse is also true, i.e. an affine transformation is the most genera linear trans-
formation that fixes1,,, and may be seen asfollows. We require that a point at infinity,
say x = (1,0,0)T, be mapped to a point at infinity. This requiresthat h3; = 0. Simi-
larly, hso = 0, so the transformation is an affinity. To summarize,

Result 2.17. Theline at infinity, 1., is a fixed line under the projective transformation
Hif and only if H is an affinity.

However, 1., is not fixed pointwise under an affine transformation: (2.14) showed
that under an affinity a point on 1, (an ideal point) is mapped to a point on 1., but
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Fig. 2.12. Affine rectification. A projective transformation maps 1., from (0,0,1)" on a Euclidean
plane 7r; to afinite line 1 on the plane m,. If a projective transformation is constructed such that 1 is
mapped back to (0,0,1)T then from result 2.17 the transformation between the first and third planes
must be an affine transformation since the canonical position of 1, is preserved. This means that affine
properties of thefirst plane can be measured fromthe third, i.e. the third plane is within an affinity of the
first.

it is not the same point unless A(xy, 25)T = k(xq,22)7T. It will now be shown that
identifying 1, alowsthe recovery of affine properties (parallelism, ratio of areas).

2.7.2 Recovery of affine propertiesfrom images

Oncetheimaged line at infinity isidentified in animage of aplane, it isthen possibleto
make affine measurements on the origina plane. For example, lines may be identified
as parallel on the original plane if the imaged lines intersect on the imaged 1,,. This
follows because parallel lines on the Euclidean plane intersect on 1., and after a pro-
jective transformation the lines still intersect on the imaged 1., since intersections are
preserved by projectivities. Similarly, once 1., isidentified alength ratio on aline may
be computed from the cross ratio of the three points specifying the lengths together
with the intersection of the line with 1, (which provides the fourth point for the cross
ratio), and so forth.

However, aless tortuous path which is better suited to computational algorithmsis
simply to transform the identified 1., to its canonical position of 1., = (0,0,1)T. The
(projective) matrix which achieves this transformation can be applied to every point
in the image in order to affinely rectify the image, i.e. after the transformation, affine
measurements can be made directly from the rectified image. The key idea here is
illustrated in figure 2.12.

If theimaged line at infinity isthelinel = (11,15, 13) T, then provided /5 # 0 asuitable
projective point transformation which will map1back tol,, = (0,0,1)7 is

1 0 0
H=H,| 0 1 0 (2.19)
Loy Iy
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Fig. 2.13. Affinerectification via the vanishing line. The vanishing line of the plane imaged in (a) is
computed (c) from the intersection of two sets of imaged parallel lines. The image is then projectively
warped to produce the affinely rectified image (b). In the affinely rectified image parallel lines are now
parallel. However, angles do not have their veridical world value since they are affinely distorted. See
also figure 2.17.

whereH, isany affinetransformation (the last row of His1™). One can verify that under
theline transformation (2.6p36) H~ " (11,12, 13)" = (0,0,1)" = L.

Example2.18. Affinerectification

In aperspectiveimage of aplane, thelineat infinity on the world planeisimaged asthe
vanishing line of the plane. Thisisdiscussed in more detail in chapter 8. Asillustrated
in figure 2.13 the vanishing line 1 may be computed by intersecting imaged parallel
lines. Theimage is then rectified by applying a projective warping (2.19) such that1is
mapped to its canonical position1,, = (0,0, 1)T. JAN

This example shows that affine properties may be recovered by simply specifying a
line (2 dof). It is equivalent to specifying only the projective component of the trans-
formation decomposition chain (2.16). Conversely if affine properties are known, these
may be used to determine points and the line at infinity. Thisisillustrated in the fol-
lowing example.

Example2.19. Computing a vanishing point from a length ratio. Given two in-
tervals on a line with a known length ratio, the point at infinity on the line may be
determined. A typical caseiswherethree pointsa’, b’ and ¢’ areidentified on alinein
an image. Suppose a, b and c are the corresponding collinear points on the world line,
and thelength ratio d(a, b) : d(b,c) = a : bisknown (where d(x, y) is the Euclidean
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Fig. 2.14. Two examples of using equal length ratios on a line to determine the point at infinity. The
line intervals used are shown as the thin and thick white lines delineated by points. This construction
determines the vanishing line of the plane. Compare with figure 2.13c.

distance between the points x and y). It is possible to find the vanishing point using
the cross ratio. Equivalently, one may proceed as follows:

(i) Mesasure the distanceratio intheimage, d(a’,b’) : d(b’,c') =d’ : V.

(if) Pointsa, b and c may be represented as coordinates 0, a and a+b in acoordinate
frame on the line (a, b, c). For computational purposes, these points are rep-
resented by homogeneous 2-vectors (0,1)7, (a,1)" and (a + b,1)". Similarly,
a’, b’ and ¢’ have coordinates 0, «’ and a’ + b’, which may also be expressed as
homogeneous vectors.

(iii) Relative to these coordinate frames, compute the 1D projective transformation
Hywo Mappinga+— a’,b— b’andc — c'.

(iv) The image of the point at infinity (with coordinates (1,0)") under H, is the

vanishing point on theline (a’, b’, ).

An example of vanishing points computed in thismanner isshown infigure 2.14. A

Example2.20. Geometric construction of vanishing points from a length ratio.
The vanishing points shown in figure 2.14 may aso be computed by a purely geometric
construction consisting of the following steps:

(i) Given: three collinear points, a’, b’ and ¢/, in an image corresponding to
collinear world points with interval ratio a : b.

(ii) Draw any line 1 through a’ (not coincident with the line a’c’), and mark off
pointsa = a’, b and c such that the line segments (ab), (bc) have length ratio
a:b.

(iii) Join bb’ and cc’ and intersect in o.

(iv) Thelinethrough o parallel to 1 meetstheline a’c’ in the vanishing point v'.

This construction isillustrated in figure 2.15. JAN
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Fig. 2.15. A geometric construction to determine the image of the point at infinity on a line given a
known length ratio. The details are given in the text.

2.7.3 Thecircular pointsand their dual

Under any similarity transformation there are two points on 1, which are fixed. These
are the circular points (also called the absolute points) 1, J, with canonical coordinates

1 1
I=] 1 J=| —1

The circular points are a pair of complex conjugate ideal points. To see that they are
fixed under an orientation-preserving similarity:

I' = HI
scosf —ssinf t, 1
= ssinf scosf t, )
0 0 1 0
1
= se | | =1
0

with an analogous proof for J. A reflection swaps1 and J. The converseis also true,
i.e. if the circular points are fixed then the linear transformation is a similarity. The
proof isleft as an exercise. To summarize,

Result 2.21. Thecircular points, 1, J, are fixed points under the projective transforma-
tionH if and only if Hisa similarity.

The name “circular points’ arises because every circle intersects 1, at the circular
points. To seethis, start from equation (2.1-p30) for aconic. In the case that the conic
isacircle: a = cand b = 0. Then

o1 + 23 + doyw3 + exoxs + fri =0
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where a has been set to unity. This conic intersects 1., in the (ideal) points for which
x3 = 0, namely

2 2 _
] +a5=0

with solution1 = (1,i,0)T, 3 = (1,—4,0)7, i.e. any circleintersects 1, in the circular
points. In Euclidean geometry it iswell known that acircleis specified by three points.
The circular points enable an alternative computation. A circle can be computed using
the general formulafor a conic defined by five points (2.4—31), where the five points
are the three points augmented with the two circular points.

In section 2.7.5 it will be shown that identifying the circular points (or equivalently
their dual, see below) allows the recovery of similarity properties (angles, ratios of
lengths). Algebraically, the circular points are the orthogonal directions of Euclidean
geometry, (1,0,0)" and (0,1,0)T, packaged into a single complex conjugate entity,
eg.

1=(1,0,0)" +4(0,1,0)".

Consequently, it is not so surprising that once the circular points are identified, orthog-
onality, and other metric properties, are then determined.

The conic dual tothecircular points. The conic
c', =137 +J1" (2.20)

Is dua to the circular points. The conic C’_ is a degenerate (rank 2) line conic
(see section 2.2.3), which consists of the two circular points. In a Euclidean coordinate
system it is given by

(e o (3o o[

The conic CZ, is fixed under similarity transformations in an analogous fashion to
the fixed properties of circular points. A conicisfixed if the same matrix results (up to
scale) under the transformation rule. SinceC’_ isadual conic it transforms according to
result 2.14(p37) (C*' = HC*H'), and one can verify that under the point transformation
x' = HgX,

C' =HCIH =Cr.
The converseis also true, and we have

Result 2.22. The dual conic C? is fixed under the projective transformation H if and
only if Hisa similarity.
Some properties of C%_ in any projective frame:

(i) C: has 4 degrees of freedom: a 3 x 3 homogeneous symmetric matrix has

5 degrees of freedom, but the constraint det C5, = 0 reduces the degrees of
freedom by 1.
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(i) L isthenull vector of C’_. Thisisclear from the definition: the circular points
lieonl,, sothat1'l,, = J"1,, = 0; then

¢l = (W7 + 31Nl = 1(371) + 3(1"L,) = .

2.7.4 Angleson the projective plane

In Euclidean geometry the angle between two lines is computed from the dot product
of their normals. For the lines1 = (Iy,1,,15)" and m = (my, my, m3)T with normals
paralel to (I1,13)", (m1, my)T respectively, the angleis

llm1 + lgmg
VB +B)(m? +m3)

The problem with this expression is that the first two components of 1 and m do not
have well defined transformation properties under projective transformations (they are
not tensors), and so (2.21) cannot be applied after an affine or projective transforma-
tion of the plane. However, an analogous expression to (2.21) which is invariant to
projective transformationsis

cosf =

(2.21)

1C* m
/(e 1) (m e m)

where C?_ is the conic dual to the circular points. It is clear that in a Euclidean co-
ordinate system (2.22) reduces to (2.21). It may be verified that (2.22) is invariant
to projective transformations by using the transformation rules for lines (2.6-36)
(I’ = H~T1) and dual conics (result 2.14(p37)) (C*' = HC*H') under the point trans-
formation x’ = Hx. For example, the numerator transforms as

cost) = (2.22)

"¢ m — I"'H'HCY H'H 'm = 1"C*_m.

It may also be verified that the scale of the homogeneous objects cancels between the
numerator and denominator. Thus (2.22) isindeed invariant to the projective frame. To
summarize, we have shown

Result 2.23. Once the conic C_ is identified on the projective plane then Euclidean
angles may be measured by (2.22).

Note, asacorollary,
Result 2.24. Lines1 and m are orthogonal if 1"C*_ m = 0.

Geometrically, if 1 and m satisfy 1'C:_m = 0, then the lines are conjugate
(see section 2.8.1) with respect to the conic C_.

Length ratios may aso be measured once C’, is identified. Consider the triangle
shown in figure 2.16 with vertices a, b, c. From the standard trigonometric sine rule
the ratio of lengths d(b,c) : d(a,c) = sina : sin 3, where d(x,y) denotes the Eu-
clidean distance between the points x and y. Using (2.22), both cos « and cos 5 may
be computed from the linesl’ = a’ x b, m’ = ¢’ x a’ andn’ = b’ x ¢’ for any
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Fig. 2.16. Length ratios. Once C_ is identified the Euclidean length ratio d(b, c) : d(a,c) may be
measured from the projectively distorted figure. See text for details.

projective frame in which C_ is specified. Consequently both sin ¢, sin 3, and thence
theratio d(a, b) : d(c, a), may be determined from the projectively mapped points.

2.7.5 Recovery of metric propertiesfrom images

A completely analogous approach to that of section 2.7.2 and figure 2.12, where affine
properties are recovered by specifying 1., enables metric properties to be recovered
from an image of aplane by transforming the circular pointsto their canonical position.
Suppose the circular points are identified in an image, and the image is then rectified
by a projective transformation H that maps the imaged circular pointsto their canonical
position (at (1,44,0)") on 1,,. From result 2.21 the transformation between the world
plane and the rectified image is then a similarity since it is projective and the circular
points are fixed.

Metricrectification using C:_. Thedual conic C’_ neatly packagesall the information
required for ametric rectification. It enables both the projective and affine components
of a projective transformation to be determined, leaving only similarity distortions.
Thisis evident from its transformation under a projectivity. If the point transformation
isx’ = Hx, wherethe x-coordinate frameis Euclidean and x’ projective, C*_ transforms
according to result 2.14(p37) (C*' = HC*H'). Using the decomposition chain (2.17—
p43) for H
¢, = (HoHyH)Cl (HoHyHo)" = (HoH,) (HCLH) (HIHY)
= (HpHy)CY (HI Hll_)
KKT  KK'v
N l vIKKT vTKKTv ] (2.23)

Itisclear that the projective (v) and affine (K) components are determined directly from
theimage of C?_, but (since C%_ isinvariant to similarity transformation by result 2.22)
the similarity component is undetermined. Consequently,

Result 2.25. Once the conic C’_ is identified on the projective plane then projective
distortion may be rectified up to a similarity.

Actually, a suitable rectifying homography may be obtained directly from the iden-
tified C%." in an image using the SVD (section A4.4(p585)): writing the SVD of C* '
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]UT

then by inspection from (2.23) the rectifying projectivity isH = U up to asimilarity.
The following two examples show typical situations where C’_ may be identified in
an image, and thence a metric rectification obtained.

o

10
ct'=u|0 1
00

o O O

Example2.26. Metric rectification |
Suppose an image has been affinely rectified (as in example 2.18 above), then we re-
quire two constraints to specify the 2 degrees of freedom of the circular pointsin order
to determine a metric rectification. These two constraints may be obtained from two
imaged right angles on the world plane.

Suppose the lines 1, m’ in the affinely rectified image correspond to an orthogonal
line pair 1, m on the world plane. From result 224 1''C* 'm’ = 0, and using (2.23)

withv =0
/
N[rkkT o] ™
(1 1 13)[0T O](m%)o
ms

which is a linear constraint on the 2 x 2 matrix S = KK'. The matrix S = KK' is
symmetric with three independent elements, and thus 2 degrees of freedom (as the
overall scaling is unimportant). The orthogonality condition reduces to the equation
(13, 15)S(m}, m},)T = 0 which may be written as

li ! ! ! !/ ! ! ! _
(lymy, limy + lymy, Iymy) s = 0,

where s = (511, 512, 822) ' IS S written as a 3-vector. Two such orthogonal line pairs
provide two constraints which may be stacked to give a 2 x 3 matrix with s deter-
mined as the null vector. Thus S, and hence K, is obtained up to scale (by Cholesky
decomposition, section A4.2.1(p582)). Figure 2.17 shows an example of two orthog-
onal line pairs being used to metrically rectify the affinely rectified image computed
infigure 2.13. A

Alternatively, the two constraints required for metric rectification may be obtained from
an imaged circle or two known length ratios. In the case of a circle, the image conic
isan ellipse in the affinely rectified image, and the intersection of this ellipse with the
(known) 1, directly determines the imaged circular points.

The conic C?_ can aternatively be identified directly in a perspective image, without
first identifying 1, asisillustrated in the following example.

Example2.27. Metric rectification |1

We start here from the original perspective image of the plane (not the affinely rectified
image of example 2.26). Suppose lines1 and m are images of orthogonal lines on the
world plane; then from result 2.2417¢*_m = 0, and in asimilar manner to constraining
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Fig. 2.17. Metric rectification via orthogonal lines|. The affine transformation required to metrically
rectify an affine image may be computed fromimaged orthogonal lines. (a) Two (non-parallel) line pairs
identified on the affinely rectified image (figure 2.13) correspond to orthogonal lines on the world plane.
(b) The metrically rectified image. Note that in the metrically rectified image all lines orthogonal in the
world are orthogonal, world squares have unit aspect ratio, and world circles are circular.

Fig. 2.18. Metric rectification via orthogonal lines I1. (a) The conic C%, is determined on the per-
spectively imaged plane (the front wall of the building) using the five orthogonal line pairs shown. The
conic C%_ determines the circular points, and equivalently the projective transformation necessary to
metrically rectify the image (b). The image shown in (@) is the same perspective image as that of figure
2.4(p35), where the perspective distortion was removed by specifying the world position of four image
points.

aconic to contain a point (2.4—p31), this provides alinear constraint on the elements
of C%_, namely

(llml, (l1m2 + lgml)/Q, lgmg, (l1m3 + l3m1)/2, (l2m3 + l3m2)/2, l3m3) c=0

where ¢ = (a,b,c,d, e, f)T isthe conic matrix (2.3-p30) of C*_ written as a 6-vector.
Five such constraints can be stacked to form a5 x 6 matrix, and c, and hence C’_,
is obtained as the null vector. This shows that C’_ can be determined linearly from
the images of five line pairs which are orthogonal on the world plane. An example of
metric rectification using such line pair constraints is shown in figure 2.18. A

Stratification. Note, in example 2.27 the affine and projective distortions are deter-
mined in one step by specifying C’_. In the previous example 2.26 first the projec-
tive and subsequently the affine distortions were removed. This two-step approach is
termed stratified. Analogous approaches apply in 3D, and are employed in chapter 10
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Fig. 2.19. The polepolar relationship. Thelinel = Cx isthe polar of the point x with respect to the
conic ¢, and the point x = ¢~ '1is the pole of 1 with respect to C. The polar of x intersects the conic at
the points of tangency of linesfromx. If y ison1theny'l = yTCx = 0. Points x and y which satisfy
y'Cx = 0 are conjugate.

on 3D reconstruction and chapter 19 on auto-calibration, when obtaining ametric from
a 3D projective reconstruction.

2.8 More propertiesof conics

We now introduce an important geometric relation between a point, line and conic,
which istermed polarity. Applications of thisrelation (to the representation of orthog-
onality) are given in chapter 8.

2.8.1 Thepolepolar relationship

A point x and conic C definealinel = Cx. Thelinel is called the polar of x with
respect to C, and the point x is the pole of 1 with respect to C.

e Thepolar linel = Cx of the point x with respect to a conic C intersects the conic in
two points. The two lines tangent to C at these points intersect at x.

Thisrelationship isillustrated in figure 2.19.

Proof. Consider apoint y on C. The tangent line a y is Cy, and this line contains x
if xTCy = 0. Using the symmetry of C, the condition x"Cy = (Cx)Ty = 0 isthat the
point y lies on the line Cx. Thus the polar line Cx intersects the conic in the point y at
which the tangent line contains x.

As the point x approaches the conic the tangent lines become closer to collinear, and
their contact points on the conic also become closer. In the limit that x lies on C, the
polar line has two-point contact at x, and we have:

e |f the point x ison C then the polar is the tangent line to the conic at x.

Seeresult 2.7(p31).
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Example2.28. A circle of radius r centred on the xz-axis at + = a has the equation
(x —a)* + y* = r?, and is represented by the conic matrix

1 0 —a
C= 0 1 0
—a 0 a®>—1r?

The polar line of the originisgiven by 1 = ¢(0,0,1)T = (—a,0,a?> — r?)T. Thisisa
vertical lineat x = (a® — r?)/a. If r = a the origin lies on the circle. In this case the
polar lineisthe y-axis and is tangent to the circle. A

It is evident that the conic induces a map between points and lines of IP2. Thismap is
a projective construction since it involves only intersections and tangency, both prop-
erties that are preserved under projective transformations. A projective map between
points and lines is termed a correlation (an unfortunate name, given its more common

usage).

Definition 2.29. A correlation is an invertible mapping from points of IP? to lines of
IP2. Itisrepresented by a3 x 3 non-singular matrix A asl = Ax.

A correlation provides a systematic way to dualize relations involving points and lines.
It need not be represented by a symmetric matrix, but we will only consider symmetric
correlations here, because of the association with conics.

e Conjugate points. If the point y ison thelinel = Cx theny™l = y'Cx = 0. Any
two points x, y satisfying y ' Cx = 0 are conjugate with respect to the conic C.

The conjugacy relation is symmetric:
e If x isonthe polar of y theny ison the polar of x.

This follows simply because of the symmetry of the conic matrix — the point x is on
the polar of y if x"Cy = 0, and the point y is on the polar of x if yTCx = 0. Since
x'Cy = y'Cx, if one form is zero, then so is the other. There is a dual conjugacy
relationship for lines: two lines1 and m are conjugate if 1'C*m = 0.

2.8.2 Classification of conics
This section describes the projective and affine classification of conics.

Proj ective normal form for a conic. Since C isasymmetric matrix it has real eigen-
values, and may be decomposed as a product C = UTDU (see section A4.2(p580)),
where U is an orthogonal matrix, and D is diagonal. Applying the projective trans-
formation represented by U, conic C is transformed to another conic ¢’ = U~ TcU~! =
U~ TuTDUU—! = D. Thisshowsthat any conic is equivalent under projective transforma-
tion to one with a diagonal matrix. Let D = diag(e;ds, €2ds, €3d3) wheree; = £1 0or 0
and each d; > 0. Thus, D may be written in the form

D = diag(s1, s2, 83)Tdiag(€1, €2, €3)diag(s1, s2, 53)



60 2 Projective Geometry and Transformations of 2D

a b c

Fig. 2.20. Affineclassification of point conics. Aconicisan (a) ellipse, (b) parabola, or (c) hyperbola;
according to whether it (a) has no real intersection, (b) is tangent to (2-point contact), or (c) has 2 real
intersectionswith 1. Under an affine transformation 1, isa fixed line, and intersections are preserved.
Thus this classification is unaltered by an affinity.

where s? = d;. Note that diag(sy, s2, s3)" = diag(sy, s, s3). Now, transforming once
more by the transformation diag(si, sz, s3), the conic D is transformed to a conic with
matrix diag(ey, €2, €3), with each ¢; = +1 or 0. Further transformation by permutation
matrices may be carried out to ensure that values ¢; = 1 occur before valuese; = —1
which in turn precede values ¢; = 0. Finally, by multiplying by —1 if necessary, one
may ensure that there are at least asmany +1 entriesas —1. The varioustypes of conics
may now be enumerated, and are shown in table 2.2.

Diagonal Equation Conic type

(1,1,1) 22 +y?>+w?=0 Improper conic—no real points.
(1,1,-1) 22 +y*—w?=0 Circle

(1,1,0) 2 +y% =0 Single real point (0,0, 1)T
(1,-1,0) 22 —y2=0 Twolinesz = £y
(1,0,0) 2?2 =0 Singleline z = 0 counted twice.

Table 2.2. Projective classification of point conics. Any plane conic is projectively equivalent to one
of the types shown in this table. Those conics for which ¢; = 0 for some ¢ are known as degenerate
conics, and are represented by a matrix of rank less than 3. The conic type column only describes the
real points of the conics —for example as a complex conic 22 +y? = 0 consists of the line pair = = +iy.

Affine classification of conics. The classification of (non-degenerate, proper) conics
in Euclidean geometry into hyperbola, ellipse and parabolais well known. As shown
above in projective geometry these three types of conic are projectively equivalent to
acircle. However, in affine geometry the Euclidean classification is till valid because
it depends only on the relation of 1, to the conic. The relation for the three types of
conicisillustrated in figure 2.20.
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Fig. 2.21. Fixed pointsand lines of a plane projective transformation. There are three fixed points,
and three fixed lines through these points. The fixed lines and points may be complex. Algebraically,
the fixed points are the eigenvectors, e;, of the point transformation (x’ = Hx), and the fixed lines
eigenvectors of the line transformation (1’ = H~"1). Note, the fixed line is not fixed pointwise: under
the transformation, points on the line are mapped to other points on the line; only the fixed points are
mapped to themselves.

2.9 Fixed pointsand lines

We have seen, by the examples of 1., and the circular points, that points and lines may
be fixed under a projective transformation. In this section the ideais investigated more
thoroughly.

Here, the source and destination planes are identified (the same) so that the trans-
formation maps points x to points x’ in the same coordinate system. The key idea
is that an eigenvector corresponds to a fixed point of the transformation, since for an
eigenvector e with eigenvalue ),

He = e

and e and \e represent the same point. Often the eigenvector and eigenvalue have
physical or geometric significance in computer vision applications.

A 3 x 3 matrix hasthree elgenvalues and consequently a plane projective transforma-
tion has up to three fixed points, if the eigenvalues are distinct. Since the characteristic
eguation is a cubic in this case, one or three of the eigenvalues, and corresponding
eigenvectors, isreal. A similar development can be given for fixed lines, which, since
lines transform as (2.6p36) I’ = H~ "1, correspond to the eigenvectors of H'.

The relationship between the fixed points and fixed lines is shown in figure 2.21.
Note the lines are fixed as a set, not fixed pointwise, i.e. a point on the line is mapped
to another point on the line, but in general the source and destination points will differ.
There is nothing mysterious here: The projective transformation of the plane induces a
1D projective transformation on theline. A 1D projective transformation isrepresented
by a2 x 2 homogeneous matrix (section 2.5). This 1D projectivity hastwo fixed points
corresponding to the two eigenvectors of the 2 x 2 matrix. These fixed points are those
of the 2D projective transformation.

A further specialization concerns repeated eigenvalues. Suppose two of the eigen-
values (A2, \3 say) are identical, and that there are two distinct eigenvectors (e, e3),
corresponding to A\, = 3. Then the line containing the eigenvectors e,, e; will be
fixed pointwise, i.e. it isaline of fixed points. For suppose x = ae, + (es; then

Hx = )\20462 + /\2563 = )\QX
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i.e. apoint on the line through two degenerate eigenvectors is mapped to itself (only
differing by scale). Another possibility is that Ay = )3, but that there is only one
corresponding eigenvector. In this case, the eigenvector has algebraic dimension equal
to two, but geometric dimension equal to one. Then there is one fewer fixed point (2
instead of 3). Various cases of repeated eigenvalues are discussed further in appendix
7(p628).

We now examine the fixed points and lines of the hierarchy of projective transforma-
tion subgroups of section 2.4. Affine transformations, and the more specialized forms,
have two eigenvectors which are ideal points (z3 = 0), and which correspond to the
eigenvectors of the upper left 2 x 2 matrix. The third eigenvector isfinite in general.

A Euclidean matrix. Thetwo ideal fixed points are the complex conjugate pair of cir-
cular points1, J, with corresponding eigenvalues {¢%, e=#}, where § isthe rotation an-
gle. Thethird eigenvector, which has unit eigenvalue, is called the pole. The Euclidean
transformation is equal to a pure rotation by 6 about this point with no transation.

A specia caseisthat of a pure trandation (i.e. where § = 0). Here the eigenvalues
are triply degenerate. The line at infinity is fixed pointwise, and there is a pencil of
fixed lines through the point (¢, ¢,, 0)T which corresponds to the translation direction.
Consequently lines parallel to t are fixed. Thisisan example of an elation (see section
A7.3(p631)).

A similarity matrix. The two ideal fixed points are again the circular points. The
eigenvalues are {1,se? se~®}. The action can be understood as a rotation and
isotropic scaling by s about the finite fixed point. Note that the eigenvalues of the
circular points again encode the angle of rotation.

An affine matrix. The two ideal fixed points can be real or complex conjugates, but
thefixed linel,, = (0,0, 1) through these pointsisreal in either case.

2.10 Closure
2.10.1 Theliterature

A gentle introduction to plane projective geometry, written for computer vision re-
searchers, is given in the appendix of Mundy and Zisserman [Mundy-92]. A more
formal approach is that of Semple and Kneebone [Semple-79], but [Springer-64] is
more readable.

On the recovery of affine and metric scene properties for an imaged plane, Collins
and Beveridge [Collins-93] use the vanishing line to recover affine properties from
satellite images, and Liebowitz and Zisserman [Liebowitz-98] use metric information
on the plane, such asright angles, to recover the metric geometry.

2.10.2 Notesand exercises
(i) Affinetransformations.



(i)

(iii)

(iv)

(v)

(vi)

(vii)
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() Show that an affine transformation can map a circle to an ellipse, but
cannot map an ellipse to a hyperbola or parabola.

(b) Provethat under an affine transformation the ratio of lengths on parallel
line segments is an invariant, but that the ratio of two lengths that are
not parallel is not.

Projective transformations. Show that there is a three-parameter family of
projective transformations which fix (as a set) a unit circle at the origin, i.e. a
unit circle at the origin is mapped to a unit circle at the origin (hint, use result
2.13(p37) to compute the transformation). What is the geometric interpretation
of thisfamily?

I sotropies. Show that two lines have an invariant under a similarity transfor-
mation; and that two lines and two points have an invariant under a projective
transformation. In both cases the equality case of the counting argument (result
2.16(p43)) isviolated. Show that for these two cases the respective transforma-
tion cannot be fully determined, although it is partially determined.
Invariants. Using the transformation rules for points, lines and conics show:

(8 Twolines, 1;, 15, and two points, x;, x2, not lying on the lines have the
invariant
(Ix1)(13%2)
(17 x2)(13%1)

(see the previous question).

(b) A conic C and two points, x; and x,, in genera position have the invari-
ant

(%] Cxa)?

I = .
(x]Cx1)(xdCx3)

(c) Show that the projectively invariant expression for measuring an-
gles (2.22) is equivalent to Laguerre's projectively invariant expression
involving a cross ratio with the circular points (see [Springer-64]).

The cross ratio. Prove the invariance of the cross ratio of four collinear
points under projective transformations of the line (2.18—45). Hint, start with
the transformation of two points on the line written as X, = \;HaxoX; and
X = A\jHaxoX;, Where equality is not up to scale, then from the properties of
determinants show that |5<;5<;.] = A\ det Hoyo|X;X ;| and continue from here.
An alternative derivation method is given in [Semple-79].

Polarity. Figure 2.19 shows the geometric construction of the polar line for a
point x outside an ellipse. Give ageometric construction for the polar when the
point isinside. Hint, start by choosing any line through x. The pole of thisline
isapoint on the polar of x.

Conics. If the sign of the conic matrix C is chosen such that two eigenvalues
are positive and one negative, then internal and external points may be distin-
guished according to the sign of xTCx: the point x isinside/on/outside the conic
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C if xTCx isnegative/zero/positive respectively. This can seen by example from
acircleC = diag(1, 1, —1). Under projective transformations internality isin-
variant, though its interpretation requires care in the case of an ellipse being
transformed to a hyperbola (see figure 2.20).

(viii) Dual conics. Show that the matrix [1]C[l]« represents a rank 2 dua conic
which consists of the two points at which the line 1 intersects the (point) conic
C (the notation [1] . is defined in (A4.5-p581)).

(ix) Special projective transformations. Suppose points on a scene plane are re-

lated by reflectioninaline: for example, aplane object with bilateral symmetry.
Show that in a perspective image of the plane the points are related by a pro-
jectivity H satisfying H> = I. Furthermore, show that under H there is aline
of fixed points corresponding to the imaged reflection line, and that H has an
eigenvector, not lying on thisline, which is the vanishing point of the reflection
direction (H is a planar harmonic homology, see section A7.2(p629)).
Now suppose that the points are related by a finite rotational symmetry: for
example, points on a hexagonal bolt head. Show in this case that H* = I,
where n is the order of rotational symmetry (6 for a hexagonal symmetry),
that the eigenvalues of H determine the rotation angle, and that the eigenvector
corresponding to the real eigenvalue is the image of the centre of the rotational
symmetry.
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Projective Geometry and Transformations of 3D

This chapter describes the properties and entities of projective 3-space, or IP3. Many
of these are straightforward generalizations of those of the projective plane, described
in chapter 2. For example, in IP? Euclidean 3-space is augmented with a set of ideal
points which are on a plane at infinity, w.,. Thisis the analogue of 1., in IP2. Par-
alel lines, and now parallel planes, intersect on 7r,. Not surprisingly, homogeneous
coordinates again play an important role, here with all dimensions increased by one.
However, additional properties appear by virtue of the extra dimension. For example,
two linesalwaysintersect on the projective plane, but they need not intersect in 3-space.

The reader should be familiar with the ideas and notation of chapter 2 before read-
ing this chapter. We will concentrate here on the differences and additional geometry
introduced by adding the extra dimension, and will not repeat the bulk of the material
of the previous chapter.

3.1 Pointsand projective transfor mations

A point X in 3-space is represented in homogeneous coordinates as a 4-vector. Specif-
ically, the homogeneous vector X = (X1, Xa, X3, X4) T with X4 # 0 represents the point
(X,Y,2z)" of IR? with inhomogeneous coordinates

X = X1/Xq, Y = Xo/Xy, Z=X3/X4.

For example, a homogeneous representation of (x,Y,z)"T isX = (x,Y,z,1)T. Homo-
geneous points with X, = 0 represent points at infinity.

A projective transformation acting on IP? is alinear transformation on homogeneous
4-vectorsrepresented by anon-singular 4 x 4 matrix: X’ = HX. The matrix H represent-
ing the transformation is homogeneous and has 15 degrees of freedom. The degrees of
freedom follow from the 16 elements of the matrix less one for overall scaling.

As in the case of planar projective transformations, the map is a collineation (lines
are mapped to lines), which preserves incidence rel ations such as the intersection point
of aline with aplane, and order of contact.

65
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3.2 Representing and transfor ming planes, lines and quadrics

InIP3 points and planes are dual, and their representation and devel opment isanal ogous
to the point-line duality in IP2. Lines are self-dual in IP3.

3.2.1 Planes
A plane in 3-space may be written as

mX + MY + m3Z + my = 0. (3.2)

Clearly this equation is unaffected by multiplication by a non-zero scalar, so only the
three independent ratios {m; : m, : 73 : w4} of the plane coefficients are significant. It
follows that a plane has 3 degrees of freedom in 3-space. The homogeneous represen-
tation of the planeisthe 4-vector w = (71, mo, 73, m4) 7.

Homogenizing (3.1) by thereplacements X +— X /X4, Y +— Xo/Xy, Z — X3/X, gives

1 X1 + ToXg + M3X3 + TyXy = 0

or more concisely
TX=0 (3.2

which expresses that the point X is on the plane .

The first 3 components of 7t correspond to the plane normal of Euclidean geometry
— using inhomogeneous notation (3.2) becomes the familiar plane equation written in
3-vector notation asn.X + d = 0, wheren = (m,m,m3)", X = (X,Y,2)T, X4 = 1
and d = my. Inthisform d/||n|| isthe distance of the plane from the origin.

Join and incidencerelations. InIP? there are numerous geometric relations between
planes and points and lines. For example,

(i) A planeisdefined uniquely by the join of three points, or the join of aline and
point, in general position (i.e. the points are not collinear or incident with the
linein the latter case).

(if) Two distinct planes intersect in aunique line.
(iii) Three distinct planes intersect in a unique point.

These relations have algebraic representations which will now be developed in the
case of points and planes. The representations of the relations involving lines are not
as simple as those arising from 3D vector algebra of IP? (e.g. 1 = x x y), and are
postponed until line representations are introduced in section 3.2.2.

Three points define a plane.  Suppose three points X; are incident with the plane
7. Then each point satisfies (3.2) and thus w'X; = 0, ¢ = 1,...,3. Stacking these
equations into a matrix gives

X]
XJs | =o. (3.3)
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Since three points X1, X, and X3 in genera position are linearly independent, it fol-
lows that the 3 x 4 matrix composed of the points as rows has rank 3. The plane
7 defined by the points is thus obtained uniquely (up to scale) as the 1-dimensional
(right) null-space. If the matrix has only a rank of 2, and consequently the null-space
is 2-dimensional, then the points are collinear, and define a pencil of planes with the
line of collinear points as axis.

In IP2, where points are dual to lines, aline1 through two points x, y can similarly
be obtained as the null-space of the 2 x 3 matrix with x" and y " as rows. However, a
more convenient direct formulal = x x y is also available from vector algebra. In IP3
the anal ogous expression is obtained from properties of determinants and minors.

We start from the matrix M = [X, Xy, X5, X3] which is composed of a general point
X and the three points X; which define the plane 7. The determinant detM = 0 when
X lies on 7r since the point X is then expressible as alinear combination of the points
X;, i =1,...,3. Expanding the determinant about the column X we obtain

detM = X1Da3q4 — Xo D134 + X3D194 — X4 D193

where D, isthe determinant formed from the j £l rows of the 4 x 3 matrix [X;, X, X3].
Since det M = 0 for points on 7 we can then read off the plane coefficients as

™ = (D234, — D134, D124, —D123)T- (3.4)
Thisisthe solution vector (the null-space) of (3.3) above.
Example3.1. Suppose the three points defining the plane are

(3] - (4) - (1)

where X = (x,Y,2)T. Then

Y1 Yo Y3 Y1 —Ys Yo—Y3 Y3
Dus=|21 25 23 |=|21—25 Z5—2 23 |= (X1 —Xs) x (X — X)),
111 0 0 1

and similarly for the other components, giving
o ( ()~(1—)~(3) X (Xg-f(?}) >
™ = ~T,~ ~ .
—X; (X7 X Xg)
This is the familiar result from Euclidean vector geometry where, for example, the
plane normal is computed as (X; — X3) X (X3 — X3). JAN

Three planes define a point.  The development here is dual to the case of three
points defining a plane. The intersection point X of three planes 7r; can be computed
straightforwardly as the (right) null-space of the 3 x 4 matrix composed of the planes
asrows.

X =0. (3.5)
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N\

Fig. 3.1. A line may be specified by its points of intersection with two orthogonal planes. Each inter-
section point has 2 degrees of freedom, which demonstrates that a line in IP? has a total of 4 degrees of
freedom.

A direct solution for X, in terms of determinants of 3 x 3 submatrices, is obtained as
an analogue of (3.4), though computationally a numerical solution would be obtained
by algorithm A5.1(p589).

The two following results are direct analogues of their 2D counterparts.

Projective transformation. Under the point transformation X’ = HX, a plane trans-
formsas

' =H " (3.6)

Parametrized pointson a plane. The points X on the plane = may be written as
X = Mx (3.7)

where the columns of the 4 x 3 matrix M generate the rank 3 null-spaceof «T,i.e. 7w ™M =
0, and the 3-vector x (which is a point on the projective plane IP%) parametrizes points
ontheplane . Misnot unique, of course. Supposetheplaneism = (a,b,c,d)" andais
non-zero, then M" can be written asM" = [p | I3.3], wherep = (—=b/a, —c/a, —d/a)".

This parametrized representation is simply the analogue in 3D of aline 1 in IP?
defined as a linear combination of its 2D null-space as x = ua + Ab, wherelTa =
1"b = 0.

3.2.2 Lines

A line is defined by the join of two points or the intersection of two planes. Lines
have 4 degrees of freedom in 3-space. A convincing way to count these degrees of
freedom is to think of aline as defined by its intersection with two orthogonal planes,
asinfigure 3.1. The point of intersection on each planeis specified by two parameters,
producing atotal of 4 degrees of freedom for the line.

Lines are very awkward to represent in 3-space since a natural representation for an
object with 4 degrees of freedom would be a homogeneous 5-vector. The problem is
that a homogeneous 5 vector cannot easily be used in mathematical expressions to-
gether with the 4-vectors representing points and planes. To overcome this problem
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a number of line representations have been proposed, and these differ in their math-
ematical complexity. We survey three of these representations. In each case the rep-
resentation provides mechanisms for a line to be defined by: the join of two points,
a dual version where the line is defined by the intersection of two planes, and also a
map between the two definitions. The representations also enable join and incidence
relations to be computed, for example the point at which aline intersects a plane.

I. Null-space and span representation. This representation builds on the intuitive
geometric notion that alineisapencil (one-parameter family) of collinear points, andis
defined by any two of these points. Similarly, alineisthe axis of apencil of planes, and
is defined by the intersection of any two planesfrom the pencil. In both casesthe actua
points or planes are not important (in fact two points have 6 degrees of freedom and
are represented by two 4-vectors — far too many parameters). This notion is captured
mathematically by representing aline as the span of two vectors. Suppose A, B aretwo
(non-coincident) space points. Then the line joining these points is represented by the
span of the row space of the 2 x 4 matrix W composed of AT and BT as rows:

AT

W: BT

Then:

(i) Thespan of W' isthe pencil of points AA + ;B on theline.
(if) The span of the 2-dimensional right null-space of W is the pencil of planeswith
theline as axis.

It is evident that two other points, A’T and BT, on the line will generate a matrix W’
with the same span as W, so that the span, and hence the representation, is independent
of the particular points used to define it.

To prove the null-space property, suppose that P and Q are abasis for the null-space.
Then WP = 0 and consequently ATP = BTP = 0, so that P is a plane containing the
points A and B. Similarly, Q is a distinct plane also containing the points A and B.
Thus A and B lie on both the (linearly independent) planes P and Q, so the line defined
by W isthe plane intersection. Any plane of the pencil, with the line as axis, is given by
thespan \'P + 1/ Q.

The dua representation of aline as the intersection of two planes, P, Q, followsin
asimilar manner. The line is represented as the span (of the row space) of the 2 x 4
matrix W* composed of PT and QT asrows:

PT

W=
QT

with the properties

(i) The span of w*T isthe pencil of planes \'P + ;/Q with the line as axis.
(it) The span of the 2-dimensional null-space of W* is the pencil of points on the
line.
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The two representations are related by W* W' = WW*T = 05,5, Where 05,5 isa?2 x 2
null matrix.

Example3.2. The x-axisisrepresented as

000 1 . [oo0 10
wZ[lOOO] W_[()loo}

where the points A and B are here the origin and ideal point in the X-direction, and the
planes P and Q are the X Y- and X z-planes respectively. A

Join and incidence relations are a'so computed from null-spaces.

(i) The plane 7 defined by the join of the point X and line W is obtained from the

null-space of
W

If the null-space of M is 2-dimensional then X ison W, otherwise M = 0.

(if) Thepoint X defined by the intersection of thelinew with the plane 7 is obtained
from the null-space of
w*

If the null-space of M is 2-dimensional thenthelinew ison 7, otherwiseMX = 0.

These properties can be derived amost by inspection. For example, the first is equiva-
lent to three points defining a plane (3.3).

The span representation is very useful in practical numerical implementations where
null-spaces can be computed ssimply by using the SVD algorithm (see section A4.4-
(p585)) available with most matrix packages. The representation is also useful in es-
timation problems, where it is often not a problem that the entity being estimated is
over-parametrized (see the discussion of section 4.5(p110)).

[1. Plicker matrices. Herealineis represented by a4 x 4 skew-symmetric homo-
geneous matrix. In particular, the line joining the two points A, B is represented by the
matrix L with elements

lij = A;Bj — B;A;
or equivalently in vector notation as
L=AB" —BAT (3.8)
First afew properties of L:

(i) L hasrank 2. Its 2-dimensional null-space is spanned by the pencil of planes
with the line as axis (in fact Lw*T = 0, with 0 a4 x 2 null-matrix).
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(if) The representation has the required 4 degrees of freedom for aline. Thisis ac-
counted asfollows: the skew-symmetric matrix has 6 independent non-zero ele-
ments, but only their 5 ratios are significant, and furthermore because det L = 0
the elements satisfy a (Quadratic) constraint (see below). The net number of de-
grees of freedom isthen 4.

(iii) Therelation L. = ABT — BAT is the generalization to 4-space of the vector
product formulal = x x y of IP? for aline 1 defined by two points x,y all
represented by 3-vectors.

(iv) The matrix L is independent of the points A, B used to define it, since if a
different point C on the line is used, with C = A + B, then the resulting
matrix is

L = AC'—CA"=AAT +uB") — (A4 uB)AT
= AB" -BAT =L,

(v) Under the point transformation X’ = HX, the matrix transforms as L’ = HLH',
i.e. itisavalency-2 tensor (see appendix 1(p562)).

Example3.3. From (3.8) the x-axisis represented as

0 1 000 —1
0 0 000 0
L:O(1000)—0(0001):OOOO
1 0 100 0

where the points A and B are (as in the previous example) the origin and ideal point in
the x-direction respectively. AN

A dual Plucker representation L* is obtained for a line formed by the intersection of
two planesP, Q,

L*=PQ' — QP' (3.9)

and has similar properties to L. Under the point transformation X’ = HX, the matrix
L* transforms as L*' = H~TLH~!'. The matrix L* can be obtained directly from L by a
simple rewrite rule:

112 : Zlg : l14 : lgg : l42 : l34 = l§4 : lZQ : ZZS : ZLL : ZT?) : lT2 (310)

The correspondence ruleisvery simple: the indices of the dual and original component
awaysinclude all the numbers {1, 2, 3,4}, soif the original isij then the dual isthose
numbersof {1,2, 3,4} which arenot ij. For example 12 — 34.

Join and incidence properties are very nicely represented in this notation:

(i) The plane defined by the join of the point X and lineL is
T =L"X

andL*X = 0 if, and only if, X ison L.
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(if) The point defined by the intersection of the line L with the plane 7 is
X =1Lm
andLw = 0if,and only if, L ison 7.

The properties of two (or more) lines Ly, Ly, . .. can be obtained from the null-space
of the matrix M = [L;,Ls,,...]. For example if the lines are coplanar then M" has a
1-dimensional null-space corresponding to the plane 7 of the lines.

Example3.4. Theintersection of the x-axiswith the plane x = 1 isgivenby X = L=«
as

00 0 -1 1 1
«_l000 0 o] [o
1000 0 0 10
1 00 O -1 1
which is the inhomogeneous point (X, Y,z)T = (1,0,0)7. JAN

1. Plucker line coordinates. The Plucker line coordinates are the six non-zero
elements of the 4 x 4 skew-symmetric Pliicker matrix (3.8) L, namely!

£ - {l127113711471237l427l34}’ (311)

Thisis ahomogeneous 6-vector, and thusis an element of IP°. It follows from evaluat-
ing det L = 0 that the coordinates satisfy the equation

lLiglsa + liglag + l14lo3 = 0. (3.12)

A 6-vector £ only corresponds to alinein 3-space if it satisfies (3.12). The geometric
interpretation of this constraint isthat the lines of IP? define a (co-dimension 1) surface
in IP5 which is known as the Klein quadric, a quadric because the terms of (3.12) are
quadratic in the Plucker line coordinates.

Suppose two lines £, £ are the joins of the points A, B and A, B respectively. The
lines intersect if and only if the four points are coplanar. A necessary and sufficient
condition for this is that det[A, B, A,B] = 0. It can be shown that the determinant
expands as

det[A, B, A, ﬁ] = 112234 + Z12l:34 + 113542 + 513142 + 114523 + 514523
= (L|L). (3.13)

Since the Plucker coordinates are independent of the particular points used to define
them, the bilinear product (£|£) isindependent of the points used in the derivation and
only depends on thelines £ and £. Then we have

Result 3.5. Two lines £ and £ are coplanar (and thus intersect) if and only if (£|£) =
0.

This product appears in a number of useful formulae:

1 The element 142 is conventionally used instead of Io4 asit eliminates negatives in many of the subsequent formulage.
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(i) A 6-vector £ only representsalineinIP? if (£|£) = 0. Thisissimply repeating
the Klein quadric constraint (3.12) above.

(ii) Supposetwo lines £, £ aretheintersections of the planesP, Q and P, Q respec-
tively. Then

(L|£) = det[P,Q, P, Q]

and again the linesintersect if and only if (£|£) = 0.
(i) If £ istheintersection of two planesP and Q and L isthe join of two points A
and B, then

(£I£) = (PTA)(Q"B) — (Q"A)(PTB). (3.14)

Plucker coordinates are useful in algebraic derivations. They will be used in defining
the map from aline in 3-space to itsimage in chapter 8.

3.2.3 Quadricsand dual quadrics
A quadric isasurface in IP? defined by the equation

XX =0 (3.15)

where Q is a symmetric 4 x 4 matrix. Often the matrix Q and the quadric surface it
defines are not distinguished, and we will simply refer to the quadric Q.

Many of the properties of quadrics follow directly from those of conics in section
2.2.3(p30). To highlight afew:

(i) A quadric has 9 degrees of freedom. These correspond to the ten independent
elementsof a4 x 4 symmetric matrix less one for scale.

(if) Nine pointsin genera position define a quadric.

(i) If the matrix Q is singular, then the quadric is degenerate, and may be defined
by fewer points.

(iv) A quadric defines a polarity between a point and a plane, in a similar manner
to the polarity defined by a conic between a point and a line (section 2.8.1).
The plane w = QX isthe polar plane of X with respect to Q. In the case that Q
is non-singular and X is outside the quadric, the polar plane is defined by the
points of contact with Q of the cone of rays through X tangent to Q. If X lieson
Q, then QX isthe tangent planeto Q at X.

(v) The intersection of a plane 7« with a quadric Q is a conic C. Computing the
conic can be tricky because it requires a coordinate system for the plane. Recall
from (3.7) that a coordinate system for the plane can be defined by the comple-
ment spaceto w as X = Mx. Pointson 7 areon Q if X'QX = x"M'QMx = 0.
These points lie on aconic C, sincex'Cx = 0, with ¢ = MTQM.

(vi) Under the point transformation X’ = HX, a (point) quadric transforms as

"=H TQH L. (3.16)

The dual of aquadric is aso aquadric. Dual quadrics are equations on planes: the
tangent planes 7 to the point quadric Q satisfy 7w 7Q*m = 0, where Q* = adjoint Q,
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or Q! if Q isinvertible. Under the point transformation X’ = HX, a dual quadric
transforms as

Q' = HQ'H'. (3.17)

The algebra of imaging aquadric isfar ssmpler for adual quadric than a point quadric.
Thisisdetailed in chapter 8.

3.2.4 Classification of quadrics

Since the matrix, Q, representing a quadric is symmetric, it may be decomposed as
Q = UTDU where U isareal orthogonal matrix and D is areal diagonal matrix. Further,
by appropriate scaling of the rows of U, one may write Q = H'DH where D is diagonal
with entries equal to 0,1, or —1. We may further ensure that the zero entries of D
appear last along the diagonal, and that the +1 entries appear first. Now, replacement
of @ = H'DH by D is equivalent to a projective transformation effected by the matrix
H (see (3.16)). Thus, up to projective equivalence, we may assume that the quadric is
represented by a matrix D of the given simple form.

The signature of a diagonal matrix D, denoted (D), is defined to be the number of
+1 entries minus the number of —1 entries. This definition is extended to arbitrary
real symmetric matrices Q by defining o(Q) = o(D) such that @ = H'DH, where H is
area matrix. It may be proved that the signature is well defined, being independent
of the particular choice of H. Since the matrix representing a quadric is defined only
up to sign, we may assume that its signature is non-negative. Then, the projective type
of a quadric is uniquely determined by its rank and signature. This will alow us to
enumerate the different projective equivalence classes of quadrics.

A quadric represented by a diagonal matrix diag(d, ds, ds, d4) corresponds to a set
of points satisfying an equation d; X2 + dy Y2 + d3z% + ds7?> = 0. Onemay set T = 1 to
get an equation for the non-infinite points on the quadric. See table 3.1. Examples of
quadric surfaces are shown in figure 3.2 — figure 3.4.

Rank o Diagona Equation Realization
4 4 (1,1,1,1) X24+v24+2241=0 No real points
2 (1,1,1,-1) X2 +v24z22=1 Sphere
0 (1,1,-1,-1) X24+v2=2724+1 Hyperboloid of one sheet
3 3 (1,1,1,0) X24v2422=0 One point (0,0,0,1)"
1 (1,1,-1,0) X2 4+v2 =22 Cone at the origin
2 2 (1,1,0,0) x2+v2=0 Single line (z-axis)
0 (1,-1,0,0) X2 =vy? Two planes X = £Y
1 1 (1,0,0,0) x2=0 Theplanex = 0

Table 3.1. Categorization of point quadrics.
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Fig. 3.2. Non-ruled quadrics. This shows plots of a sphere, ellipsoid, hyperboloid of two sheets and
paraboloid. They are all projectively equivalent.

SN

Fig. 3.3. Ruled quadrics. Two examples of a hyperboloid of one sheet are given. These surfaces are
given by equations x? + Y2 = z2 + 1 and XY = Zz respectively, and are projectively equivalent. Note
that these two surfaces are made up of two sets of digjoint straight lines, and that each line from one set
meets each line from the other set. The two quadrics shown here are projectively (though not affinely)
equivalent.

Ruled quadrics. Quadrics fall into two classes — ruled and unruled quadrics. A
ruled quadric is one that contains a straight line. More particularly, as shown in
figure 3.3, the non-degenerate ruled quadric (hyperboloid of one sheet) contains two
families of straight lines called generators. For more properties of ruled quadrics, refer
to [Semple-79].

The most interesting of the quadrics are the two quadrics of rank 4. Note that these
two quadrics differ even in their topological type. The quadric of signature 2 (the
sphere) is (obviously enough) topologically a sphere. On the other hand, the hyper-
boloid of 1 sheet is not topologically equivalent (homeomorphic) to a sphere. In fact,
it istopologically atorus (topologically equivalent to S x S1). This gives the clearest
indication that they are not projectively equivalent.

3.3 Twisted cubics

The twisted cubic may be considered to be a 3-dimensional analogue of a 2D conic
(although in other ways it is a quadric surface which is the 3-dimensiona analogue of
a 2D conic.)
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N7

Fig. 3.4. Degenerate quadrics. The two most important degenerate quadrics are shown, the cone and
two planes. Both these quadrics are ruled. The matrix representing the cone has rank 3, and the null-
vector represents the nodal point of the cone. The matrix representing the two (non-coincident) planes
has rank 2, and the two generators of the rank 2 null-space are two points on the intersection line of the
planes.

A conic in the 2-dimensional projective plane may be described as a parametrized
curve given by the equation

T 1 ap + CL12¢9 + CL136)2
To =A|l 60 = Q91 + ag96 + CL2392 (318)
I3 92 asy + &329 + a3392

where A isanon-singular 3 x 3 matrix.
In an analogous manner, a twisted cubic is defined to be a curve in IP? given in
parametric form as

X1 1 a1 + a120 + a136” + a146°
Xo | O | | a2+ axl+ a30® + ag 6’
X3 =4 0? o asy + CL329 + a3302 + a3493 (319)
X4 03 a4y + CL429 + (l43€2 + CL4493

where A isanon-singular 4 x 4 matrix.

Since atwisted cubic is perhaps an unfamiliar object, various views of the curve are
shown in figure 3.5. In fact, atwisted cubic is a quite benign space curve.

Properties of a twisted cubic. Let ¢ be anon-singular twisted cubic. Then c is not
contained within any plane of IP?; it intersectsageneral plane at three distinct points. A
twisted cubic has 12 degrees of freedom (counted as 15 for the matrix A, less 3 for a1D
projectivity on the parametrization ¢, which leaves the curve unaltered). Requiring the
curve to pass through a point X places two constraintson c, since X = A(1,6, 0%, 0%)T
is three independent ratios, but only two constraints once 6 is eliminated. Thus, there
isaunique c through six pointsin genera position. Finally, al non-degenerate twisted
cubics are projectively equivalent. Thisis clear from the definition (3.19): a projective
transformation A~! maps c to the standard form c(¢') = (1,6,0%,0")T, and since
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.

Fig. 3.5. Various views of the twisted cubic (¢3,¢2,¢,)". The curve is thickened to a tube to aid in
visualization.

all twisted cubics can be mapped to this curve, it follows that all twisted cubics are
projectively equivalent.

A classification of the various specia cases of a twisted cubic, such as a conic and
coincident line, are given in [Semple-79]. The twisted cubic makes an appearance as
the horopter for two-view geometry (chapter 9), and plays the centra role in defining
the degenerate set for camera resectioning (chapter 22).

3.4 Thehierarchy of transformations

There are a number of specializations of a projective transformation of 3-space which
will appear frequently throughout this book. The specializations are analogous to the
strata of section 2.4(p37) for planar transformations. Each specialization is a sub-
group, and is identified by its matrix form, or equivalently by itsinvariants. These are
summarized in table 3.2. Thistable lists only the additional properties of the 3-space
transformations over their 2-space counterparts — the transformations of 3-space aso
have the invariants listed in table 2.1(p44) for the corresponding 2-space transforma-
tions.

The 15 degrees of freedom of a projective transformation are accounted for as seven
for asimilarity (three for rotation, three for translation, one for isotropic scaling), five
for affine scalings, and three for the projective part of the transformation.

Two of the most important characterizations of these transformations are parallelism
and angles. For example, after an affine transformation lines which were originally
paralel remain parallel, but angles are skewed; and after a projective transformation
paralelismislost.

In the following we briefly describe a decomposition of a Euclidean transformation
that will be useful when discussing special motions later in this book.

3.4.1 The screw decomposition

A Euclidean transformation on the plane may be considered as a specidization of a
Euclidean transformation of 3-space with the restrictions that the translation vector t
liesin the plane, and therotation axisis perpendicular to the plane. However, Euclidean
actions on 3-space are more general than this because the rotation axis and translation
are not perpendicular in general. The screw decomposition enables any Euclidean
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Group Matrix Distortion Invariant properties
_— Intersection and tangency of sur-
At ) - .
TSO({I?)(f;tlve [ VT } facesin contact. Sign of Gaussian
curvature.
, Parallelism of planes, volume ra-
'i‘sz('jn? [ OAT J; } tios, centroids. The plane at infin-
0 ity, 7, (See section 3.5).

The absolute conic, Q,

Similarity sR t
(see section 3.6).

7 dof

Volume.

Euclidean R t
6 dof

Table 3.2. Geometric propertiesinvariant to commonly occurring transformations of 3-space. The
matrix A is an invertible 3 x 3 matrix, R is a 3D rotation matrix, t = (tx,ty,tz)" a 3D trandation, v
a general 3-vector, v a scalar, and 0 = (0,0,0)" a null 3-vector. The distortion column shows typical
effects of the transformations on a cube. Transformations higher in the table can produce all the actions
of the ones below. These range from Euclidean, where only translations and rotations occur, to projective
where five points can be transformed to any other five points (provided no three points are collinear, or
four coplanar).

action (a rotation composed with a translation) to be reduced to a situation almost as
simple asthe 2D case. The screw decomposition is that

Result 3.6. Any particular translation and rotation is equivalent to a rotation about a
screw axis together with a translation along the screw axis. The screw axisis parallel
to the rotation axis.

In the case of atrandation and an orthogonal rotation axis (termed planar motion), the
motion is equivalent to arotation alone about the screw axis.

Proof. We will sketch a constructive geometric proof that can easily be visualized.
Consider first the 2D case — a Euclidean transformation on the plane. It is evident
from figure 3.6 that a screw axis exists for such 2D transformations. For the 3D case,
decompose the tranglation t into two componentst = t + t_ , parallel and orthogonal
respectively to the rotation axis direction (t; = (t.a)a, t; =t — (t.a)a).

Then the Euclidean motion is partitioned into two parts: first arotation about the screw
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Fig. 3.6. 2D Euclidean motion and a“screw” axis. (a) Theframe {x,y} undergoesatrandation t
and a rotation by 6 to reach the frame {z’,3’}. The motion is in the plane orthogonal to the rotation
axis. (b) Thismotion is equivalent to a single rotation about the screw axis S. The screw axislies on the
perpendicular bisector of the line joining corresponding points, such that the angle between the lines
joining S to the corresponding points is #. In the figure the corresponding points are the two frame
origins and 6 has the value 90°.

axis \ S
O/
S tH
0 t o] o o]
a b

Fig. 3.7. 3D Euclidean motion and the screw decomposition. Any Euclidean rotation R and trans-
lation t may be achieved by (a) a rotation about the screw axis, followed by (b) a translation along the
screw axis by t)|. Here a isthe (unit) direction of the rotation axis (so that Ra = a), and t is decomposed
ast =t + t_, which are vector components parallel and orthogonal respectively to the rotation axis
direction The point S is closest to O on the screw axis (so that the line from S to O is perpendicular to
thedirection of a). Smilarly S’ is the point on the screw axis closest to O’.

axis, which coverstherotation and t , ; second atranslation by t|, along the screw axis.
The complete motion isillustrated in figure 3.7.

The screw decomposition can be determined from the fixed points of the 4 x 4 matrix
representing the Euclidean transformation. Thisideais examined in the exercises at the
end of the chapter.

3.5 Theplane at infinity

In planar projective geometry identifying the line at infinity, 1., allowed affine prop-
erties of the plane to be measured. Identifying the circular points on 1., then allowed
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the measurement of metric properties. In the projective geometry of 3-space the corre-
sponding geometric entities are the plane at infinity, ., and the absolute conic, Q.

The plane at infinity has the canonical position ., = (0,0,0,1)T in affine 3-space.
It contains the directions D = (X1, X2, X3,0)T, and enables the identification of affine
properties such as parallelism. In particular:

e Two planes are paralld if, and only if, their line of intersectionison m .
e A lineisparallel to another line, or to aplane, if the point of intersectionison o .

We then have in IP3 that any pair of planes intersect in a line, with paralel planes
intersecting in aline on the plane at infinity.

The plane 7, IS a geometric representation of the 3 degrees of freedom required
to specify affine properties in a projective coordinate frame. In loose terms, the plane
at infinity is afixed plane under any affine transformation, but “sees’ (is moved by) a
projective transformation. The 3 degrees of freedom of 7, thus measure the projective
component of a genera homography — they account for the 15 degrees of freedom of
this general transformation compared to an affinity (12 dof). More formally:

Result 3.7. The plane at infinity, 7., is a fixed plane under the projective transforma-
tion H if, and only if, H is an affinity.

The proof is the analogue of the derivation of result 2.17(p48). It is worth clarifying
two points:

(i) Theplane 7, is, in general, only fixed as a set under an affinity; it is not fixed
poi ntwise.

(i) Under a particular affinity (for example a Euclidean motion) there may be
planes in addition to 7, which are fixed. However, only m, is fixed under
any affinity.

These points are illustrated in more detail by the following example.
Example3.8. Consider the Euclidean transformation represented by the matrix

cosf) —sinf 0 O

R O sinff  cosf® 0 O
HE_[OT 1]_ 0 0 10 (3:20)
1

0 0 0

This is a rotation by ¢ about the z-axis with a zero trandation (it is a planar screw
motion, see section 3.4.1). Geometrically it is evident that the family of X -planes or-
thogonal to the rotation axis are simply rotated about the z-axis by this transformation.
This means that there is a pencil of fixed planes orthogonal to the z-axis. The planes
are fixed as sets, but not pointwise as any (finite) point (not on the axis) is rotated in
horizonta circles by this Euclidean action. Algebraically, the fixed planes of H are the
eigenvectorsof HT (refer to section 2.9). Inthiscasethe eigenvaluesare {e?, e 1,1}
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and the corresponding eigenvectors of H! are

1 1 0 0
Bi=| | By=| ' | Bs= 0 E, = 0
0 0 1 0
0 0 0 1

The eigenvectors E; and E, do not correspond to real planes, and will not be discussed
further here. The eigenvectors E; and E4 are degenerate. Thus there is a pencil of
fixed planes which is spanned by these eigenvectors. The axis of this pencil isthe line
of intersection of the the planes (perpendicular to the z-axis) with 7., and the pencil
includes . JAN

The example also illustrates the connection between the geometry of the projective
plane, P2, and projective 3-space, IP3. A plane 7 intersects ., in aline which is
the line at infinity, 1., of the plane . A projective transformation of IP? induces a
subordinate plane projective transformation on 7.

Affine propertiesof areconstruction. Inlater chapters on reconstruction, for exam-
ple chapter 10, it will be seen that the projective coordinates of the (Euclidean) scene
can be reconstructed from multiple views. Once 7, isidentified in projective 3-space,
i.e. its projective coordinates are known, it is then possible to determine affine prop-
erties of the reconstruction such as whether geometric entities are parallel — they are
parallel if they intersect on 7.

A more algorithmic approach is to transform IP? so that the identified 7, is moved
to its canonical position at w., = (0,0,0,1)". After this mapping we then have the
situation that the Euclidean scene, where 7, has the coordinates (0,0,0,1)T, and our
reconstruction are related by a projective transformation that fixes 7, at (0,0,0,1)T. It
follows from result 3.7 that the scene and reconstruction are related by an affine trans-
formation. Thus affine properties can now be measured directly from the coordinates
of the entities.

3.6 Theabsolute conic

The absolute conic, Q.., isa(point) conic on 7. Inametric framem,, = (0,0,0,1)T,
and points on Q, satisfy

2 2 2
X2 4+ X2 4 x2 } o (3.21)

X4

Note that two equations are required to define Q.
For directions on 7, (i.e. pointswith x, = 0) the defining equation can be written

(X1, X2, X3)I(X1, X2, X3)T =0

so that Q. corresponds to a conic C with matrix C = I. It isthus a conic of purely
imaginary points on .
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The conic 9, is a geometric representation of the 5 additional degrees of freedom
that are required to specify metric properties in an affine coordinate frame. A key
property of Q. isthat it is a fixed conic under any similarity transformation. More
formally:

Result 3.9. Theabsolute conic, Q. isa fixed conic under the projective transformation
Hif, and only if, H isa similarity transformation.

Proof. Since the absolute conic lies in the plane at infinity, a transformation fixing it
must fix the plane at infinity, and hence must be affine. Such atransformation is of the

form
At

Restricting to the plane at infinity, the absolute conic is represented by the matrix 15,3,
and sinceitisfixed by H,, onehasA~TIA~! = I (uptoscale), and taking inverses gives
AAT = I. This meansthat A is orthogonal, hence a scaled rotation, or scaled rotation
with reflection. This completes the proof.

Even though Q.. does not have any real points, it shares the properties of any conic —
such asthat alineintersects a conic in two points; the pole—polar relationship etc. Here
are afew particular properties of Q.:

(i) 2 isonly fixed as a set by ageneral similarity; it isnot fixed pointwise. This
means that under a similarity a point on Q,, may travel to another point on Q.,,
but it is not mapped to a point off the conic.

(ii) All circlesintersect Q.. in two points. Suppose the support plane of the circle
is7r. Then 7 intersects 7., in aline, and this line intersects Q. in two points.
These two points are the circular points of 7.

(iii) All spheresintersect 7. in Q..

Metric properties. Once Q. (and its support plane m.,) have been identified in
projective 3-space then metric properties, such as angles and relative lengths, can be
measured.

Consider two lines with directions (3-vectors) d; and d,. The angle between these
directions in a Euclidean world frameis given by

cosf = (dido) : (3.22)
J(dTdy)(d]dy)
This may be written as
cosf = (d] 2cdo) (3.23)
V(T2 ) (A Qo)

whered; and d, are the points of intersection of thelineswith the plane 7, containing
the conic 9., and Q. is the matrix representation of the absolute conic in that plane.
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Fig. 3.8. Orthogonality and Q.. (&) On 7, orthogonal directionsd;, d, are conjugate with respect
10 Q. (b) A plane normal direction d and the intersection line1 of the plane with 7., arein pole—polar
relation with respect to Q.

The expression (3.23) reduces to (3.22) in a Euclidean world frame where 0, = 1.
However, the expression is valid in any projective coordinate frame as may be verified
from the transformation properties of points and conics (see (iv)(b) on page 63).

There is no simple formula for the angle between two planes computed from the
directions of their surface normals.

Orthogonality and polarity. We now give a geometric representation of orthogo-
nality in a projective space based on the absolute conic. The main device will be the
pole—polar relationship between a point and line induced by a conic.

Animmediate consequence of (3.23) isthat two directionsd; and d, are orthogonal
if d]Q,.d, = 0. Thus orthogonality is encoded by conjugacy with respect to Q... The
great advantage of thisis that conjugacy is a projective relation, so that in a projective
frame (obtained by a projective transformation of Euclidean 3-space) directions can
be identified as orthogonal if they are conjugate with respect to Q.. in that frame (in
genera the matrix of Q.. isnot I in aprojective frame). The geometric representation
of orthogonality is shown in figure 3.8.

This representation is helpful when considering orthogonality between rays in a
camera, for example in determining the normal to a plane through the camera cen-
tre (see section 8.6(p213)). If image points are conjugate with respect to the image of
Q. then the corresponding rays are orthogonal .

Again, a more algorithmic approach is to projectively transform the coordinates so
that Q.. is mapped to its canonical position (3.21), and then metric properties can be
determined directly from coordinates.

3.7 Theabsolute dual quadric

Recall that Q. is defined by two equations — it is a conic on the plane at infinity. The
dual of the absolute conic Q. isadegenerate dual quadricin 3-space called the absolute
dual quadric, and denoted Q. Geometrically Q’_ consists of the planes tangent to Q..,
so that Q. isthe “rim” of Q%,. Thisiscalled arimquadric. Think of the set of planes
tangent to an ellipsoid, and then squash the ellipsoid to a pancake.

Algebraicaly Q}_ isrepresented by a4 x 4 homogeneous matrix of rank 3, whichin
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metric 3-space has the canonical form

. I 0

We will show that any plane in the dual absolute quadric envelope is indeed tangent
t0 Q.., so the Q?_ istruly adua of Q... Consider aplanerepresented by m = (v, k)T.
This plane is in the envelope defined by Q*_ if and only if 7#7Q*_ m = 0, which given
the form (3.24) is equivalent to vTv = 0. Now, (see section 8.6(p213)) v represents
the line in which the plane (v, k)T meets the plane at infinity. Thisline is tangent to
the absolute conic if and only if vTIv = 0. Thus, the envelope of Q7 is made up of
just those planes tangent to the absolute conic.

Since this is an important fact, we consider it from another angle. Consider the ab-
solute conic asthe limit of a series of squashed ellipsoids, namely quadrics represented
by the matrix Q = diag(1,1,1,k). Ask — oo, these quadrics become increasingly
close to the plane at infinity, and in the limit the only points they contain are the points
(X1, X2, X3,0)T with X3 + X3 + x2 = 0, that is points on the absolute conic. However,
the dual of Q isthe quadric @* = Q! = diag(1, 1,1, k'), which in the limit becomes
the absolute dual quadric Q’, = diag(1, 1, 1,0).

Thedual quadric Q% isadegenerate quadric and has 8 degrees of freedom (asymmet-
ric matrix has 10 independent elements, but the irrelevant scale and zero determinant
condition each reduce the degrees of freedom by 1). It is a geometric representation of
the 8 degrees of freedom that are required to specify metric properties in a projective
coordinate frame. Q% has a significant advantage over Q. in algebraic manipulations
because both 7, and Q. are contained in a single geometric object (unlike ., which
requires two equations (3.21) in order to specify it). In the following we give its three
most important properties.

Result 3.10. The absolute dual quadric, Q?_, is fixed under the projective transforma-
tionH if, and only if, Hisa similarity.

Proof. This follows directly from the invariance of the absolute conic under a simi-
larity transform, since the planar tangency relationship between Q% and Q. istransfor-
mation invariant. Nevertheless, we give an independent direct proof.

Since Q% isadual quadric, it transforms according to (3.17—74), so it isfixed under H
if and only if Q. = HQ*_H'. Applying this with an arbitrary transform

At
= i)

o o) = [ kLo o]l i

| AAT Av
T VvIAT vy

we find
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which must be true up to scale. By inspection, this equation holdsif and only if v =0
and A is ascaled orthogonal matrix (scaling, rotation and possible reflection). In other
words, H isasimilarity transform.

Result 3.11. The plane at infinity 7, is the null-vector of Q7.

Thisis easily verified when Q% has its canonical form (3.24) in a metric frame since
then, with . = (0,0,0,1)", Q*_ 7. = 0. This property holds in any frame as may
be readily seen agebraically from the transformation properties of planes and dual
quadrics: if X’ = HX, thenQ*. = HQ* HT, 7/ =H "7, and

Q5w = (HQ3 HH T = HQS oo = 0.

Result 3.12. The angle between two planes 7r; and 75, is given by

TA*
cosf = 1 Qoo . (3.25)
Jrlam) (rlQs m)
Proof. Consider two planes with Euclidean coordinates w; = (n/,d;)T,

wy = (nJ,dy)". In aEuclidean frame, Q% has the form (3.24), and (3.25) reduces
to

n/n,

J/(nn;) (nIn)

which is the angle between the planes expressed in terms of a scalar product of their
normals.
If the planes and Q% are projectively transformed, (3.25) will still determine the angle
between planes due to the (covariant) transformation properties of planes and dua
guadrics.

cosf =

The details of the last part of the proof are left as an exercise, but are a direct 3D
analogue of the derivation of result 2.23(p54) on the angle between two lines in P2
computed using the dual of the circular points. Planesin IP? are the analogue of lines
in IP?, and the absolute dual quadric is the analogue of the dual of the circular points.

3.8 Closure
3.8.1 Theliterature

The textbooks cited in chapter 2 are also relevant here. See also [Boehm-94] for agen-
eral background from the perspective of descriptive geometry, and Hilbert and Cohn-
Vossen [Hilbert-56] for many clearly explained properties of curves and surfaces.

An important representation for points, lines and planes in IP3, which is omitted
in this chapter, is the Grassmann—Cayley algebra. In this representation geometric
operations such as incidence and joins are represented by a “ bracket algebra” based on
matrix determinants. A good introduction to this area is given by [Carlsson-94], and
its application to multiple view tensorsisillustrated in [ Triggs-95].
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Faugeras and Maybank [Faugeras-90] introduced Q. into the computer vision liter-
ature (in order to determine the multiplicity of solutions for relative orientation), and
Triggsintroduced Q% in [Triggs-97] for use in auto-calibration.

3.8.2 Notesand exercises
(i) Plucker coordinates.

(a) Using Plucker line coordinates, £, write an expression for the point of
intersection of aline with a plane, and the plane defined by a point and
aline.

(b) Now derive the condition for a point to be on aline, and aline to be on
aplane.

(c) Show that parallel planesintersectinalineon mr... Hint, start from (3.9—
p71) to determine the line of intersection of two parallel planesL*.

(d) Show that parallel linesintersect on 7.

(ii) Projective transformations. Show that a (real) projective transformation of
3-space can map an ellipsoid to a paraboloid or hyperboloid of two sheets, but
cannot map an ellipsoid to a hyperboloid of one sheet (i.e. a surface with redl
rulings).

(iif) Screw decomposition. Show that the 4 x 4 matrix representing the Euclidean
transformation {R, t} (with a the direction of the rotation axis, i.e. Ra = a) has
two complex conjugate eigenvalues, and two equal rea eigenvalues, and the
following eigenvector structure:

(@) if aisperpendicular to t, then the eigenvectors corresponding to the redl
eigenvalues are distinct;

(b) otherwise, the eigenvectors corresponding to the real eigenvalues are
coincident, and on 7 ..

(E.g. choose simple cases such as (3.20), another case is given on page 495).
In thefirst case the two real points corresponding to the real eigenvalues define
aline of fixed points. Thisis the screw axis for planar motion. In the second
case, the direction of the screw axisis defined, but it isnot aline of fixed points.
What do the eigenvectors corresponding to the complex eigenval ues represent?
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Estimation — 2D Projective Transformations

In this chapter, we consider the problem of estimation. In the present context this
will be taken to mean the computation of some transformation or other mathematical
quantity, based on measurements of some nature. This definition is somewhat vague,
so to make it more concrete, here are a number of estimation problems of the type that
we would like to consider.

(i) 2D homography. Given a set of points x; in IP? and a corresponding set of

points x; likewise in IP2, compute the projective transformation that takes each
x; to x. In apractical situation, the points x; and x; are points in two images
(or the same image), each image being considered as a projective plane IP2.

(if) 3D to 2D camera projection. Given a set of points X; in 3D space, and a set
of corresponding points x; in an image, find the 3D to 2D projective mapping
that maps X; to x;. Such a 3D to 2D projection is the mapping carried out by a
projective camera, as discussed in chapter 6.

(ili) Fundamental matrix computation. Given a set of points x; in one image,
and corresponding points x; in another image, compute the fundamental matrix
F consistent with these correspondences. The fundamental matrix, discussed
in chapter 9, isasingular 3 x 3 matrix F satisfying x;TFx; = 0 for all .

(iv) Trifocal tensor computation. Given a set of point correspondences x; «
x; < X, across three images, compute the trifocal tensor. The trifocal tensor,
discussed in chapter 15, isatensor 77" relating points or linesin three views.

These problems have many featuresin common, and the considerations that relate to
one of the problems are also relevant to each of the others. Therefore, in this chapter,
the first of these problems will be considered in detail. What we learn about ways of
solving this problem will teach us how to proceed in solving each of the other problems
aswell.

Apart from being important for illustrative purposes, the problem of estimating 2D
projective transformations is of importance in its own right. We consider a set of point
correspondences x; < x; between two images. Our problem is to compute a3 x 3
matrix H such that Hx,; = x for each i.

87
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Number of measurements required. The first question to consider is how many
corresponding points x; < x; are required to compute the projective transformation H.
A lower bound is available by a consideration of the number of degrees of freedom and
number of constraints. On the one hand, the matrix H contains 9 entries, but is defined
only up to scale. Thus, the total number of degrees of freedom in a 2D projective trans-
formationis8. On the other hand, each point-to-point correspondence accounts for two
constraints, since for each point x; in the first image the two degrees of freedom of the
point in the second image must correspond to the mapped point Hx;. A 2D point has
two degrees of freedom corresponding to the = and y components, each of which may
be specified separately. Alternatively, the point is specified as a homogeneous 3-vector,
which also has two degrees of freedom since scaleis arbitrary. As aconsequence, itis
necessary to specify four point correspondences in order to constrain H fully.

Approximatesolutions. It will be seenthat if exactly four correspondences are given,
then an exact solution for the matrix H is possible. Thisisthe minimal solution. Such
solutions are important as they define the size of the subsets required in robust estima-
tion algorithms, such as RANSAC, described in section 4.7. However, since points are
measured inexactly (“noise”), if more than four such correspondences are given, then
these correspondences may not be fully compatible with any projective transformation,
and one will be faced with the task of determining the “best” transformation given the
data. Thiswill generally be done by finding the transformation H that minimizes some
cost function. Different cost functions will be discussed during this chapter, together
with methods for minimizing them. There are two main categories of cost function:
those based on minimizing an algebraic error; and those based on minimizing a geo-
metric or statistical image distance. These two categories are described in section 4.2.

The Gold Standard algorithm. There will usually be one cost function which is
optimal in the sense that the H that minimizes it gives the best possible estimate of the
transformation under certain assumptions. The computational algorithm that enables
this cost function to be minimized is called the “Gold Standard” algorithm. The results
of other algorithms are assessed by how well they compare to this Gold Standard. In
the case of estimating a homography between two views the cost function is (4.8), the
assumptions for optimality are given in section 4.3, and the Gold Standard is algorithm
4.3(p114).

4.1 TheDirect Linear Transformation (DLT) algorithm

We begin with asimple linear agorithm for determining H given a set of four 2D to 2D
point correspondences, x; < x;. Thetransformation isgiven by the equation x; = Hx;.
Note that thisis an equation involving homogeneous vectors; thus the 3-vectors x; and
Hx; are not equal, they have the same direction but may differ in magnitude by a non-
zero scale factor. The equation may be expressed in terms of the vector cross product
asx; x Hx; = 0. Thisform will enable asimple linear solution for H to be derived.
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If the j-th row of the matrix H is denoted by h’T, then we may write

thXi
HXi = h2TXi .
hBTXi

Writing x), = («, 4}, w})T, the cross product may then be given explicitly as

yih3Tx; — wh?Tx;
/ _ 'TalT /11,3T
x;, x Hx; = | wh''x; —2h’'x; |.

L2T 1T
r;h*'x;, —yh' 'x;

Sinceh’Tx; = x[h/ for j = 1,..., 3, this gives a set of three equations in the entries
of H, which may be written in the form
o7 —wix] yx] h!
wix] 0T —aix] h? | =0. (4.1)
—yix]  aix] o’ h3

These equations have theform A;h = 0, where A; isa3 x 9 matrix, and h is a 9-vector
made up of the entries of the matrix H,

h! hi ho hs
h=| h? |, H=| ha hs hg
h? hy hg hg

with h; the i—th element of h. Three remarks regarding these equations are in order
here.

(4.2)

(i) The equation A;h = 0 is an equation linear in the unknown h. The matrix
elements of A; are quadratic in the known coordinates of the points.

(if) Although there are three equationsin (4.1), only two of them are linearly inde-
pendent (since the third row is obtained, up to scale, from the sum of x} times
the first row and y; times the second). Thus each point correspondence gives
two equations in the entries of H. It is usual to omit the third equation in solv-
ing for H ([Sutherland-63]). Then (for future reference) the set of equations

becomes
or —w'xT y’XT h;
wixT or ST ] 33 =0. (4.3)
Thiswill be written
Ah=0

where A; isnow the 2 x 9 matrix of (4.3).

(iii) Theequationshold for any homogeneous coordinate representation (%, v/, w!) "
of the point x;. One may choose w, = 1, which means that (z/,v.) are the
coordinates measured in the image. Other choices are possible, however, as
will be seen |ater.
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Solving for H

Each point correspondence gives rise to two independent equations in the entries of H.
Given a set of four such point correspondences, we obtain a set of equations Ah = 0,
where A isthe matrix of equation coefficients built from the matrix rows A, contributed
from each correspondence, and h is the vector of unknown entries of H. We seek a
non-zero solution h, since the obvious solution h = 0 is of no interest to us. If (4.1) is
used then A has dimension 12 x 9, and if (4.3) the dimension is 8 x 9. In either case
A hasrank 8, and thus has a 1-dimensional null-space which provides a solution for h.
Such a solution h can only be determined up to a non-zero scale factor. However, H is
in genera only determined up to scale, so the solution h gives the required H. A scale
may be arbitrarily chosen for h by arequirement on itsnorm such as ||h| = 1.

4.1.1 Over-determined solution

If more than four point correspondences x; < x; are given, then the set of equations
Ah = 0 derived from (4.3) is over-determined. If the position of the points is exact
then the matrix A will still have rank 8, a one dimensional null-space, and there is an
exact solution for h. Thiswill not be the case if the measurement of image coordinates
is inexact (generally termed noise) — there will not be an exact solution to the over-
determined system Ah = 0 apart from the zero solution. Instead of demanding an
exact solution, one attempts to find an approximate solution, namely a vector h that
minimizes a suitable cost function. The question that naturally arises then is. what
should be minimized? Clearly, to avoid the solution h = 0 an additional constraint is
required. Generally, a condition on the norm is used, such as ||h|| = 1. The value of
the norm is unimportant since H is only defined up to scale. Given that thereis no exact
solution to Ah = 0, it seems natural to attempt to minimize the norm ||Ah|| instead,
subject to the usual constraint, ||h|| = 1. Thisisidentica to the problem of finding
the minimum of the quotient ||Ah||/||h||. Asshown in section A5.3(p592) the solution
is the (unit) eigenvector of ATA with least eigenvalue. Equivalently, the solution is the
unit singular vector corresponding to the smallest singular value of A. The resulting
algorithm, known as the basic DLT algorithm, is summarized in algorithm 4.1.

4.1.2 Inhomogeneous solution

An aternative to solving for h directly as a homogeneous vector is to turn the set of
equations (4.3) into ainhomogeneous set of linear equations by imposing a condition
h; = 1 for some entry of the vector h. Imposing the condition /; = 1 isjustified by
the observation that the solution is determined only up to scale, and this scale can be
chosen such that h; = 1. For example, if the last element of h, which corresponds to
Hss, is chosen as unity then the resulting equations derived from (4.3) are

/ / / / / /
0 0 0 —zw;, —yw;, —ww, TY; YiY; fo [ Wi
!/ / / / / - /

TiWw;  Yw;  ww; 0 0 0 —TT; Y, w; T,

where h is an 8-vector consisting of the first 8 components of h. Concatenating the
equations from four correspondences then generates a matrix equation of the form
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Objective

Given n > 4 2D to 2D point correspondences {x; < x.}, determine the 2D homography
matrix H such that x; = Hx;.

Algorithm

(i) For each correspondence x; « x; compute the matrix A; from (4.1). Only thefirst two
rows need be used in general.

(ii) Assemblethen 2 x 9 matrices A; into asingle2n x 9 matrix A.

(iii) Obtain the SVD of A (section A4.4(p585)). The unit singular vector corresponding to
the smallest singular value is the solution h. Specifically, if A = UDVT with D diagonal
with positive diagonal entries, arranged in descending order down the diagonal, then h
isthelast column of V.

(iv) Thematrix H isdetermined from h asin (4.2).

Algorithm 4.1. The basic DLT for H (but see algorithm 4.2(p109) which includes normalization).

Mh = b, where M has 8 columns and b is an 8-vector. Such an equation may be solved
for h using standard techniques for solving linear equations (such as Gaussian elimina-
tion) in the case where M contains just 8 rows (the minimum case), or by |least-squares
techniques (section A5.1(p588)) in the case of an over-determined set of equations.
However, if in fact h; = 0 is the true solution, then no multiplicative scale k& can
exist such that kh; = 1. This means that the true solution cannot be reached. For this
reason, this method can be expected to lead to unstable results in the case where the
chosen £ is close to zero. Consequently, this method is not recommended in general.

Example4.l. 1t will be shown that hg = Hs3 is zero if the coordinate origin is mapped
to a point at infinity by H. Since (0,0,1)" represents the coordinate origin x,, and
aso (0,0,1)T representsthe line at infinity 1, this condition may be written as1"Hx, =
(0,0,1)H(0,0,1) = 0, thus Hz3 = 0. In a perspective image of a scene plane the line
at infinity isimaged as the vanishing line of the plane (see chapter 8), for example the
horizon isthe vanishing line of the ground plane. It is not uncommon for the horizon to
pass through the image centre, and for the coordinate origin to coincide with the image
centre. In this case the mapping that takes the image to the world plane mapsthe origin
to the line at infinity, so that the true solution has Hy3 = hg = 0. Consequently, an
hg = 1 normalization can be a serious failing in practical situations. A

4.1.3 Degenerate configurations

Consider aminimal solution in which a homography is computed using four point cor-
respondences, and suppose that three of the pointsx, x», x3 are collinear. The question
is whether this is significant. If the corresponding points x, x/, x5 are also collinear
then one might suspect that the homography is not sufficiently constrained, and there
will exist afamily of homographies mapping x; to x;. On the other hand, if the corre-
sponding points x}, x5, x5 are not collinear then clearly there can be no transformation
H taking x; to x}, since a projective transformation must preserve collinearity. Never-
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thelessthe set of eight homogeneous equations derived from (4.3) must have anon-zero
solution, giving riseto amatrix H. How is this apparent contradiction to be resolved?

The equations (4.3) express the condition that x; x Hx; = 0 fori = 1,...,4, and
so the matrix H found by solving the system of 8 equations will satisfy this condition.
Supposethat x;, . . . , x5 are collinear and let 1 bethelinethat they lieon, sothat 17x; =
Ofori=1,...,3. Now defineH* = x/1T, whichisa3 x 3 matrix of rank 1. Inthiscase,
one verifiesthat H*x; = x(1"x;) = 0 fori = 1,...,3, sincel'x; = 0. On the other
hand, H*x, = x/(1"x4) = kx/. Therefore the condition x x H*x; = 0 is satisfied for
al i. Note that the vector h* corresponding to H* isgiven by h*T = (2,17, 417, wylT),
and one easily verifies that this vector satisfies (4.3) for al i. The problem with this
solution for H* is that H* isarank 1 matrix and hence does not represent a projective
transformation. As a consequence the points H*x; = 0 for¢ = 1,...,3 are not well
defined.

We showed that if x;, x,, x5 are collinear then H* = x/ 1T isasolutionto (4.1). There
aretwo cases: either H* isthe unique solution (up to scale) or thereis afurther solution
H. Inthefirst case, since H* is a singular matrix, there exists no transformation taking
each x; to x}. This occurswhen x, ..., x3 are collinear but x}, ..., x5 arenot. Inthe
second case, where a further solution H exists, then any matrix of the form a H* + S H
isasolution. Thus a 2-dimensional family of transformations exist, and it follows that
the 8 equations derived from (4.3) are not independent.

A situation where a configuration does not determine a unique solution for a particu-
lar class of transformation is termed degenerate. Note that the definition of degeneracy
involves both the configuration and the type of transformation. The degeneracy prob-
lem isnot limited to aminimal solution, however. If additional (perfect, i.e. error-free)
correspondences are supplied which are also collinear (lie on 1), then the degeneracy is
not resolved.

4.1.4 Solutionsfrom linesand other entities

The development to this point, and for the rest of the chapter, is exclusively in terms of
computing homographies from point correspondences. However, an identical develop-
ment can be given for computing homographies from line correspondences. Starting
from the line transformation I, = H'1, a matrix equation of the form Ah = 0 can be
derived, with a minimal solution requiring four lines in general position. Similarly, a
homography may be computed from conic correspondences and so forth.

Thereisthe question then of how many correspondences are required to compute the
homography (or any other relation). The general ruleis that the number of constraints
must equal or exceed the number of degrees of freedom of the transformation. For
example, in 2D each corresponding point or line generates two constraints on H, in
3D each corresponding point or plane generates three constraints. Thus in 2D the
correspondence of four points or four linesis sufficient to compute H, since4 x 2 = 8§,
with 8 the number of degrees of freedom of the homography. In 3D a homography has
15 degrees of freedom, and five points or five planes are required. For a planar affine
transformation (6 dof) only three corresponding points or lines are required, and so on.
A conic provides five constraints on a 2D homography.
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Fig. 4.1. Geometric equivalence of point-ine configurations. A configuration of two points and two
linesis equivalent to five lines with four concurrent, or five points with four collinear.

Care has to be taken when computing H from correspondences of mixed type. For
example, a 2D homography cannot be determined uniquely from the correspondences
of two pointsand two lines, but can from three points and one line or one point and three
lines, even though in each case the configuration has 8 degrees of freedom. The case of
threelines and one point is geometrically equivalent to four points, since the threelines
define atriangle and the vertices of the triangle uniquely define three points. We have
seen that the correspondence of four points in general position uniquely determines a
homography, which means that the correspondence of three lines and one point also
uniquely determines a homography. Similarly the case of three points and a line is
equivalent to four lines, and again the correspondence of four linesin general position
(i.e. no three concurrent) uniquely determines a homography. However, as a quick
sketch shows (figure 4.1), the case of two points and two lines is equivalent to five
lines with four concurrent, or five points with four collinear. As shown in the previous
section, this configuration is degenerate and a one-parameter family of homographies
map the two-point and two-line configuration to the corresponding configuration.

4.2 Different cost functions

We will now describe a number of cost functions which may be minimized in order to
determine H for over-determined solutions. Methods of minimizing these functions are
described later in the chapter.

4.2.1 Algebraic distance

The DLT algorithm minimizesthe norm ||Ah||. The vector e = Ah iscalled the residual
vector and it isthe norm of this error vector that is minimized. The components of this
vector arise from the individual correspondences that generate each row of the matrix
A. Each correspondence x; < x contributes a partial error vector €; from (4.1) or (4.3)
towards the full error vector e. This vector ¢; isthe algebraic error vector associated
with the point correspondence x; « x; and the homography H. The norm of this vector
isascalar which is called the algebraic distance:

T 1T 1T 2
‘ [ 0 WXy oYX ] h

/ 2 2
daglxi,1x)* = lleilf = ||| or T gf (4.4)

More generally, and briefly, for any two vectors x; and x, we may write

da|g(X1,X2>2 = OJ% + a% wherea = (al, as, ag)T = X1 X Xao.
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The relation of this distance to a geometric distance is described in section 4.2.4.
Given a set of correspondences, the quantity e = Ah isthe algebraic error vector for
the complete set, and one sees that

> dag(x;, Hx;)* = 3 [|eil|* = [|AD]|* = [l€]* (4.5)

The concept of algebraic distance originated in the conic-fitting work of Book-
stein [Bookstein-79]. Its disadvantage is that the quantity that is minimized is not
geometrically or statistically meaningful. As Bookstein demonstrated, the solutions
that minimize algebraic distance may not be those expected intuitively. Nevertheless,
with agood choice of normalization (aswill be discussed in section 4.4) methods which
minimize algebraic distance do give very good results. Their particular advantages are
a linear (and thus a unique) solution, and computational cheapness. Often solutions
based on algebraic distance are used as a starting point for a non-linear minimization
of ageometric or statistical cost function. The non-linear minimization gives the solu-
tion afinal “polish”.

4.2.2 Geometric distance

Next we discuss alternative error functions based on the measurement of geometric
distance in the image, and minimization of the difference between the measured and
estimated image coordinates.

Notation. Vectorsx represent the measured image coordinates; x represent estimated
values of the points and x represent true values of the points.

Error in one image. We start by considering error only in the second image, with
points in the first measured perfectly. Clearly, this will not be true in most practical
situations with images. An example where the assumption is more reasonable is in
estimating the projective transformation between a calibration pattern or aworld plane,
where points are measured to a very high accuracy, and its image. The appropriate
quantity to be minimized is the transfer error. This is the Euclidean image distance
in the second image between the measured point x’ and the point Hx at which the
corresponding point x is mapped from the first image. We use the notation d(x,y) to
represent the Euclidean distance between the inhomogeneous points represented by x
and y. Then the transfer error for the set of correspondencesis

The estimated homography H is the one for which the error (4.6) is minimized.

Symmetrictransfer error. Inthemorerealistic case whereimage measurement errors
occur in both the images, it is preferable that errors be minimized in both images, and
not solely in the one. One way of constructing a more satisfactory error function is to
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consider the forward (H) and backward (H™!) transformation, and sum the geometric
errors corresponding to each of these two transformations. Thus, the error is

> d(x;, B X)) + d(x), Hx; ). (4.7

Thefirst term in this sum is the transfer error in the first image, and the second term is
the transfer error in the second image. Again the estimated homography H is the one
for which (4.7) is minimized.

4.2.3 Reprojection error —both images

An alternative method of quantifying error in each of the two images involves esti-
mating a “correction” for each correspondence. One asks how much it is necessary
to correct the measurements in each of the two images in order to obtain a perfectly
matched set of image points. One should compare this with the geometric one-image
transfer error (4.6) which measures the correction that it is necessary to make to the
measurementsin one image (the second image) in order to get a set of perfectly match-
ing points.

In the present case, we are seeking a homography H and pairs of perfectly matched
points x; and x; that minimize the total error function

> d(xi, %)% + d(x), X;)* subjecttox; = Hx; Vi. (4.8)

Minimizing this cost function involves determining both H and a set of subsidiary cor-
respondences {x;} and {X}}. This estimation models, for example, the situation that
measured correspondences x; < x arise from images of points on aworld plane. We
wish to estimate a point on the world plane X; from x; < x/ which is then reprojected
to the estimated perfectly matched correspondence x; < Xx;.

This reprojection error function is compared with the symmetric error function
infigure 4.2. 1t will be seen in section 4.3 that (4.8) isrelated to the Maximum Likeli-
hood estimation of the homography and correspondences.

4.2.4 Comparison of geometric and algebraic distance

We return to the case of errors only in the second image. Let x, = (z},},w!)T and
define avector (2, 7, w})"T = X} = Hx;. Using this notation, the left hand side of (4.3)
becomes

1250 RN

Ah=¢;, = ( y;@_wi‘% )

Thisvector isthealgebraic error vector associated with the point correspondence x; «
x; and the camera mapping H. Thus,

daig(x}, X;)* = (yib; — wig)* + (wii] — wjab;)*.
For points x; and x; the geometric distanceis

1/2
A, %) = ((ahfw) — &) + (it — g t)?)
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Fig. 4.2. A comparison between symmetric transfer error (upper) and reprojection error (lower) when
estimating a homography. The points x and x’ are the measured (noisy) points. Under the estimated
homography the points x” and Hx do not correspond perfectly (and neither do the points x and H=!x’).
However, the estimated points, x and %', do correspond perfectly by the homography x' = Hx. Using
the notation d(x, y) for the Euclidean image distance between x and y, the symmetric transfer error is
d(x,H~1x")? + d(x', Hx)?; the reprojection error isd(x,%)? + d(x/,%')%.

= dag(xi,%;) /wiw;.

Thus, geometric distance is related to, but not quite the same as, algebraic distance.
Note, though, that if @, = w; = 1, then the two distances are identical.

One can always assume that w; = 1, thus expressing the points x; in the usual form
x; = (x,;,1)T. For one important class of 2D homographies, the values of ), will
aways be 1 as well. A 2D affine transformation is represented by a matrix of the
form (2.1039)

hir hia his
Hy = | hor hoa hos |. (4.9)
0 0 1

One verifies immediately from x; = H,x; that @} = 1 if w; = 1. This demonstrates
that in the case of an affine transformation geometric distance and algebraic distance are
identical. The DLT agorithm iseasily adapted to enforce the condition that the last row
of H has the form (0,0, 1) by setting 2, = hs = 0. Hence, for affine transformations,
geometric distance can be minimized by the linear DLT algorithm based on algebraic
distance.

4.2.5 Geometric interpretation of reprojection error

The estimation of ahomography between two planes can be thought of asfitting a*“ sur-
face” to pointsin a4D space, IR*. Each pair of image points x, x’ defines asingle point
denoted X in a measurement space IR*, formed by concatenating the inhomogeneous
coordinates of x and x’. For agiven specific homography H, theimage correspondences
x < x' that satisfy x’ x (Hx) = 0 define an algebraic variety! Vy in IR* which is the

L A variety is the smultaneous zero-set of one or more multivariate polynomials defined in IR .
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intersection of two quadric hypersurfaces. The surfaceisaquadric in IR* because each
row of (4.1) is adegree 2 polynomial in z, y, ', /. The elements of H determine the
coefficient of each term of the polynomial, and so H specifies the particular quadric.
The two independent equations of (4.1) define two such quadrics.

Given points X; = (x;, yi, 25, y;) T in IR%, the task of estimating a homography be-
comes the task of finding a variety Vy that passes (or most nearly passes) through the
points X;. In general, of course, it will not be possible to fit avariety precisely. In this
case, let Vy be some variety corresponding to a transformation H, and for each point
X;, let X; = (2,9, 2%, 9;) T bethe closest point to X; lying on the variety V. One sees
immediately that

|1X; — )A(z||2 = (z;— fz‘)2 + (yi — ?Qz)z + (2] — f;)2 + (y; — ?3:)2
= d(xi> XZ)Q + CZ(X;, &;)2

Thus geometric distance in IR* is equivalent to the reprojection error measured in both
the images, and finding the variety V; and points X; on Vj that minimize the squared
sum of distances to the measured points X; is equivalent to finding the homography H
and the estimated points x; and x that minimize the reprojection error function (4.8).

The point X on Vy that lies closest to a measured point X is a point where the line
between X and X is perpendicular to the tangent planeto Vy at X. Thus

d(x;, %;)° + d(x}, X;)* = d 1 (X, Va)

where d (X, Vy) isthe perpendicular distance of the point X to the variety Vy. As may
be seen from the conic-fitting anal ogue discussed below, there may be more than one
such perpendicular from X to Vy.

The distance d_ (X, Vy) isinvariant to rigid transformations of IR*, and thisincludes
as a specia case rigid transformations of the coordinates (z, y), (¢, y’) of each image
individually. This point isreturned to in section 4.4.3.

Conic analogue. Before proceeding further we will first sketch an analogous estima-
tion problem that can be visualized more easily. The problem is fitting a conic to 2D
points, which occupies a useful intermediate position between fitting a straight line
(no curvature, too simple) and fitting a homography (four dimensions, with non-zero
curvature).

Consider the problem of fitting a conic to a set of n > 5 points (z;,;)" on the
plane such that an error based on geometric distance is minimized. The points may
be thought of as “correspondences’ x; < y;. The transfer distance and reprojection
(perpendicular) distance areillustrated in figure 4.3. It is clear from thisfigure that d |
isless than or equal to the transfer error.

The algebraic distance of a point x from aconic C is defined as dgg(x, C)* = x' Cx.
A linear solution for C can be obtained by minimizing 3=, dag(x;, C)* with a suitable
normalization on C. There is no linear expression for the perpendicular distance of
a point (z,y) to a conic C, since through each point in IR? there are up to 4 lines
perpendicular to C. The solution can be obtained from the roots of a quartic. However,
afunction d, (x, C) may be defined which returns the shortest distance between aconic
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X

Fig. 4.3. A conic may be estimated from a set of 2D points by minimizing “ symmetric transfer error”
d2 + d3 or the sum of squared perpendicular distances d? . The analogue of transfer error isto consider
x as perfect and measure the distance d, to the conic in the y direction, and similarly for dy. For point
aitisclear thatd, < d.andd, < d,. Alsod, ismore stablethan d, or dy asillustrated by point b
where d,. cannot be defined.

and a point. A conic can then be estimated by minimizing 3°; d_ (x;, C)? over the five
parameters of C, though this cannot be achieved by a linear solution. Given a conic C
and a measured point x, a corrected point x is obtained simply by choosing the closest
point on C.

We return now to estimating a homography. In the case of an affine transformation
the variety is the intersection of two hyperplanes, i.e. it isalinear subspace of dimen-
sion 2. Thisfollows from the form (4.9) of the affine matrix which for x’ = H,x yields
one linear constraint between z, ’, y and another between x, y, v/, each of which de-
fines a hyperplane in IR*. An analogue of this situation is line fitting to points on the
plane. In both cases the relation (affine transformation or line) may be estimated by
minimizing the perpendicular distance of pointsto the variety. In both cases thereisa
closed form solution as discussed in the following section.

4.2.6 Sampson error

The geometric error (4.8) is quite complex in nature, and minimizing it requires the
simultaneous estimation of both the homography matrix and the points %;, x;. This
non-linear estimation problem will be discussed further in section 4.5. Its complexity
contrasts with the simplicity of minimizing the algebraic error (4.4). The geometric
interpretation of geometric error given in section 4.2.5 leads to a further cost function
that lies between the algebraic and geometric cost functionsin terms of complexity, but
gives a close approximation to geometric error. We will refer to this cost function as
Sampson error since Sampson [ Sampson-82] used this approximation for conic fitting.

As described in section 4.2.5, the vector X that minimizes the geometric error ||X —
X||? isthe closest point on the variety Vy to the measurement X. This point can not be
estimated directly except via iteration, because of the non-linear nature of the variety
Vu. The idea of the Sampson error function is to estimate a first-order approximation
to the point X, assuming that the cost function is well approximated linearly in the
neighbourhood of the estimated point. The discussion to follow is related directly to
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the 2D homography estimation problem, but applies substantially unchanged to the
other estimation problems discussed in this book.

For a given homography H, any point X = (x,y,2’,y')" that lies on Vy will satisfy
the equation (4.3—89), or Ah = 0. To emphasize the dependency on X we will write
this instead as Cy(X) = 0, where Cy(X) isin this case a 2-vector. To first order, this
cost function may be approximated by a Taylor expansion

OCx
0X

If wewrite 6x = X — X and desire X to lie on the variety Vy so that C4(X) = 0, then
the result is Cy(X) + (0Cy/0X)dx = 0, which we will henceforth write as Jdx = —e
where J is the partial-derivative matrix, and € is the cost Cy(X) associated with X. The
minimization problem that we now face is to find the smallest dx that satisfies this
equation, namely:

Cu(X + 0x) = Cu(X) + Ox. (4.10)

e Find the vector dx that minimizes ||dx|| subject to J6x = —e.

The standard way to solve problems of this type is to use Lagrange multipliers. A
vector A of Lagrange multipliers is introduced, and the problem reduces to that of
finding the extremaof 6% dx — 2AT(Jdx + €), where the factor 2 is simply introduced
for convenience. Taking derivatives with respect to §x and equating to zero gives

265 —2ATJ=0"
from which we obtain x = JT . The derivative with respect to X gives Jéx + € = 0,
the original constraint. Substituting for §x leadsto
JITA = —€
which may be solved for X giving A = —(JJ7) ¢, and so finally
dx = —JT(33N) e, (4.12)

and X = X + dx. Thenorm ||dx||? is the Sampson error:

16x||? = 63 0x = €' (JIT) €. (4.12)

Example4.2. Sampson approximation for a conic

We will compute the Sampson approximation to the geometric distance d, (x, C) be-
tween a point x and conic C shown in figure 4.3. In this case the conic variety V. is
defined by the equation x'Cx = 0, sothat X = (x,y)" isa2-vector, e = x'Cx isa
scalar, and J isthe 1 x 2 matrix given by

O(x'Cx) O(x"Cx)
or = Oy

Thismeansthat JJ7 isascalar. The elements of J may be computed by the chain rule
as

d(x"cx) 9(x'Cx) ox ¢ T
= = 2xTC(1,0,0)T = 2(Cx),
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where (Cx); denotes the i-th component of the 3-vector Cx. Then from (4.12)

T Tex)?
B = [ox? = TN le= € E = X
L=llox|" = €"(33) e = | 7 4((cx)? + (Cx)2)

JAN
A few pointsto note:

(i) For the 2D homography estimation problem, X = (z,y,2’,y')" where the 2D
measurementsarex = (z,y, )T andx’ = (2/,3/,1)".
(i) € = Cy(X) isthe algebraic error vector A;h — a 2-vector — and A; is defined in
(4.3p89).
(i) J = 0Cyg(X)/0X isa2 x 4 matrix. For example

J11 = 8(—w;XiTh2 + yix;rhg)/('?x = —’w;hzl + yll-hgl.

(iv) Note the similarity of (4.12) to the algebraic error ||e|| = €"e. The Sampson
error may be interpreted as being the Mahalanobis norm (see section A2.1-
(p565)), ||€||JJT'

(v) One could aternatively use A defined by (4.1-89), in which case J has di-
mension 3 x 4 and € is a 3-vector. However, in general the Sampson error,
and consequently the solution 6, will be independent of whether (4.1+89) or
(4.3p89) is used.

The Sampson error (4.12) is derived here for a single point pair. In applying this to
the estimation of a2D homography H from several point correspondences x; < x;, the
errors corresponding to all the point correspondences must be summed, giving

D= €& XI) e (4.13)

where € and J both depend on H. To estimate H, this expression must be minimized
over all values of H. Thisisasimple minimization problem in which the set of variable
parameters consists only of the entries (or some other parametrization) of H.

This derivation of the Sampson error assumed that each point had isotropic (circular)
error distribution, the same in each image. The appropriate formulae for more general
Gaussian error distributions are given in the exercises at the end of this chapter.

Linear cost function

The algebraic error vector Cy(X) = A(X)h istypicaly multilinear in the entries of X.
The case where A(X)h islinear is, however, important in its own right. The first point
to noteisthat in this case, thefirst-order approximation to geometric error given by the
Taylor expansion in (4.10) is exact (the higher order terms are zero), which means that
the Sampson error isidentical to geometric error.

In addition, the variety Vy defined by the equation Cy(X) = 0, a set of linear equa-
tions, is a hyperplane depending on H. The problem of finding H now becomes a
hyperplane fitting problem — find the best fit to the data X; among the hyperplanes
parametrized by H.
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Asan example of thisideaalinear algorithm which minimizes geometric error (4.8)
for an affine transformation is devel oped in the exercises at the end of this chapter.

4.2.7 Another geometric interpretation

It was shown in section 4.2.5 that finding a homography that takes a set of points x;
to another set x! is equivalent to the problem of fitting a variety of a given typeto a
set of pointsin IR*. We now consider a different interpretation in which the set of all
measurements is represented by a single point in a measurement space IR

The estimation problems we consider may all be fitted into a common framework.
In abstract terms the estimation problem has two components,

e ameasurement space IR"Y consisting of measurement vectors X, and

e amodel, which in abstract terms may be thought of simply asa subset S of pointsin
IRN. A measurement vector X that liesinside this subset is said to satisfy the model.
Typically the subspace that satisfies the model is a submanifold, or variety in IRY.

Now, given ameasurement vector X in IR, the estimation problem isto find the vector
X, closest to X, that satisfies the model.

It will now be pointed out how the 2D homography estimation problem fitsinto this
framework.

Error in both images. Let {x; < x|} be a set of measured matched points for
i =1,...,n. Inadl, there are 4n measurements, namely two coordinates in each of
two images for n points. Thus, the set of matched points represents a point in IR,
where N = 4n. The vector made up of the coordinates of al the matched points in
both images will be denoted X.

Of course, not al sets of point pairs x; < x; are related viaa homography H. A set
of point correspondences {x; < x;} for which there exists a projective transformation
H satisfying x; = Hx; for all i congtitutes the subset of IRY satisfying the model. In
general, this set of points will form asubmanifold S inIRY (in fact a variety) of some
dimension. The dimension of this submanifold is equal to the minimal number of
parameters that may be used to parametrize the submanifold.

One may arbitrarily choose n points x; in the first image. 1n addition, a homography
H may be chosen arbitrarily. Once these choices have been made, the points X in
the second image are determined by x; = Hx,. Thus, a feasible choice of points is
determined by a set of 2n + 8 parameters. the 2n coordinates of the points x;, plus
the 8 independent parameters (degrees of freedom) of the transformation H. Thus, the
submanifold S ¢ IRY has dimension 2n + 8, and hence codimension 2n, — 8.

Given a set of measured point pairs {x; < x/}, corresponding to a point X in R",
and an estimated point X € IR" lying on S, one easily verifies that

X = K2 = 3 d(xi, %) + d(x, %),

Thus, finding the point X on S lying closest to X in IRV is equivalent to minimizing
the cost function given by (4.8). The estimated correct correspondences x; « X, are
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those corresponding to the closest surface point X in IR". Once X is known H may be
computed.

Error inoneimageonly. Inthe caseof error in oneimage, one has aset of correspon-
dences {x; < x/}. The pointsx; are assumed perfect. Theinhomogeneous coordinates
of the x| constitute the measurement vector X. Hence, in this case the measurement
space has dimension N = 2n. The vector X consists of the inhomogeneous coor-
dinates of the mapped perfect points {Hx;,HXs,...,HX,}. The set of measurement
vectors satisfying the mode! is the set X as H varies over the set of al homography
matrices. Once again this subspaceisavariety. Itsdimensionis 8, sincethisisthetotal
number of degrees of freedom of the homography matrix H. Aswith the previous case,
the codimension is 2n — 8. One verifies that

X~ KIP = 3 d(x), bx,)*

Thus, finding the closest point on S' to the measurement vector X is equivalent to min-
imizing the cost function (4.6).

4.3 Statistical cost functionsand Maximum Likelihood estimation

In section 4.2, various cost functions were considered that were related to geometric
distance between estimated and measured points in an image. The use of such cost
functions is now justified and then generalized by a consideration of error statistics of
the point measurements in an image.

In order to obtain a best (optimal) estimate of H it is necessary to have a model for
the measurement error (the “noise”). We are assuming here that in the absence of mea-
surement error the true points exactly satisfy a homography, i.e. X, = Hx;. A common
assumption is that image coordinate measurement errors obey a Gaussian (or normal)
probability distribution. Thisassumption is surely not justified in general, and takes no
account of the presence of outliers (grossly erroneous measurements) in the measured
data. Methodsfor detecting and removing outlierswill be discussed later in section 4.7.
Once outliers have been removed, the assumption of a Gaussian error model, if still not
strictly justified, becomes more tenable. Therefore, for the present, we assume that
image measurement errors obey a zero-mean isotropic Gaussian distribution. Thisdis-
tribution is described in section A2.1(p565).

Specifically we assume that the noise is Gaussian on each image coordinate with
zero mean and uniform standard deviation o. Thismeansthat x = 7 + Ax, with Az
obeying a Gaussian distribution with variance o2. If it is further assumed that the noise
on each measurement isindependent, then, if the true point isx, the probability density
function (PDF) of each measured point x is

Pr(x) = ( !

) 2) e d0e%)?/(20%) (4.14)
o

Error in oneimage. First we consider the case where the errors are only in the
second image. The probability of obtaining the set of correspondences {x; <« x.} is
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simply the product of their individual PDFs, since the errors on each point are assumed
independent. Then the PDF of the noise-perturbed datais

1 ! 1g.)\2 2
Pr({x}H) = Al )"/ (307 4.1
() =1 (0 (415)
The symbol Pr({x]}|H) isto beinterpreted as meaning the probability of obtaining the
measurements {x;} given that the true homography isH. The log-likelihood of the set
of correspondencesis

1
log Pr({x}}H) = ~ o2 Zd(x;,H}_(i)2 + constant.

The Maximum Likelihood estimate (MLE) of the homography, H, maximizes this log-
likelihood, i.e. minimizes

Z d(X;7 HXJQ

Thus, we note that ML estimation is equivalent to minimizing the geometric error func-
tion (4.6).

Error in both images. Following a similar development to the above, if the true
correspondences are {x; < Hx; = X, }, then the PDF of the noise-perturbed datais

1 %.)2 ! uw.)2 2
P LXHH XY = ( ) —(d(es, %) +d(xH%;)? ) /(20 ).
(e () =TT (5,0 ) €
The additional complication here is that we have to seek “corrected” image measure-
mentsthat play the role of the true measurements (Hx above). Thusthe ML estimate of
the projective transformation H and the correspondences {x; < x;}, isthe homography
H and corrected correspondences {x; « X/} that minimize

Y od(x, %) 4 d(x], %)

withx, = Hx;. Notethat in this case, the ML estimate is identical with minimizing the
reprojection error function (4.8).

Mahalanobis distance. In the general Gaussian case, one may assume a vector of
measurements X satisfying a Gaussian distribution function with covariance matrix
z. The cases above are equivalent to a covariance matrix which is a multiple of the
identity.

Maximizing the log-likelihood is then equivalent to minimizing the Mahaanobis
distance (see section A2.1(p565))

X - X[z = (x-X)"=7 (X - X).

In the case where there is error in each image, but assuming that errors in one image
are independent of the error in the other image, the appropriate cost function is

X =Xz + X = Xz



104 4 Estimation — 2D Projective Transformations

where £ and &’ are the covariance matrices of the measurements in the two images.
Finaly, if we assume that the errors for all the points x; and x/ are independent,
with individual covariance matrices £; and £ respectively, then the above expression

expands to
Dol = xillz, + > llxi — Iz, (4.16)

This equation allows the incorporation of the type of anisotropic covariance matrices
that arise for point locations computed as the intersection of two non-perpendicular
lines. In the case where the points are known exactly in one of the two images, errors
being confined to the other image, one of the two summation termsin (4.16) disappears.

4.4 Transfor mation invariance and normalization

We now start to discuss the properties and performance of the DLT algorithm of
section 4.1 and how it compares with algorithms minimizing geometric error. The
first topic is the invariance of the algorithm to different choices of coordinates in the
image. It isclear that it would generally be undesirable for the result of an algorithm
to be dependent on such arbitrary choices as the origin and scale, or even orientation,
of the coordinate system in an image.

4.4.1 Invarianceto image coordinate transfor mations

Image coordinates are sometimes given with the origin at the top-left of the image,
and sometimes with the origin at the centre. The question immediately occurs whether
this makes a difference to the results of computing the transformation. Similarly, if
the units used to express image coordinates are changed by multiplication by some
factor, then isit possible that the result of the algorithm changes also? More generaly,
to what extent is the result of an agorithm that minimizes a cost function to estimate
a homography dependent on the choice of coordinates in the image? Suppose, for
instance, that the image coordinates are changed by some similarity, affine or even
projective transformation before running the algorithm. Will this materially change the
result?

Formally, suppose that coordinates x in one image are replaced by x = Tx, and
coordinates x’ in the other image are replaced by X' = T'x/, where Tand T' are 3 x 3
homographies. Substituting in the equation x’ = Hx, we derive the equation X' =
T'HT'%. This relation implies that H = T'HT ! is the transformation matrix for the
point correspondences x « x’. An alternative method of finding the transformation
taking x; to x is therefore suggested, as follows.

(i) Transform the image coordinates according to transformations x; = Tx; and
X =T'x.
(i) Find the transformation H from the correspondences x; « ..
(iii) SetH = T'~'HT.

The transformation matrix H found in this way appliesto the original untransformed
point correspondences x; < x;. What choice should be made for the transformations T
and T’ will be left unspecified for now. The question to be decided now is whether the
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outcome of this algorithm isindependent of the transformations T and T’ being applied.
Ideally it ought to be, at least when T and T’ are similarity transformations, since the
choice of a different scale, orientation or coordinate origin in the images should not
materially affect the outcome of the algorithm.

In the subsequent sections it will be shown that an algorithm that minimizes geo-
metric error is invariant to similarity transformations. On the other hand, for the DLT
algorithm as described in section 4.1, the result unfortunately is not invariant to simi-
larity transformations. The solutionisto apply anormalizing transformation to the data
before applying the DLT algorithm. This normalizing transformation will nullify the
effect of the arbitrary selection of origin and scale in the coordinate frame of the image,
and will mean that the combined algorithm is invariant to a similarity transformation
of the image. Appropriate normalizing transformations will be discussed |ater.

4.4.2 Non-invariance of the DLT algorithm

Consider a set of correspondences x; < x; and amatrix H that is the result of the DLT
algorithm applied to this set of corresponding points. Consider further a related set
of correspondences x; « X, wherex; = Tx; and X, = T'x}, and let H be defined by
H = T'HT~!. Following section 4.4.1, the question to be decided here is the following:

e Doesthe DLT algorithm applied to the correspondence set x; < X, yield the trans-
formation H?

We will use the following notation: Matrix A; isthe DLT equation matrix (4.3-89)
derived from a point correspondence x; < x;, and A isthe 2n x 9 matrix formed by
stacking the A;. Matrix A; issimilarly defined in terms of the correspondences x; « X/,
where x; = Tx; and X, = T'x/ for some projective transformations T and T'.

Result4.3. Let T’ be a similarity transformation with scale factor s, and let T be an
arbitrary projective transformation. Further, suppose H is any 2D homography and let
H be defined by i = T'HT~'. Then ||Ah|| = s|/Ah|| where h and h are the vectors of
entries of H and H.

Proof. Define the vector €; = x| x Hx;. Note that A;h is the vector consisting of the
first two entries of ¢;. Let €; be similarly defined in terms of the transformed quantities
ase; = x; x Hx;. One computes:

& = X, xHX; =T, x (THT 1)Tx,
= T'x, x THx; = T"(x} x Hx;)
— T,*Gi

where T represents the cofactor matrix of T’ and the second-last equality follows
from lemma A4.2(p581). For a generd transformation T, the error vectors A;h and
A;h (namely the first two components of €; and ;) are not simply related. However, in
the specia case where T’ is a similarity transformation, one may write T = SPTI E ]
whereR isarotation matrix, t isatrangation and s is a scaling factor. In this case, we
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R

seethat T = s R

. Applying T’ just to the first two components of €;, one

sees that
Azfl = (gily gig)T = SR(Eih Eig)T = SRAZh

Since rotation does not affect vector norms, one sees that ||Ah| = s||Ah||, as required.
Thisresult may be expressed in terms of algebraic error as

dag(X;, BX;) = sdgg(x], Hx;).

Thus, there is a one-to-one correspondence between H and H giving rise to the same
error, except for constant scale. It may appear therefore that the matrices H and H
minimizing the algebraic error will be related by the formulaH = T’HT !, and hence
one may retrieve H as the product T'-'HT. This conclusion is false however. For,
although H and H so defined give rise to the same error ¢, the condition |[H|| = 1,
imposed as a constraint on the solution, is not equivalent to the condition ||H|| = 1.
Specifically, ||H|| and ||H|| are not related in any simple manner. Thus, there is no one-
to-one correspondence between H and H giving rise to the same error ¢, subject to the
constraint ||H|| = ||H|| = 1. Specifically,

minimize » " dyg(x;, Hx;)* subject to [|H|| = 1
& minimize ) dgg(x;, Hx;)? subject to [|H|| = 1
& minimize ) dyg(X], Hx;)* subject to [[H|| = 1.

Thus, the method of transformation leads to a different solution for the computed
transformation matrix. Thisis a rather undesirable feature of the DLT algorithm as it
stands, that the result is changed by a change of coordinates, or even simply achange of
the origin of coordinates. If the constraint under which the norm ||Ah|| isminimized is
invariant under the transformation, however, then one sees that the computed matrices
H and H are related in the right way. Examples of minimization conditions for which H
is transformation-invariant are discussed in the exercises at the end of this chapter.

4.4.3 Invariance of geometric error

It will be shown now that minimizing geometric error to find H is invariant under sim-
ilarity (scaled Euclidean) transformations. As before, consider a point correspondence
x « x' and atransformation matrix H. Also, define a related set of correspondences
% — X' wherex = Tx and X' = T'x/, and let H be defined by H = T'HT . Suppose that
T and T’ represent Euclidean transformations of IP2. One verifies that

d(x',Hx) = d(T'x', THT 'Tx) = d(T'x/, T'Hx) = d(x/, Hx)

where the last equality holds because Euclidean distance is unchanged under a Eu-
clidean transformation such as T'. This shows that if H minimizes the geometric error
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for aset of correspondences, then H minimizes the geometric error for the transformed
set of correspondences, and so minimizing geometric error isinvariant under Euclidean
transformations.

For similarity transformations, geometric error is multiplied by the scale factor of
the transformation, hence the minimizing transformations correspond in the same way
as in the Euclidean transformation case. Minimizing geometric error is invariant to
similarity transformations.

4.4.4 Normalizing transfor mations

As was shown in section 4.4.2, the result of the DLT algorithm for computing 2D
homographies depends on the coordinate frame in which points are expressed. In fact
the result is not invariant to similarity transformations of the image. This suggests
the question whether some coordinate systems are in some way better than others for
computing a 2D homography. The answer to thisis an emphatic yes. In this section a
method of normalization of the data is described, consisting of tranglation and scaling
of image coordinates. This normalization should be carried out before applying the
DLT algorithm. Subsequently an appropriate correction to the result expresses the
computed H with respect to the original coordinate system.

Apart from improved accuracy of results, data normalization provides a second de-
sirable benefit, namely that an algorithm that incorporates an initial data normalization
step will be invariant with respect to arbitrary choices of the scale and coordinate ori-
gin. This is because the normalization step undoes the effect of coordinate changes,
by effectively choosing a canonical coordinate frame for the measurement data. Thus,
algebraic minimization is carried out in afixed canonical frame, and the DLT algorithm
Isin practice invariant to similarity transformations.

Isotropic scaling. Asafirst step of normalization, the coordinates in each image are
translated (by a different translation for each image) so as to bring the centroid of the
set of al pointsto the origin. The coordinates are also scaled so that on the average a
point x is of theform x = (z,y,w) T, with each of x, y and w having the same average
magnitude. Rather than choose different scale factors for each coordinate direction, an
isotropic scaling factor is chosen so that the = and y-coordinates of a point are scaled
equally. To this end, we choose to scale the coordinates so that the average distance of
apoint x from the origin is equal to /2. This means that the “average” point is equal
to (1,1,1)". In summary the transformation is as follows:

(i) The points are trandated so that their centroid is at the origin.
(if) The points are then scaled so that the average distance from the origin is equal
to /2.

(iii) Thistransformation is applied to each of the two images independently.

Why is normalization essential? The recommended version of the DLT algorithm
with data normalization is given in agorithm 4.2. We will now motivate why this
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version of the algorithm, incorporating data normalization, should be used in prefer-
ence to the basic DLT of agorithm 4.1(p91). Note that normalization is also called
pre-conditioning in the numerical literature.

The DLT method of algorithm 4.1 uses the SVD of A = UDV' to obtain a solution
to the overdetermined set of equations Ah = 0. These equations do not have an exact
solution (since the 2n x 9 matrix A will not have rank 8 for noisy data), but the vector
h, given by the last column of V, provides a solution which minimizes ||Ah|| (subject
to ||h|| = 1). Thisisequivalent to finding the rank 8 matrix A which is closest to A in
Frobenius norm and obtaining h as the exact solution of Ah = 0. The matrix A is given
by A = UDV' whereD isD with the smallest singular value set to zero. The matrix A has
rank 8 and minimizes the difference to A in Frobenius norm because

1o — Aflp = [lupv" —UDV' [|p = [ID — D[

where ||.||r is the Frobenius norm, i.e. the square root of the sum of sguares of all
entries.

Without normalization typical image points x;, x; are of the order (z,y,w)" =
(100,100,1)T, i.e., z, y are much larger than w. In A the entries za’, 1y, y', yy' will
be of order 10*, entries zw’, yw' etc. of order 102, and entries ww’ will be unity. Re-
placing A by A means that some entries are increased and others decreased such that
the square sum of differences of these changesis minimal (and the resulting matrix has
rank 8). However, and this is the key point, increasing the term ww’ by 100 means a
huge change in the image points, whereas increasing the term zz’ by 100 meansonly a
slight change. Thisis the reason why all entriesin A must have similar magnitude and
why normalization is essential.

The effect of normalization isrelated to the condition number of the set of DLT equa-
tions, or more precisely the ratio d; /d,,_; of the first to the second-last singular value
of the equation matrix A. This point isinvestigated in more detail in [Hartley-97c]. For
the present it is sufficient to say that for exact data and infinite precision arithmetic the
results will be independent of the normalizing transformation. However, in the pres-
ence of noise the solution will diverge from the correct result. The effect of a large
condition number isto amplify this divergence. Thisistrue even for infinite-precision
arithmetic — thisis not around-off error effect.

The effect that this data normalization has on the results of the DLT algorithm is
shown graphically in figure 4.4. The conclusion to be drawn here is that data normal -
ization gives dramatically better results. The examples shown in the figure are chosen
to make the effect easily visible. However, a marked advantage remains even in cases
of computation from larger numbers of point correspondences, with points more widely
distributed. To emphasize this point we remark:

e Data normalization is an essential step inthe DLT algorithm. It must not be consid-
ered optional.

Data normalization becomes even more important for less well conditioned problems,
such as the DLT computation of the fundamental matrix or the trifocal tensor, which
will be considered in later chapters.
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Objective

Given n > 4 2D to 2D point correspondences {x; < x.}, determine the 2D homography
matrix H such that x; = Hx;.

Algorithm

(i) Normalization of x: Compute asimilarity transformation T, consisting of atranslation
and scaling, that takes points x; to a new set of points x; such that the centroid of the
points x; is the coordinate origin (0,0)", and their average distance from the origin is
V2.

(i) Normalization of x’: Compute asimilar transformation T’ for the points in the second
image, transforming points x; to x;.

(iii) DLT: Apply agorithm 4.1(p91) to the correspondences x; < X to obtain a homogra-
phy H.

(iv) Denormalization: SetH = T/~ HT.

Algorithm 4.2. The normalized DLT for 2D homographies.

Fig. 4.4. Resultsof Monte Carlo simulation (see section 5.3(p149) of computation of 2D homographies).
A set of 5 points (denoted by large crosses) was used to compute a 2D homography. Each of the 5 points
is mapped (in the noise-free case) to the point with the same coordinates, so that homography H is the
identity mapping. Now, 100 trials were made with each point being subject to 0.1 pixel Gaussian noise
in oneimage. (For reference, the large crosses are 4 pixels across.) The mapping H computed using the
DLT algorithm was then applied to transfer a further point into the second image. The 100 projections
of this point are shown with small crosses and the 95% ellipse computed fromtheir scatter matrix isalso
shown. (@) are the results without data hormalization, and (b) the results with normalization. The left-
and rightmost reference points have (unnormalized) coordinates (130, 108) and (170, 108).

Non-isotropic scaling. Other methods of scaling are also possible. In non-isotropic
scaling, the centroid of the points is translated to the origin as before. After thistrans-
lation the points form a cloud about the origin. Scaling is then carried out so that
the two principa moments of the set of points are both equal to unity. Thus, the set
of points will form an approximately symmetric circular cloud of points of radius 1
about the origin. Experimental results given in [Hartley-97c] suggest that the extra ef-
fort required for non-isotropic scaling does not lead to significantly better results than
isotropic scaling.

A further variant on scaling was discussed in [Muehlich-98], based on a statistical
analysis of the estimator, its bias and variance. In that paper it was observed that some
columns of A are not affected by noise. This applies to the third and sixth columns in
(4.389), corresponding to the entry w;w; = 1. Such error-free entriesin A should not
be varied in finding A, the closest rank-deficient approximation to A. A method known
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as Total Least Squares - Fixed Columnsis used to find the best solution. For estimation
of the fundamental matrix (see chapter 11), [Muehlich-98] reports slightly improved
results compared with non-isotropic scaling.

Scaling with points near infinity. Consider the case of estimation of a homography
between an infinite plane and an image. If the viewing direction is sufficiently oblique,
then very distant pointsin the plane may be visible in the image —even points at infinity
(vanishing points) if the horizon is visible. In this case it makes no sense to normal-
ize the coordinates of points in the infinite plane by setting the centroid at the origin,
since the centroid may have very large coordinates, or be undefined. An approach to
normalization in this case is considered in exercise (iii) on page 128.

45 |terative minimization methods

This section describes methods for minimizing the various geometric cost functions
developed in section 4.2 and section 4.3. Minimizing such cost functions requires
the use of iterative techniques. This is unfortunate, because iterative techniques tend
to have certain disadvantages compared to linear algorithms such as the normalized
DLT algorithm 4.2:

(i) They are slower.
(if) They generally need an initial estimate at which to start the iteration.
(iii) They risk not converging, or converging to a local minimum instead of the
globa minimum.
(iv) Selection of a stopping criterion for iteration may be tricky.

Conseguently, iterative techniques generally require more careful implementation.
The technique of iterative minimization generally consists of five steps:

(i) Cost function. A cost function is chosen as the basis for minimization. Dif-
ferent possible cost functions were discussed in section 4.2.

(if) Parametrization. The transformation (or other entity) to be computed is ex-
pressed in terms of afinite number of parameters. It isnot in general necessary
that this be aminimum set of parameters, and there are in fact often advantages
to over-parametrization. (See the discussion below.)

(iii) Function specification. A function must be specified that expresses the cost
in terms of the set of parameters.

(iv) Initialization. A suitable initial parameter estimate is computed. This will
generally be done using a linear algorithm such asthe DLT algorithm.

(v) Iteration. Starting from the initial solution, the parameters are iteratively
refined with the goal of minimizing the cost function.

A word about parametrization

For a given cost function, there are often several choices of parametrization. The gen-
eral strategy that guides parametrization is to select a set of parameters that cover the
complete space over which one is minimizing, while at the same time allowing one to
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compute the cost function in aconvenient manner. For example, H may be parametrized
by 9 parameters —that is, it is over-parametrized, since there are really only 8 degrees
of freedom, overal scale not being significant. A minimal parametrization (i.e. the
same number of parameters as degrees of freedom) would involve only 8 parameters.

In general no bad effects are likely to occur if aminimization problem of thistypeis
over-parametrized, aslong as for al choices of parameters the corresponding object is
of the desired type. In particular for homogeneous objects, such asthe 3 x 3 projection
matrix encountered here, it is usually not necessary or advisable to attempt to use a
minimal parametrization by removing the scale-factor ambiguity.

The reasoning is the following: it is not necessary to use minimal parametrization
because a well-performing non-linear minimization agorithm will “notice” that it is
not necessary to move in redundant directions, such as the matrix scaling direction.
The algorithm described in Gill and Murray [Gill-78], which is a modification of the
Gauss-Newton method, has an effective strategy for discarding redundant combina-
tions of the parameters. Similarly, the Levenberg-Marquardt algorithm (see section
A6.2(p600)) handles redundant parametrizations easily. It is not advisable because it
is found empirically that the cost function surface is more complicated when minimal
parametrizations are used. There is then a greater possibility of becoming stuck in a
local minimum.

One other issue that arises in choosing a parametrization is that of restricting the
transformation to aparticular class. For example, supposeH isknown to be ahomol ogy,
then as described in section A7.2(p629) it may be parametrized as

T

va
H=1I —1
Hu=1)

a

where i isascalar, and v and a 3-vectors. A homology has 5 degrees of freedom which
correspond hereto the scalar ;. and the directions of v and a. If H is parametrized by its
9 matrix entries, then the estimated H is unlikely to exactly be a homology. However,
if His parametrized by u, v and a (a total of 7 parameters) then the estimated H is
guaranteed to be ahomology. This parametrization is consistent with ahomology (itis
also an over-parametrization). We will return to the issues of consistent, local, minimal
and over-parametrization in later chapters. The issues are also discussed further in
appendix A6.9(p623).

Function specification

It has been seenin section 4.2.7 that ageneral class of estimation problemsis concerned
with a measurement space IR" containing a model surface S. Given a measurement
X € IRV the estimation task is to find the point X lying on S closest to X. In the case
where a non-isotropic Gaussian error distribution isimposed on IR”, the word closest
isto be interpreted in terms of Mahalanobis distance. Iterative minimization methods
will now be described in terms of this estimation model. In iterative estimation through
parameter fitting, the model surface S islocally parametrized, and the parameters are
allowed to vary to minimize the distance to the measured point. More specificaly,

(i) One has ameasurement vector X € IRY with covariance matrix £.
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(ii) A set of parameters are represented as avector P € IRM.

(iii) A mapping f : RM — IR" isdefined. The range of this mapping is (at least
locally) the model surface S in IRY representing the set of allowable measure-
ments.

(iv) The cost function to be minimized is the squared Mahalanobis distance

X = f(P)lz = (X = f(P))"=7" (X — f(P)).

In effect, we are attempting to find a set of parameters P such that f(P) = X, or fail-
ing that, to bring f(P) as close to X as possible, with respect to Mahalanobis distance.
The Levenberg—Marquardt algorithm is a general tool for iterative minimization, when
the cost function to be minimized is of this type. We will now show how the various
different types of cost functions described in this chapter fit into this format.

Error in oneimage. Here one fixesthe coordinates of points x; in thefirst image, and
varies H so as to minimize cost function (4.6+94), namely

Z d(X,/L, H)_(i)2.

The measurement vector X is made up of the 2n inhomogeneous coordinates of the
points x;. One may choose as parameters the vector h of entries of the homography
matrix H. The function f is defined by

f h— (HXl,HXQ,...,HXn)

where it is understood that here, and in the functions bel ow, Hx; indicates the inhomo-
geneous coordinates. One verifiesthat || X — f(h)|* isequal to (4.6p94).

Symmetric transfer error. Inthe case of the symmetric cost function (4.7—95)

Z d(x;, H_lxg)2 + d(x, Hx; )?

one chooses as measurement vector X the 4n-vector made up of the inhomogeneous
coordinates of the points x; followed by the inhomogeneous coordinates of the points
x,. The parameter vector as before is the vector h of entries of H, and the function f is
defined by

f:he— HX),... B X/ Hx,... Hx,).
Asbefore, wefind that ||X — f(h)]||? isequal to (4.7—p95).

Reprojection error.  Minimizing the cost function (4.8-95) is more complex. The
difficulty is that it requires a simultaneous minimization over all choices of points x;
as well as the entries of the transformation matrix H. If there are many point corre-
spondences, then this becomes a very large minimization problem. Thus, the problem
may be parametrized by the coordinates of the points x; and the entries of the matrix
H —atotal of 2n + 9 parameters. The coordinates of x| are not required, since they
are related to the other parameters by X, = HX;. The parameter vector is therefore
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P = (h,xy,...,%,). The measurement vector contains the inhomogeneous coordi-
nates of all the pointsx; and x;. The function f is defined by

Fohky,... %) — K, %0, ... %, %))

where x; = Hx;. Oneverifiesthat ||X — f(P)]|?, with X a4n-vector, is equal to the cost
function (4.895). This cost function must be minimized over all 2n + 9 parameters.

Sampson approximation. In contrast with 2n + 9 parameters of reprojection error,
minimizing the error in one image (4.6494) or symmetric transfer error (4.7—95)
requires a minimization over the 9 entries of the matrix H only — in general a more
tractable problem. The Sampson approximation to reprojection error enables reprojec-
tion error also to be minimized with only 9 parameters.

This is an important consideration, since the iterative solution of an m-parameter
non-linear minimization problem using a method such as Levenberg—Marquardt in-
volves the solution of an m x m set of linear equations at each iteration step. Thisisa
problem with complexity O(m?). Hence, it is appropriate to keep the size of m low.

The Sampson error avoids minimizing over the 2n + 9 parameters of reprojection er-
ror because effectively it determinesthe 2n variables {x; } for each particular choice of
h. Consequently the minimization then only requires the 9 parameters of h. In prac-
tice this approximation gives excellent results provided the errors are small compared
to the measurements.

Initialization

An initial estimate for the parametrization may be found by employing a linear tech-
nique. For example, the normalized DLT algorithm 4.2 directly provides H and thence
the 9-vector h used to parametrize the iterative minimization. In general if there are
n > 4 correspondences, then all will be used in the linear solution. However, aswill be
seen in section 4.7 on robust estimation, when the correspondences contain outliers it
may be advisable to use a carefully selected minimal set of correspondences (i.e. four
correspondences). Linear techniques or minimal solutions are the two initialization
techniques recommended in this book.

An alternative method that is sometimes used (for instance see [Horn-90, Horn-91])
is to carry out a sufficiently dense sampling of parameter space, iterating from each
sampled starting point and retaining the best result. Thisis only possibleif the dimen-
sion of the parameter space is sufficiently small. Sampling of parameter space may be
done either randomly, or else according to some pattern. Another initialization method
issimply to do without any effectiveinitialization at al, starting the iteration at agiven
fixed point in parameter space. This method is not often viable. Iteration is very likely
to fall into a false minimum or not converge. Even in the best case, the number of
iteration steps required will increase the further one starts from the final solution. For
this reason using a good initialization method is the best plan.
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Objective

Given n. > 4 image point correspondences {x; < x;}, determine the Maximum Likelihood
estimate H of the homography mapping between the images.

The MLE involves a so solving for aset of subsidiary points {x; }, which minimize
Z d(Xi7 )A(i)Q + d(X;7 &;)2

where X; = HX;.
Algorithm

(i) Initialization: Compute an initial estimate of H to provide a starting point for the ge-
ometric minimization. For example, use the linear normalized DLT agorithm 4.2, or
use RANSAC (section 4.7.1) to compute H from four point correspondences.

(ii) Geometric minimization of —either Sampson error:

e Minimize the Sampson approximation to the geometric error (4.12—99).

e The cost is minimized using the Newton agorithm of section A6.1(p597) or
Levenberg—Marquardt algorithm of section A6.2(p600) over a suitable parametriza-
tion of H. For example the matrix may be parametrized by its 9 entries.

or Gold Standard error:

e Compute an initia estimate of the subsidiary variables {x;} using the measured
points {x;} or (better) the Sampson correction to these points given by (4.11-p99).
e Minimize the cost

Z d(x,%;)° + d(x},%;)*

over Hand x;,7 = 1,...,n. The cost is minimized using the L evenberg-Marquardt
agorithm over 2n+9 variables: 2n for then 2D pointsx;, and 9 for the homography
matrix H.

o |f the number of pointsislarge then the sparse method of minimizing this cost func-
tion given in section A6.4(p607) is the recommended approach.

Algorithm 4.3. The Gold Standard algorithm and variations for estimating H from image correspon-
dences. The Gold Standard algorithm is preferred to the Sampson method for 2D homography compu-
tation.

Iteration methods

There are various iterative methods for minimizing the chosen cost function, of which
the most popular are Newton iteration and the Levenberg—Marquardt method. These
methods are described in appendix 6(p597). Other genera methods for minimizing
a cost function are available, such as Powell’s method and the simplex method both
described in [Press-88].

Summary. The ideas in this section are collected together in algorithm 4.3, which
describes the Gold Standard and Sampson methods for estimating the homography
mapping between point correspondences in two images.
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b

Fig. 4.5. Threeimages of a plane which are used to compare methods of computing projective transfor-
mations from corresponding points.

Method Pair 1 Pair 2
figure4d5a& b figure4.5a& c
Linear normalized 0.4078 0.6602
Gold Standard 0.4078 0.6602
Linear unnormalized 0.4080 26.2056
Homogeneous scaling 0.5708 0.7421
Sampson 0.4077 0.6602
Errorin 1 view 0.4077 0.6602
Affine 6.0095 2.8481
Theoretical optimal 0.5477 0.6582

Table 4.1. Residual errorsin pixelsfor the various algorithms.

4.6 Experimental comparison of the algorithms

The agorithms are compared for the images shown in figure 4.5. Table 4.1 shows the
results of testing several of the algorithms described in this chapter. Residual error is
shown for two pairs of images. The methods used are fairly self-explanatory, with a
few exceptions. The method “ affine” was an attempt to fit the projective transformation
with an optimal affine mapping. The “optimal” is the ML estimate assuming a noise
level of one pixel.

Thefirst pair of images are (a) and (b) of figure 4.5, with 55 point correspondences.
It appears that all methods work almost equally well (except the affine method). The
optimal residual is greater than the achieved results, because the noise level (unknown)
isless than one pixel.

Image (c) of figure 4.5 was produced synthetically by resampling (a), and the second
pair consists of (a) and (c) with 20 point correspondences. In this case, amost all
methods perform almost optimally, as shown in the table 4.1. The exception is the
affine method (expected to perform badly, since it is not an affine transformation) and
the unnormalized linear method. The unnormalized method is expected to perform
badly (though maybe not this badly). Just why it performs well in the first pair and
very badly for the second pair is not understood. In any case, it is best to avoid this
method and use a normalized linear or Gold Standard method.

A further evaluation is presented in figure 4.6. The transformation to be estimated is
the one that maps the chessboard image shown here to a square grid aligned with the
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Fig. 4.6. Comparison of the DLT and Gold Standard algorithmsto thetheoretically optimal resid-
ual error. (a) The homography is computed between a chessboard and thisimage. In all three graphs,
the result for the Gold Sandard algorithm overlap and are indistinguishable from the theoretical mini-
mum. (b) Residual error as a function of the number of points. (c) The effect of varying noise level for
10 points, and (d) 50 points.

axes. As may be seen, theimageis substantially distorted, with respect to asquare grid.
For the experiments, randomly selected points in the image were chosen and matched
with the corresponding point on the square grid. The (normalized) DLT algorithm
and the Gold Standard algorithm are compared to the theoretical minimum or residual
error (see chapter 5). Note that for noise up to 5 pixels, the DLT algorithm performs
adequately. However, for anoise level of 10 pixelsit fails. Note however that in a 200-
pixel image, an error of 10 pixels is extremely high. For less severe homographies,
closer to the identity map, the DLT performs amost as well as the Gold Standard
algorithm.

4.7 Robust estimation

Up to this point it has been assumed that we have been presented with a set of corre-
spondences, {x; < x;}, where the only source of error is in the measurement of the
point’s position, which follows a Gaussian distribution. In many practical situations
this assumption is not valid because points are mismatched. The mismatched points
are outliers to the Gaussian error distribution. These outliers can severely disturb the
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Fig. 4.7. Robust line estimation. The solid points are inliers, the open points outliers. (a) A least-
squares (orthogonal regression) fit to the point data is severely affected by the outliers. (b) In the
RANSAC algorithm the support for lines through randomly selected point pairsis measured by the num-
ber of points within a threshold distance of the lines. The dotted lines indicate the threshold distance.
For the lines shown the support is 10 for line (a, b) (where both of the points a and b areinliers); and
2 for line (c, d) where the point c isan outlier.

estimated homography, and consequently should be identified. The goal then isto de-
termine a set of inliers from the presented “ correspondences’ so that the homography
can then be estimated in an optimal manner from these inliers using the algorithms de-
scribed in the previous sections. Thisisrobust estimation since the estimation is robust
(tolerant) to outliers (measurements following a different, and possibly unmodelled,
error distribution).

4.7.1 RANSAC

We start with a simple example that can easily be visualized — estimating a straight
line fit to a set of 2-dimensional points. This can be thought of as estimating a 1-
dimensional affine transformation, =’ = ax + b, between corresponding points lying on
two lines.

The problem, which isillustrated in figure 4.7a, is the following: given a set of 2D
data points, find the line which minimizes the sum of squared perpendicular distances
(orthogonal regression), subject to the condition that none of the valid points deviates
from thisline by more than ¢ units. Thisis actually two problems: alinefit to the data;
and a classification of the datainto inliers (valid points) and outliers. The threshold ¢ is
set according to the measurement noise (for example t = 3¢), and is discussed below.
There are many types of robust algorithms and which one to use depends to some extent
on the proportion of outliers. For example, if it is known that there is only one outlier,
then each point can be deleted in turn and the line estimated from the remainder. Here
we describe in detail a general and very successful robust estimator — the RANdom
SAmple Consensus (RANSAC) algorithm of Fischler and Bolles [Fischler-81]. The
RANSAC agorithm is able to cope with alarge proportion of outliers.

Theideaisvery simple: two of the points are selected randomly; these points define
aline. The support for this line is measured by the number of points that lie within a
distance threshold. This random selection is repeated a number of times and the line
with most support is deemed the robust fit. The points within the threshold distance are
the inliers (and constitute the eponymous consensus set). The intuition isthat if one of
the pointsis an outlier then the line will not gain much support, see figure 4.7b.
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Furthermore, scoring aline by its support has the additional advantage of favouring
better fits. For example, the line (a, b) in figure 4.7b has a support of 10, whereas the
line (a, d), where the sample points are neighbours, has a support of only 4. Conse-
quently, even though both samples contain no outliers, theline (a, b) will be selected.

More generally, we wish to fit a model, in this case aline, to data, and the random
sample consists of a minimal subset of the data, in this case two points, sufficient to
determine the model. If the model is a planar homography, and the data a set of 2D
point correspondences, then the minimal subset consists of four correspondences. The
application of RANSAC to the estimation of a homography is described below.

As stated by Fischler and Bolles [Fischler-81] “The RANSAC procedure is opposite
to that of conventional smoothing techniques. Rather than using as much of the dataas
possible to obtain an initial solution and then attempting to eliminate the invalid data
points, RANSAC uses as small an initial data set as feasible and enlarges this set with
consistent data when possible’.

The RANSAC algorithm is summarized in algorithm 4.4. Three questions immedi-
ately arise:

Objective
Robust fit of amodel to adata set S which contains outliers.
Algorithm

(i) Randomly select a sample of s data points from .S and instantiate the model from this
subset.
(if) Determinethe set of data points.S; which are within adistance threshold ¢ of the model.
The set S; isthe consensus set of the sample and defines the inliers of S.
(iii) If thesize of .S; (the number of inliers) is greater than some threshold T,
re-estimate the model using all the pointsin S; and terminate.
(iv) If thesizeof S; islessthan T, select a new subset and repesat the above.
(v) After N trialsthelargest consensus set .S; is selected, and the model is
re-estimated using al the pointsin the subset .S;.

Algorithm 4.4. The RANSAC robust estimation algorithm, adapted from [ Fischler-81]. A minimum of s
data points are required to instantiate the free parameters of the model. The three algorithm thresholds
t,T,and N arediscussed in the text.

1. What isthedistancethreshold? Wewould like to choose the distance threshold, ¢,
such that with a probability « the point isan inlier. This calculation requires the prob-
ability distribution for the distance of an inlier from the model. In practice the distance
threshold is usually chosen empirically. However, if it is assumed that the measure-
ment error is Gaussian with zero mean and standard deviation o, then avalue for ¢ may
be computed. In this case the sguare of the point distance, d?, is a sum of squared
Gaussian variables and follows a 2, distribution with m degrees of freedom, where
m equals the codimension of the model. For a line the codimension is 1 — only the
perpendicular distance to the line is measured. If the model is a point the codimension
is 2, and the sgquare of the distance is the sum of squared = and y measurement errors.
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The probability that the value of ax?, random variableislessthan k2 is given by the cu-
mul ative chi-squared distribution, F,,(k2) = [ y2 (¢)d¢. Both of these distributions
are described in section A2.2(p566). From the cumulative distribution

inlier % < .o )
{ outlier @2 > 2 witht* = F_“(«a)o”. (4.17)
Usually « ischosen as0.95, so that there is a 95% probability that the point isan inlier.
This means that an inlier will only be incorrectly rejected 5% of the time. Values of ¢
for o = 0.95 and for the models of interest in this book are tabulated in table 4.2.

Codimension m Model 2
1 line, fundamental matrix ~ 3.84 o2
2 homography, cameramatrix ~ 5.99 o2
3 trifocal tensor 78102

Table 4.2. The distance threshold t> = F,,!(a)o? for a probability of o = 0.95 that the point (corre-
spondence) isan inlier.

2. How many samples? It is often computationally infeasible and unnecessary to try
every possible sample. Instead the number of samples N is chosen sufficiently high
to ensure with a probability, p, that at least one of the random samples of s pointsis
free from outliers. Usualy p is chosen at 0.99. Suppose w is the probability that any
selected data point isaninlier, and thuse = 1 — w isthe probability that it isan outlier.
Then at least V selections (each of s points) are required, where (1 — w*)Y =1 —p,
so that

N =log(1 —p)/log(l — (1 —¢€)°). (4.18)

Table 4.3 gives examples of NV for p = 0.99 for agiven s and e.

Sample size Proportion of outliers e
5% 10% 20% 25% 30% 40% 50%

5 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177

»
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Table 4.3. The number N of samples required to ensure, with a probability p = 0.99, that at least one
sample has no outliers for a given size of sample, s, and proportion of outliers, e.

Example4.4. For the line-fitting problem of figure 4.7 there are n = 12 data points, of



120 4 Estimation — 2D Projective Transformations

which two are outliers so that e = 2/12 = 1/6. From table 4.3 for aminimal subset
of sizes = 2, a least N = 5 samples are required. This should be compared with
the cost of exhaustively trying every point pair, in which case (}?) = 66 samples are
required (the notation () means the number of choices of 2 among n, specificaly,
(3) = n(n—1)/2). A

Note

(i) The number of samples is linked to the proportion rather than number of out-
liers. This means that the number of samples required may be smaller than the
number of outliers. Consequently the computational cost of the sampling can
be acceptable even when the number of outliersislarge.

(i) The number of samples increases with the size of the minimal subset (for a
given ¢ and p). It might be thought that it would be advantageous to use more
than the minimal subset, three or more pointsin the case of aline, because then
abetter estimate of the line would be obtained, and the measured support would
more accurately reflect the true support. However, this possible advantage in
measuring support is generally outweighed by the severe increase in computa-
tional cost incurred by the increase in the number of samples.

3. How large is an acceptable consensus set? A rule of thumb isto terminate if the
size of the consensus set is similar to the number of inliers believed to be in the data
set, given the assumed proportion of outliers, i.e. for n datapoints 7" = (1 — ¢)n. For
the line-fitting example of figure 4.7 a conservative estimate of ¢ ise = 0.2, so that
T =(1.0-0.2)12 = 10.

Deter mining the number of samples adaptively. It is often the case that ¢, the
fraction of data consisting of outliers, is unknown. In such cases the agorithm is
initialized using a worst case estimate of ¢, and this estimate can then be updated as
larger consistent sets are found. For example, if the worst case guessise = 0.5 and
a consensus set with 80% of the datais found as inliers, then the updated estimate is
e =0.2.

This idea of “probing” the data via the consensus sets can be applied repeatedly in
order to adaptively determine the number of samples, N. To continue the example
above, the worst case estimate of ¢ = 0.5 determines an initial N according to (4.18).
When a consensus set containing more than 50% of the data is found, we then know
that there is at least that proportion of inliers. This updated estimate of ¢ determines a
reduced N from (4.18). This update is repeated at each sample, and whenever a con-
sensus set with e lower than the current estimate isfound, then NV isagain reduced. The
algorithm terminates as soon as N samples have been performed. It may occur that a
sampleisfound for which e determinesan N less than the number of samplesthat have
aready been performed. In such a case sufficient samples have been performed and the
algorithm terminates. In pseudo-code the adaptive computation of N is summarized
in agorithm 4.5.

This adaptive approach works very well and in practice covers the questions of both
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e N = oo, sample count= 0.

e While N > sample count Repeat

Choose a sample and count the number of inliers.

— Sete = 1 — (number of inliers)/(total number of points)
— Set N from e and (4.18) with p = 0.99.

Increment the sample count by 1.

e Terminate.

Algorithm 4.5. Adaptive algorithm for determining the number of RANSAC samples.

Fig. 4.8. Robust ML estimation. Thegrey pointsare classified asinliersto theline. (a) A line defined
by points (A, B) has a support of four (from points {A, B, C,D}). (b) The ML line fit (orthogonal
least-squares) to the four points. Thisisa much improved fit over that defined by (A, B). 10 points are
classified asinliers.

the number of samples and terminating the algorithm. The initial ¢ can be chosen
as 1.0, in which case the initial N will be infinite. It is wise to use a conservative
probability p such as 0.99 in (4.18). Table 4.4 on page 127 gives example e’'sand N’s
when computing a homography.

4.7.2 Robust Maximum Likelihood estimation

The RANSAC algorithm partitions the data set into inliers (the largest consensus set)
and outliers (the rest of the data set), and also delivers an estimate of the model, M,
computed from the minimal set with greatest support. The final step of the RANSAC
algorithm isto re-estimate the model using all theinliers. This re-estimation should be
optimal and will involve minimizing a ML cost function, as described in section 4.3.
Inthe case of aline, ML estimation is equivalent to orthogonal regression, and a closed
form solution is available. In general, though, the ML estimation involves iterative
minimization, and the minimal set estimate, M,, provides the starting point.

The only drawback with this procedure, which is often the one adopted, is that the
inlier—outlier classification isirrevocable. After the model has been optimally fitted to
the consensus set, there may well be additional points which would now be classified
asinliersif the distance threshold was applied to the new model. For example, suppose
the line (A, B) in figure 4.8 was selected by RANSAC. This line has a support of
four points, al inliers. After the optimal fit to these four points, there are now 10 points
which would correctly be classified asinliers. Thesetwo steps: optimal fittoinliers; re-
classify inliersusing (4.17); can then be iterated until the number of inliers converges.
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A least-squares fit with inliers weighted by their distance to the model is often used at
this stage.

Robust cost function. An alternative to minimizing C = 3, d3; over theinliersisto
minimize arobust version including all data. A suitable robust cost function is

e e? < t? inlier

D= 27 (di)  with ~(e) = { 2 2 >t* outlier (4.19)

Here d; are point errors and (e) isarobust cost function [Huber-81] where outliers
are given afixed cost. The x? motivation for the threshold is the same as that of (4.17),
where t? isdefined. The quadratic cost for inliers arises from the Gaussian error model,
as described in section 4.3. The constant cost for outliers in the robust cost function
arisesfrom the assumption that outliersfollow adiffuse or uniform distribution, thelog-
likelihood of which is a constant. 1t might be thought that outliers could be excluded
from the cost function by simply thresholding on d, ;. The problem with thresholding
alone is that it would result in only outliers being included because they would incur
No COost.

The cost function D allows the minimization to be conducted on all points whether
they are outliers or inliers. At the start of the iterative minimization D differs from C
only by a constant (given by 4 times the number of outliers). However, as the min-
imization progresses outliers can be redesignated inliers, and this typically occurs in
practice. A discussion and comparison of cost functions is given in appendix A6.8-
(p616).

4.7.3 Other robust algorithms

In RANSAC amodé instantiated from a minimal set is scored by the number of data
points within a threshold distance. An aternative is to score the model by the me-
dian of the distances to all points in the data. The model with least median is then
selected. Thisis Least Median of Squares (LMS) estimation, where, asin RANSAC,
minimum size subset samples are selected randomly with the number of samples ob-
tained from (4.18). The advantage of LM S isthat it requires no setting of thresholds or
apriori knowledge of the variance of the error. The disadvantage of LMSisthat it fails
if more than half the data is outlying, for then the median distance will be to an outlier.
The solution isto use the proportion of outliersto determine the selection distance. For
example if there are 50% outliers then a distance below the median value (the quartile
say) should be used.

Both the RANSAC and LMS algorithms are able to cope with a large proportion of
outliers. If the number of outliersissmall, then other robust methods may well be more
efficient. Theseinclude case deletion, where each point in turn is del eted and the model
fitted to the remaining data; and iterative weighted least-squares, where a data point’s
influence on the fit is weighted inversely by its residual. Generaly these methods
are not recommended. Both Torr [Torr-95b] and Xu and Zhang [Xu-96] describe and
compare various robust estimators for estimating the fundamental matrix.
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Objective

Compute the 2D homography between two images.
Algorithm

(i) Interest points: Compute interest pointsin each image.
(ii) Putative correspondences. Compute a set of interest point matches based on proxim-
ity and similarity of their intensity neighbourhood.
(iii) RANSAC robust estimation: Repeat for N samples, where N is determined adap-
tively asin algorithm 4.5:

(@) Select arandom sample of 4 correspondences and compute the homography H.
(b) Calculatethe distance d, for each putative correspondence.
(c) Compute the number of inliers consistent with H by the number of correspon-

dences for whichd ;| < t = v/5.99 o pixels.

Choose the H with the largest number of inliers. In the case of ties choose the solution
that has the lowest standard deviation of inliers.

(iv) Optimal estimation: re-estimate H from all correspondences classified as inliers, by
minimizing the ML cost function (4.8-p95) using the Levenberg—Marquardt algorithm
of section A6.2(p600).

(v) Guided matching: Further interest point correspondences are now determined using
the estimated H to define a search region about the transferred point position.

The last two steps can be iterated until the number of correspondencesis stable.

Algorithm 4.6. Automatic estimation of a homography between two images using RANSAC.

4.8 Automatic computation of a homography

This section describes an algorithm to automatically compute a homography between
two images. The input to the algorithm is ssimply the images, with no other a priori
information required; and the output is the estimated homography together with a set
of interest points in correspondence. The algorithm might be applied, for example, to
two images of a planar surface or two images acquired by rotating a camera about its
centre.

The first step of the algorithm is to compute interest points in each image. We are
then faced with a “chicken and egg” problem: once the correspondence between the
interest points is established the homography can be computed; conversely, given the
homography the correspondence between the interest points can easily be established.
This problem is resolved by using robust estimation, here RANSAC, as a “search en-
gine”. Theideaisfirst to obtain by some meansaset of putative point correspondences.
It is expected that a proportion of these correspondences will in fact be mismatches.
RANSAC is designed to deal with exactly this situation — estimate the homography
and also a set of inliers consistent with this estimate (the true correspondences), and
outliers (the mismatches).

The algorithm is summarized in algorithm 4.6, with an example of its use shown
infigure 4.9, and the steps described in more detail below. Algorithms with essentially
the same methodology enable the automatic computation of the fundamental matrix
and trifocal tensor directly from image pairs and triplets respectively. Thiscomputation
is described in chapter 11 and chapter 16.
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Deter mining putative correspondences. The aim, in the absence of any knowledge
of the homography, isto provide aninitial point correspondence set. A good proportion
of these correspondences should be correct, but the aim is not perfect matching, since
RANSAC will later be used to eliminate the mismatches. Think of these as “seed”
correspondences. These putative correspondences are obtained by detecting interest
points independently in each image, and then matching these interest points using a
combination of proximity and similarity of intensity neighbourhoods as follows. For
brevity, theinterest points will be referred to as‘ corners’. However, these corners need
not be images of physical cornersin the scene. The corners are defined by a minimum
of the image auto-correlation function.

For each corner at (z,y) in image 1 the match with highest neighbourhood cross-
correlation in image 2 is selected within a square search region centred on (z, y). Sym-
metrically, for each corner in image 2 the match is sought in image 1. Occasionally
there will be a conflict where a corner in one image is “claimed” by more than one
corner in the other. In such cases a“winner takes all” scheme is applied and only the
match with highest cross-correlation is retained.

A variation on the similarity measure is to use Squared Sum of intensity Differences
(SSD) instead of (normalized) Cross-Correlation (CC). CC is invariant to the affine
mapping of theintensity values(i.e. I — a4 3, scaling plus offset) which often occurs
in practice between images. SSD is not invariant to this mapping. However, SSD is
often preferred when there is small variation in intensity between images, becauseit is
amore sensitive measure than CC and is computationally cheaper.

RANSAC for a homography. The RANSAC algorithm is applied to the putative
correspondence set to estimate the homography and the (inlier) correspondences which
are consistent with this estimate. The sample size is four, since four correspondences
determine a homography. The number of samplesis set adaptively as the proportion of
outliersis determined from each consensus set, as described in algorithm 4.5.

There aretwo issues: what isthe “distance” in this case? and how should the samples
be selected?

(i) Distance measure: The simplest method of assessing the error of a corre-
spondence from a homography H is to use the symmetric transfer error, i.e.
d2 o = d(x,H1x)? + d(x',Hx)?, where x < x’ is the point correspon-
dence. A better, though more expensive, distance measure is the reprojection
error, d% = d(x,%)%+ d(x',x’)?, where x’ = Hx isthe perfect correspondence.
This measure is more expensive because x must also be computed. A further
alternative is Sampson error.

(i) Sample selection: There are two issues here. First, degenerate samples should
be disregarded. For example, if three of the four points are collinear then a
homography cannot be computed; second, the sample should consist of points
with a good spatial distribution over the image. Thisis because of the extrap-
olation problem — an estimated homography will accurately map the region
straddled by the computation points, but the accuracy generally deteriorates
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with distance from this region (think of four pointsin the very top corner of the
image). Distributed spatial sampling can be implemented by tiling the image
and ensuring, by a suitable weighting of the random sampler, that samples with
points lying in different tiles are the more likely.

Robust ML estimation and guided matching. The aim of this final stage is two-
fold: first, to obtain an improved estimate of the homography by using al theinliersin
the estimation (rather than only the four points of the sample); second, to obtain more
inlying matches from the putative correspondence set because a more accurate homog-
raphy is available. An improved estimate of the homography is then computed from
the inliers by minimizing an ML cost function. This fina stage can be implemented
in two ways. One way isto carry out an ML estimation on the inliers, then recompute
the inliers using the new estimated H, and repeat this cycle until the number of inliers
converges. The ML cost function minimization is carried out using the Levenberg—
Marquardt algorithm described in section A6.2(p600). The alternative is to estimate
the homography and inliers simultaneously by minimizing a robust ML cost function
of (4.19) as described in section 4.7.2. The disadvantage of the simultaneous approach
is the computational effort incurred in the minimization of the cost function. For this
reason the cycle approach is usually the more attractive.

4.8.1 Application domain

The algorithm requires that interest points can be recovered fairly uniformly across the
image, and this in turn requires scenes and resol utions which support this requirement.
Scenes should be lightly textured — images of blank walls are not ideal.

The search window proximity constraint places an upper limit on the image motion
of corners (the disparity) between views. However, the algorithm is not defeated if this
constraint is not applied, and in practice the main role of the proximity constraint isto
reduce computational complexity, as a smaller search window means that fewer corner
matches must be evaluated.

Ultimately the scope of the algorithm is limited by the success of the corner neigh-
bourhood similarity measure (SSD or CC) in providing disambiguation between cor-
respondences. Failure generaly results from lack of spatial invariance: the measures
are only invariant to image translation, and are severely degraded by transformations
outside this class such as image rotation or significant differences in foreshortening
between images. One solution is to use measures with a greater invariance to the ho-
mography mapping between images, for example measures which are rotationally in-
variant. An aternative solution is to use an initial estimate of the homography to map
between intensity neighbourhoods. Details are beyond the scope of this discussion,
but are provided in [Pritchett-98, Schmid-98]. The use of robust estimation confers
moderate immunity to independent motion, changes in shadows, partial occlusions etc.



126 4 Estimation — 2D Projective Transformations

Fig. 4.9. Automatic computation of a homography between two images using RANSAC. The mo-
tion between views is a rotation about the camera centre so the images are exactly related by a homog-
raphy. (a) (b) left and right images of Keble College, Oxford. The images are 640 x 480 pixels. (c) (d)
detected corners superimposed on the images. There are approximately 500 corners on each image. The
following results are superimposed on the left image: () 268 putative matches shown by the linelinking
corners, note the clear mismatches; (f) outliers — 117 of the putative matches; (g) inliers — 151 corre-
spondences consistent with the estimated H; (h) final set of 262 correspondences after guided matching
and MLE.
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4.8.2 Implementation and run details

Interest points are obtained using the Harris [Harris-88] corner detector. This detec-
tor localizes corners to sub-pixel accuracy, and it has been found empirically that the
correspondence error is usually less than a pixel [ Schmid-98].

When obtaining seed correspondences, in the putative correspondence stage of the
algorithm, the threshold on the neighbourhood similarity measure for match acceptance
is deliberately conservative to minimize incorrect matches (the SSD threshold is 20).
For the guided matching stage thisthreshold is relaxed (it is doubled) so that additional
putative correspondences are available.

Numberof 1—¢ Adaptive
inliers N

6 2% 20,028,244
10 3% 2,595,658

44 16% 6,922
58 21% 2,291
73 26% 911
151  56% 43

Table 4.4. The results of the adaptive algorithm 4.5 used during RANSAC to compute the homography
for figure 4.9. N isthe total number of samples required as the algorithm runs for p = 0.99 probability
of no outliersin the sample. The algorithm terminated after 43 samples.

For the example of figure 4.9 theimages are 640 x 480 pixels, and the search window
+320 pixels, i.e. the entireimage. Of course amuch smaller search window could have
been used given the actua point disparities in this case. Often in video sequences a
search window of +40 pixels suffices (i.e. a square of side 80 centred on the current
position). Theinlier threshold wast = 1.25 pixels.

A total of 43 samples were required, with the sampling run as shown in table 4.4.
The guided matching required two iterations of the MLE—inlier classification cycle.
The RMS values for d, pixel error were 0.23 before the MLE and 0.19 after. The
Levenberg—Marquardt algorithm required 10 iterations.

4.9 Closure

This chapter has illustrated the issues and techniques that apply to estimating the ten-
sors representing multiple view relations. These ideas will reoccur in each of the com-
putation chapters throughout the book. In each case there are a minimal number of
correspondences required; degenerate configurations that should be avoided; algebraic
and geometric errors that can be minimized when more than the minimal number of
correspondences are avail able; parametrizations that enforce internal constraints on the
tensor etc.

49.1 Theliterature

The DLT agorithm dates back at least to Sutherland [ Sutherland-63]. Sampson’s clas-
sic paper on conic fitting (an improvement on the equally classic Bookstein algorithm)
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appeared in [Sampson-82]. Normalization was made public in the Computer Vision
literature by Hartley [Hartley-97c].

Related reading on numerical methods may be found in the excellent Numerical
Recipesin C [Press-88], and also Gill and Murray [Gill-78] for iterative minimization.

Fischler and Bolles [Fischler-81] RANSAC was one of the earliest robust algo-
rithms, and in fact was developed to solve a Computer Vision problem (pose from
3 points). The original paper is very clearly argued and well worth reading. Other
background material on robustness may be found in Rousseeuw [Rousseeuw-87]. The
primary application of robust estimation in computer vision was to estimating the fun-
damental matrix (chapter 11), by Torr and Murray [Torr-93] using RANSAC, and,
Zhang et al. [Zhang-95] using LMS. The automatic ML estimation of a homography
was described by Torr and Zisserman [Torr-98].

4.9.2 Notesand exercises
(i) Computing homographiesof IP™. The derivation of (4.1-89) and (4.3—89)
assumed that the dimension of x/ is three, so that the cross-product is defined.
However, (4.3) may be derived in a way that generalizes to all dimensions.
Assuming that w; = 1, we may solve for the unknown scale factor explicitly by
writing Hx; = k(z;,v;,1)T. From the third coordinate we obtain k = h®*Tx;,
and substituting thisinto the original equation gives

h'Tx; B h3Tx;
( hZTXZ' > - ( yZ{hBTXi >
which leads directly to (4.3).
(i) Computing homographies for ideal points. If one of the points x; is an
ideal point, so that w; = 0, then the pair of equations (4.3) collapsesto asingle
equation athough (4.1) does contain two independent equations. To avoid such

degeneracy, while including only the minimum number of equations, a good
way to proceed is as follows. We may rewrite the equation x; = Hx; as

[x/]"Hx; = 0

where [x}]* is a matrix with rows orthogonal to x/ so that [x/]*x, = 0. Each
row of [x/]* leads to a separate linear equation in the entries of H. The matrix
[x/]*+ may be obtained by deleting the first row of an orthogonal matrix M satis-
fying Mx, = (1,0,...,0)T. A Householder matrix (see section A4.1.2(p580))
is an easily constructed matrix with the desired property.

(iii) Scaling unbounded point sets. In the case of points at or near infinity in a
plane, it is neither reasonable nor feasible to normalize coordinates using the
isotropic (or non-isotropic) scaling schemes presented in this chapter, since the
centroid and scale are infinite or near infinite. A method that seems to give
good resultsis to normalize the set of points x; = (z;, y;, w;) " such that

w=>y;=0; Zx?—l-y?:QZwiz x4 wl =1V
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Note that the coordinates =; and y; appearing here are the homogeneous co-
ordinates, and the conditions no longer imply that the centroid is at the origin.
Investigate methods of achieving this normalization, and evaluate its properties.

(iv) Transformation invariance of DLT. We consider computation of a 2D ho-
mography by minimizing algebraic error ||Ah|| (see (4.594)) subject to vari-
ous constraints. Prove the following cases:

(@) If ||Ah]| is minimized subject to the constraint hy = Hs; = 1, then the
result is invariant under change of scale but not translation of coordi-
nates.

(b) If instead the constraint is H3, + H2, = 1 then the result is similarity
invariant.

(c) Affinecase: Thesameistruefor theconstraint Hy; = Hsy, = 0; Hys = 1.

(v) Expressions for image coordinate derivatives. For the map x' =
(2',y',w')T = Hx, derive the following expressions (where x’ = (7/,¢/)" =
(2' /v,y /w")T are the inhomogeneous coordinates of the image point):

(a) Derivative wrt x

~ 1 th o i’lh:ﬂ—
ox'/0x = W [ h2T — §/heT 1 (4.20)
whereh’T isthe j—th row of H.
(b) Derivative wrt H
8 L {x" 0 —&'x'
0x'/Oh = » [ 0 xT _jxT ] (4.21)

with h as defined in (4.2—89).

(vi) Sampson error with non-isotropic error distributions. The derivation of
Sampson error in section 4.2.6(p98) assumed that points were measured with
circular error distributions. In the case where the point X = (z,y,2’,v') is
measured with covariance matrix Ix it is appropriate instead to minimize the
Mahalanobis norm ||dx ||z, = dxIx'dx. Show that in this case the formulae
corresponding to (4.11—99) and (4.12—99) are

dx = —3xJT(JExI") e (4.22)
and
163, = €' (JZxJ") e (4.23)

Note that if the measurements in the two images are independent, then the co-
variance matrix £x will be block-diagonal with two 2 x 2 diagonal blocks cor-
responding to the two images.

(vii) Sampson error programming hint. In the case of 2D homography estima-
tion, and in fact every other similar problem considered in this book, the cost
function Cy(X) = A(X)h of section 4.2.6(p98) is multilinear in the coordinates
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Objective
Given n. > 4 image point correspondences {x; < x;}, determine the affine homography H,
which minimizes reprojection error in both images (4.895).
Algorithm

(a) Express points as inhomogeneous 2-vectors. Trandate the points x; by atrangation t
o that their centroid is at the origin. Do the same to the points x; by atranslation t'.
Henceforth work with the translated coordinates.

(b) Formthen x 4 matrix A whose rows are the vectors

1) (3

(c) Let V; and V, betheright singular-vectors of A corresponding to the two largest (sic)
singular values.
(d) LetHyyo = CB~!, whereB and C arethe 2 x 2 blocks such that

B
[V, Va] = [ ; } |
(e) Therequired homography is

H. — { Hoxo Hoxot —t }
A — OT 1 )

and the corresponding estimate of the image points is given by
X; = (V1V] + V,VIX;

Algorithm 4.7. The Gold Sandard Algorithm for estimating an affine homography H, fromimage cor-

respondences.

of X. This means that the partial derivative 0Cy(X)/0X may be very simply

computed. For instance, the derivative

aCH(fEa 9793/7?/)/855 = CH(:B + 17 Y, xlay/) - CH(‘T’ y7$,7 y,)

is exact, not a finite difference approximation. This means that for pro-
gramming purposes, one does not need to code a special routine for taking
derivatives — the routine for computing Cy(X) will suffice. Denoting by E;
the vector containing 1 in the i-th position, and otherwise 0, one sees that

0Cx(X)/0X; = Cy(X + E;) — Cy(X), and further
33T =3 (Ca(X + Ei) — Cu(X)) (Ca(X + E;) — Ca(X))" .

(2

Also note that computationally it is more efficient to solve JJT A = —e directly

for A, rather than taketheinverseas A = —(JJ7) " le.

(viii) Minimizing geometric error for affine transformations. Given a set of
correspondences (x;, y;) < (%, y}), find an affine transformation H, that mini-
mizes geometric error (4.8—95). We will step through the derivation of alinear
algorithm based on Sampson’s approximation which is exact in this case. The

complete method is summarized in agorithm 4.7.
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(&) Show that the optimum affine transformation takes the centroid of the x;
to the centroid of x;, so by translating the points to have their centroid
at the origin, the trandlation part of the transformation is determined. It
isonly necessary then to determine the upper-left 2 x 2 submatrix Hy o
of H,, which represents the linear part of the transformation.

(b) ThepointX; = (x;,x,")T lieson Vy if and only if [Hyyo| — Iox]X = 0.
So Vy is a codimension-2 subspace of IR*.

(c) Any codimension-2 subspace may be expressed as [Haxo| — I|X = 0
for suitable Hy.». Thus given measurements X;, the estimation task is
equivalent to finding the best-fitting codimension-2 subspace.

(d) Given a matrix M with rows X, the best-fitting subspace to the X; is
spanned by the singular vectors v, and v, corresponding to the two
largest singular values of M.

(e) TheH,, corresponding to the subspace spanned by v; and v, isfound
by solving the equations [Ha 2| — I|[V1Vs] = 0.

(ixX) Computing homographies of IP? from line correspondences.  Consider
computing a4 x 4 homography H from lines correspondences alone, assuming
the lines are in general position in IP3. There are two questions. how many
correspondences are required?, and how to formulate the algebraic constraints
to obtain a solution for H? It might be thought that four line correspondences
would be sufficient because each line in IP3 has four degrees of freedom, and
thus four lines should provide 4 x 4 = 16 constraints on the 15 degrees of
freedom of H. However, a configuration of four lines is degenerate (see section
4.1.3(p91)) for computing the transformation, as there is a 2D isotropy sub-
group. Thisis discussed further in [Hartley-94c]. Equations linear in H can be
obtained in the following way:

mHX; =0, i=1,2 j=1,2,

where H transfers a line defined by the two points (X, X5) to a line defined
by the intersection of the two planes (71, w2). This method was derived in
[Oskarsson-02], where more details are to be found.
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Algorithm Evaluation and Error Analysis

This chapter describes methods for assessing and quantifying the results of estima-
tion algorithms. Often it is not sufficient to simply have an estimate of a variable or
transformation. Instead some measure of confidence or uncertainty is also required.

Two methods for computing this uncertainty (covariance) are outlined here. The
first is based on linear approximations and involves concatenating various Jacobian
expressions. The second is the easier to implement Monte Carlo method.

5.1 Boundson performance

Once an agorithm has been developed for the estimation of a certain type of trans-
formation it is time to test its performance. This may be done by testing it on real or
on synthetic data. In this section, testing on synthetic data will be considered, and a
methodol ogy for testing will be sketched.

We recall the notational convention:

e A quantity such as x represents a measured image point.
e Estimated quantities are represented by a hat, such as x or H.
e True values are represented by a bar, such asx or H.

Typicaly, testing will begin with the synthetic generation of a set of image corre-
spondences x; < X; between two images. The number of such correspondences will
vary. Corresponding points will be chosen in such a way that they correspond via a
given fixed projective transformation H, and the correspondence is exact, in the sense
that X, = Hx; precisely, up to machine accuracy.

Next, artificial Gaussian noise will be added to the image measurements by perturb-
ing both the z- and y-coordinates of the point by a zero-mean Gaussian random vari-
able with known variance. The resulting noisy points are denoted x; and x;. A suitable
Gaussian random number generator is given in [Press-88]. The estimation algorithm
Is then run to compute the estimated quantity. For the 2D projective transformation
problem considered in chapter 4, this means the projective transformation itself, and
also perhaps estimates of the correct origina noise-free image points. The agorithm
is then evaluated according to how closely the computed model matches the (noisy)
input data, or aternatively, how closely the estimated model agrees with the origina

132
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noise-free data. This procedure should be carried out many times with different noise
(i.e. adifferent seed for the random number generator, though each time with the same
noise variance) in order to obtain a statistically meaningful performance evaluation.

5.1.1 Error in oneimage

To illustrate this, we continue our investigation of the problem of 2D homography es-
timation. For simplicity we consider the case where noise is added to the coordinates
of the second image only. Thus, x; = x; for al i. Let x; < x| be a set of noisy
matched points between two images, generated from a perfectly matched set of data by
injection of Gaussian noise with variance o2 in each of the two coordinates of the sec-
ond (primed) image. Let there be n such matched points. From this data, a projective
transformation H is estimated using any one of the algorithms described in chapter 4.
Obviously, the estimated transformation H will not generally map x; to x/, nor x; to X/
precisely, because of the injected noise in the coordinates of x;. The RMS (root-mean-
squared) residual error

1 1/2
€res = <2n ;d(xg,fcg)Q) (5.2)

measures the average difference between the noisy input data (x;) and the estimated
points X, = Hx;. It is therefore appropriately called residual error. It measures how
well the computed transformation matches the input data, and as such is a suitable
quality measure for the estimation procedure.

Thevalue of theresidual error isnot initself an absolute measure of the quality of the
solution obtained. For instance, consider the 2D projectivity problem in the case where
the input data consists of just 4 matched points. Since a projective transformation is
defined uniquely and exactly by 4 point correspondences, any reasonable algorithm
will compute an H that matches the points exactly, in the sense that x;, = Hx;. This
means that the residual error is zero. One cannot expect any better performance from
an algorithm than this.

Note that H matches the projected points to the input datax’, and not to the original
noise-free data, x;. In fact, since the difference between the noise-free and the noisy
coordinates has variance o2, in the minimal four-point case the residual difference be-
tween projected points Hx; and the noise-free data %, also has variance 0. Thus, in the
case of 4 points, the model fits the noisy input data perfectly (i.e. the residual is zero),
but does not give a very close approximation to the true noise-free values.

With more than 4 point matches, the value of the residua error will increase. In
fact, intuitively, one expects that as the number of measurements (matched points)
increases, the estimated model should agree more and more closely with the noise-free
true values. Asymptotically, the variance should decrease in inverse proportion to the
number of point matches. At the sametime, the residual error will increase.
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Fig. 5.1. Asthevalues of the parameters P vary, the function image traces out a surface S,, through the
true value X.

5.1.2 Error in both images
In the case of error in both images, the residual error is

n n 1/2
1
oy (S + S 07 52

where x; and x| are estimated points such that X; = Hx;

5.1.3 Optimal estimators (MLE)

Bounds for estimation performance will be considered in a general framework, and
then specialized to the two cases of error in one or both images. The goal is to derive
formulae for the expected residua error of the Maximum Likelihood Estimate (MLE).
As described previously, minimization of geometric error is equivalent to MLE, and
so the goal of any algorithm implementing minimization of geometric error should be
to achieve the theoretical bound given for the MLE. Another agorithm minimizing a
different cost function (such as algebraic error) can be judged according to how close
it gets to the bound given by the MLE.

A general estimation problem is concerned with a function f from IR to RY as
described in section 4.2.7(p101), where IR is a parameter space, and IR” is a space
of measurements. Consider now a point X € IRY for which there exists a vector of
parametersP € IRM suchthat f(P) = X (i.e. apoint X intherange of f with preimage
P). In the context of 2D projectivities with measurements in the second image only,
this corresponds to anoise-free set of pointsx; = Hx;. The z- and y-components of the
n pointsx;,i = 1,...,n constitute the N-vector X with N = 2n, and the parameters
of the homography constitute the vector P which may be an 8- or 9-vector depending
on the parametrization of H.

Let X be a measurement vector chosen according to an isotropic Gaussian distribu-
tion with mean the true measurement X and variance No? (this notation means that
each of the V components has variance 2). As the value of the parameter vector P
varies in a neighbourhood of the point P, the value of the function f(P) traces out a
surface S, in IR™ through the point X. Thisisillustrated in figure 5.1. The surface S,,
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Fig. 5.2. Geometry of the errors in measurement space using the tangent plane approximation to .Sy;.
The estimated point X is the closest point on Sy, to the measured point X. The residual error is the

distance between the measured point X and X. The estimation error is the distance from X to thetrue
point X.

is given by the range of f. The dimension of the surface as a submanifold of RY is
equal to d, where d isthe number of essential parameters (that is the number of degrees
of freedom, or minimum number of parameters). In the single-image error case, this
equals 8, since the mapping determined by the matrix H is independent of scale.

Now, given a measurement vector X, the maximum likelihood (ML) estimate X is
the point on S, closest to X. The ML estimator isthe one that returns this closest point
to X that lies on this surface. Denote this ML estimate by X.

We now assume that in the neighbourhood of X, the surfaceis essentially planar and
iswell approximated by the tangent surface — at least for neighbourhoods around X of
the order of magnitude of noise variance. In thislinear approximation, the ML estimate
X isthe foot of the perpendicular from X onto the tangent plane. The residual error is
the distance from the point X to the estimated value X. Furthermore, the distance from
X to (the unknown) X is the distance from the optimally estimated value to the true
value as seen in figure 5.2. Our task isto compute the expected value of these errors.

Computing the expected ML residual error has now been abstracted to a geomet-
ric problem as follows. The total variance of an N-dimensional Gaussian distribution
is the trace of the covariance matrix, that is the sum of variances in each of the ax-
ial directions. This is, of course, unchanged by a change of orthogonal coordinate
frame. For an N-dimensional isotropic Gaussian distribution with independent vari-
ances o2 in each variable, the total variance is No2. Now, given an isotropic Gaussian
random variable defined on IRY with total variance No? and mean the true point X,
we wish to compute the expected distance of the random variable from a dimension
d hyperplane passing through X. The projection of a Gaussian random variable in
IR onto the d-dimensional tangent plane gives the distribution of the estimation er-
ror (the difference between the estimated value and the true result). Projection onto the
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(N —d)-dimensional normal to the tangent surface gives the distribution of the residual
error.

By arotation of axes if necessary, one may assume, without loss of generality, that
the tangent surface coincides with the first d coordinate axes. Integration over the
remaining axial directions provides the following result.

Result 5.1. The projection of an isotropic Gaussian distribution defined on IRY with to-
tal variance No? onto a subspace of dimension s is an isotropic Gaussian distribution
with total variance so?.

The proof of thisis straightforward, and is omitted. We apply this in the two cases
wheres = d and s = N — d to obtain the following results.

Result 5.2. Consider an estimation problemwhere N measurements are to be modelled
by a function depending on a set of d essential parameters. Suppose the measurements
are subject to independent Gaussian noise with standard deviation ¢ in each measure-
ment variable.

(i) The RMSresidual error (distance of the measured from the estimated value)
for the ML estimator is

res = E[|X = X|2/N]Y2 = o(1 — d/N)"/? (53)

(i) The RMSestimation error (distance of the estimated from the true value) for
the ML estimator is

et = B[||IX = X[*/N]'? = o(d/N)"/? (5.4)

where X, X and X are respectively the measured, estimated and true values of the
measurement vector.

Result 5.2 follows directly from result 5.1 by dividing by N to get the variance per
measurement, then taking a square root to get standard deviation, instead of variance.

These values give lower bounds for residual error against which a particular estima-
tion algorithm may be measured.

2D homography —error in oneimage. For the 2D projectivity estimation problem
considered in this chapter, assuming error in the second image only, we have d = 8 and
N = 2n, where n isthe number of point matches. Thus, we have for this problem

es = o(1—4/n)"?
€t = o(4/n)"?. (5.5)

Graphs of these errors as n varies are shown in figure 5.3.
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Residual / Error
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Fig. 5.3. Optimal error when noiseis present in (a) oneimage, and in (b) both images as the number of
points varies. An error level of one pixel is assumed. The descending curve shows the estimation error
€est and the ascending curve shows the residual error ;.

Error in both images. Inthiscase, N = 4n and d = 2n + 8. As before, assuming
linearity of the tangent surface in the neighbourhood of the true measurement vector
X, result 5.2 gives the following expected errors.

n—4 1/2
€res = U( )
2n

n+ 4\ /2
€ost = J( on > ) (5.6)

Graphs of these errors as n varies are also shown in Figure 5.3.

An interesting observation to be made from this graph is that the asymptotic error
with respect to the true valuesis o/+/2, and not 0 asin the case of error in one image.
This result is expected, since in effect, one has two measurements of the position of
each point, one in each image, related by the projective transformation. With two
measurements of a point the variance in the estimate of the point position decreases
by a factor of v/2. By contrast, in the previous case where errors occur in one image
only, one has one exact measurement for each point (i.e. inthefirstimage). Thus, asthe
transformation H is estimated with greater and greater accuracy, the exact position of the
point in the second image becomes known with uncertainty asymptotically approaching
0.

Mahalanobis distance. The formulae quoted above were derived under the assump-
tion that the error distribution in measurement space was an isotropic Gaussian distri-
bution, meaning that errors in each coordinate were independent. This assumption is
not essential. We may assume any Gaussian distribution of error, with covariance ma-
trix £. The formulae of result 5.2 remain true with ¢ being replaced with the expected
Mahalanobis distance E[||X — X||2/N]'/2. The standard deviation ¢ also disappears,
since it istaken care of by the Mahalanobis distance.

This follows from a simple change of coordinates in the measurement space IR
to make the covariance matrix equal to the identity. In this new coordinate frame,
M ahal anobis distance becomes the same as Euclidean distance.
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5.1.4 Determining the correct convergence of an algorithm

Therelations given in (5.3) and (5.4) give asimple way of determining correct conver-
gence of an estimation algorithm, without the need to determine the number of degrees
of freedom of the problem.  As seen in figure 5.2, the measurement space corre-
sponding to the model specified by the parameter vector P forms a surface S,,. If near
the noise-free data X the surface is nearly planar, then it may be approximated by its
tangent plane, and the three points X, X and X form a right-angled triangle. In most
estimation problems this assumption of planarity will be very close to correct at the
scale set by typical noise magnitude. In this case, the Pythagorean equality may be
written as

X = x|* = % = X[* + |x - X|* (5.7)

In evaluating an algorithm with synthetic data, this equality allows a simple test to see
whether the algorithm has converged to the optimal value. If the estimated value X
satisfies this equality, then it is a strong indication that the algorithm has found the
true global minimum. Note that it is unnecessary in applying this test to determine the
number of degrees of freedom of the problem. A few more properties are listed:

e Thistest can be used to determine on a run-by-run basis whether the algorithm has
succeeded. Thus, with repeated runs, it allows an estimate of the percentage success
rate for the algorithm.

e This test can only be used for synthetic data, or at least data for which the true
measurements X are known.

e The equality (5.7) depends on the assumption that the surface S,; consisting of valid
measurements is locally planar. If the equality is not satisfied for a particular run of
the estimation algorithm, then this is because the surface is not planar, or (far more
likely) because the algorithm is failing to find the best solution.

e Thetest (5.7) isatest for the algorithm finding the global, not alocal solution. If X
settlesto alocal cost minimum, then the right-hand-side of (5.7) islikely to be much
larger than the left-hand-side. The condition is unlikely to be satisfied entirely by
chance if the algorithm finds the incorrect point X.

5.2 Covariance of the estimated tr ansfor mation

In the previous section the ML estimate was considered, and how its expected average
error may be computed. Comparing the achieved residual error or estimation error of
an algorithm against the ML error is a good way of evaluating the performance of a
particular estimation algorithm, since it compares the results of the algorithm against
the best that may be achieved (the optimum estimate) in the absence of any other prior
information.

Nevertheless, the chief concern is how accurately the transformation itself has been
computed. The uncertainty of the estimated transformation depends on many factors,
including the number of points used to compute it, the accuracy of the given point
matches, as well as the configuration of the pointsin question. To illustrate the impor-
tance of the configuration suppose the points used to compute the transformation are
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close to a degenerate configuration; then the transformation may not be computed with
great accuracy. For instance, if the transformation is computed from a set of points that
lie close to a straight line, then the behaviour of the transformation in the dimension
perpendicular to that line is not accurately determined. Thus, whereas the achievable
residual error and estimation error were seen to be dependent only on the number of
point correspondences and their accuracy, by contrast, the accuracy of the computed
transformation is dependent on the particular points. The uncertainty of the computed
transformation is conveniently captured in the covariance matrix of the transformation.
Since H isamatrix with 9 entries, its covariance matrix will bea9 x 9 matrix. Inthis
section it will be seen how this covariance matrix may be computed.

5.2.1 Forward propagation of covariance

The covariance matrix behavesin a pleasantly simple manner under affine transforma-
tions, as described in the following theorem.

Result 5.3. Let v bearandomvector in IR with mean v and covariance matrix &, and
supposethat f : RM — RY isan affine mapping defined by f(v) = f(v) + A(v — V).
Then f(v) isarandom variable with mean f(v) and covariance matrix AZAT.

Note that it is not assumed that A is a square matrix. Instead of giving a proof of this
theorem, we give an example.

Example5.4. Let x and y be independent random variables with mean 0 and standard
deviations of 1 and 2 respectively. What are the mean and standard deviation of ' =
flx,y) =3z +2y =77

Themeanisz’ = f(0,0) = —7. Next we compute the variance of z’. In this case, &
is the matrix [1) 2 and A isthe matrix [3 2]. Thus, the variance of 2/ iSAZAT = 25.
Thus 3z + 2y — 7 has standard deviation 5. A

Example5.5. Leta’ = 3x+2y andy’ = 3z —2y. Find the covariance matrix of (z',v'),
given that x and y have the same distribution as before.

3 25 =7

In this case, the matrix A = 3 _9 | One computes ATAT = 795 | Thus,
one sees that both 2’ and ' have variance 25 (standard deviation 5), whereas =’ and 3/
are negatively correlated, with covariance E[z'y/] = —7. JAN

Non-linear propagation. If v isarandom vector in RM and f : RY — IR" isa
non-linear function acting on v, then we may compute an approximation to the mean
and covariance of f(v) by assuming that f isapproximately affinein the vicinity of the
mean of the distribution. The affine approximationto f is f(v) ~ f(v) + J(v — v),
where J is the partial derivative (Jacobian) matrix 0 f/0v evaluated at v. Note that J
hasdimension N x M. Then we have the following result.

Result 5.6. Let v be a random vector in IR™ with mean v and covariance matrix £,
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and let f : RM — IRY be differentiable in a neighbourhood of v. Then up to a first-
order approximation, f(v) isarandomvariablewith mean f(v) and covariance J£JT,
where J isthe Jacobian matrix of f, evaluated at v.

The extent to which this result gives a good approximation to the actual mean and
variance of f(v) depends on how closely the function f is approximated by a linear
function in a region about v.commensurate in size with the support of the probability
distribution of v.

Example5.7. Let x = (z,y)" be a Gaussian random vector with mean (0,0)" and
covariance matrix o2diag(1,4). Let 2’ = f(z,y) = 2> + 3z — 2y + 5. Then one may
compute the true values of the mean and standard deviation of f(x,y) according to the
formulae

# = [ [ Play)f(ey)dady
ot = [ [ Py - 7)dedy

where

1 (22402 o2
P(z,y) = 47T02€ (z2+y?/4)/2

isthe Gaussian probability distribution (A2.14565). One obtains
¥ = 5+40°
o2, = 250°+ 20"
Applying the approximation given by result 5.6, and noting that J = [3 — 2], wefind
that the estimated values are
¥ =5
o = o’[3 —2] [ L 1 ] [3 —2]T = 2507

Thus, aslong as o is small, this is a close approximation to the correct values of the
mean and variance of x’. The following table shows the true and approximated values
for the mean and standard deviation of f(z,y) for two different values of o.

o=0.25 oc=20.5

f/ Oy f, (%
estimate 5.0000 1.25000 5.00 2.5000
true 50625 1.25312 525 25249

For reference, in the case o = (.25, one sees that aslong as |z| < 20 (about 95%
of the total distribution) the value f(z,y) = 2% + 3z — 2y + 5 differs from its linear
approximation 3z — 2y + 5 by no more than 22 < 0.25. A
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Example5.8. More generally, assuming that = and y are independent zero-mean Gaus-
sian random variables, one may compute that for the function f(x,y) = ax?® + bxy +
cy* +dr+ey+ f,

_ 2 2
mean = ao, +co, + f
H 2 4 2 2 2 2 4 2 2 2 2
variance = 2a’c, +b°0,0, +2c0, +d70, + €0,

which are close to the estimated valuesmean = f, variance = d*c’ + €0, aslong as
o, and o, are small. JAN

5.2.2 Backward propagation of covariance

The material in thisand the following section 5.2.3 is more advanced. The examplesin
section 5.2.4 show the straightforward application of the results of these sections, and
can be read first.

Consider a differentiable mapping f from a*“parameter space”’, IRM to a “measure-
ment space” IRY, and let a Gaussian probability distribution be defined on IR™Y with
covariance matrix . Let Sy, be the image of the mapping f. We assumethat M < N
and that S,; has the same dimension M as the parameter space IRY. Thus we are
not considering the over-parametrized case at present. A vector P in IRM represents
a parametrization of the point f(P) on S,,. Finding the point on S, closest in Maha-
lanobis distance to a given point X in IR™ defines a map from IR" to the surface S,,.
We call thismapping n : RY — S,;. Now, f isby assumption invertible on the surface
Sy, and we define =1 : S,, — IRM to betheinverse function.

By composing themap  : RV — S, and f~! : S, — IR™ we have a mapping
f~ton:RY — IRM. This mapping assigns to a measurement vector X, the set of
parameters P corresponding to the ML estimate X. In principle we may propagate the
covariance of the probability distribution in the measurement space IR to compute a
covariance matrix for the set of parameters P corresponding to ML estimation. Our
goal isto apply result 5.3 or result 5.6.

We consider first the case where the mapping f is an affine mapping from IRM into
IRY. We will show next that the mapping f~! o 7 is aso an affine mapping, and
a specific form will be given for f=! o 1, thereby allowing us to apply result 5.3 to
compute the covariance of the estimated parameters P = ! o n(X).

Since f is affine, we may write f(P) = f(P) + J(P — P), where f(P) = X isthe
mean of the probability distribution on IR™Y. Since we are assuming that the surface
Su = f(IRM) hasdimension M, therank of J isequal to its column dimension. Given
a measurement vector X, the ML estimate X minimizes ||X — X||z = ||X — f(P)|z.
Thus, we seek P to minimize this latter quantity. However,

X = f®)llz = (X —X) = I(P —P)]|;
and thisis minimized (see (A5.2—p591) in section A5.2.1(p591)) when

P-P)=Jz ') U (x-X) .
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WritingP = f~'X and P = f~'X, we seethat

fTlon(x) = P
= ") (X - X))+ fHX)
= Q)T (X —X) + flon(X) .

This shows that f~! o 5 is affine and (JTz~1J)"1JTz ! isiits linear part. Applying
result 5.3, we see that the covariance matrix for P is

-
(T ) T 2 0T T = (0Te ) T e T )
recalling that & is symmetric. We have proved the following theorem.

Result 5.9 Backward transport of covariance—affinecase. Let f : RM — IRY be
an affine mapping of the form f(P) = f(P) + J(P — P), where J hasrank M. Let
X be a random variable in IR™ with mean X = f(P) and covariance matrix £. Let
fton : RY — IRM be the mapping that maps a measurement X to the set of
parameters corresponding to the ML estimate X. Then P = f~! o n(X) is a random
variable with mean P and covariance matrix

Lp = (JT5t )7 (5.8)

In the case where f is not affine, an approximation to the mean and covariance may
be obtained by approximating f by an affine function in the usual way, as follows.

Result 5.10 Backward transport of covariance—non-linear case. Let f : RY —
IRY be a differentiable mapping and let J be its Jacobian matrix evaluated at a point
P. Suppose that J hasrank M. Then f is one-to-one in a neighbourhood of P. Let
X be a random variable in IR" with mean X = f(P) and covariance matrix Ix. Let
f~ton:RY — RM be the mapping that maps a measurement X to the set of pa-
rameters corresponding to the ML estimate X. Then to first-order, P = f~! on(X) isa
random variable with mean P and covariance matrix (JTx3!J)~1,

5.2.3 Over-parametrization

One may generalize result 5.9 and result 5.10 to the case of redundant sets of parame-
ters—the over-parametrized case. In this case, the mapping f from the parameter space
IRM to measurement space IR is not locally one-to-one. For instance, in the case of
estimating a2D homography as discussed in section 4.5(p110) thereisamapping f (P)
where P is a 9-vector representing the entries of the homography matrix H. Since the
homography has only 8 degrees of freedom, the mapping f is not one-to-one. In par-
ticular, for any constant k, the matrix kH represents the same map, and so the image
coordinate vectors f(P) and f(kP) are equal.

In the genera case of amapping f : RM® — IRY the Jacobian matrix J does not
have full rank M, but rather a smaller rank d < M. Thisrank d is called the number
of essential parameters. The matrix JTZL!'J in this case has dimension M but rank
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Fig. 5.4. Back propagation (over-parametrized). Mapping f maps constrained parameter surfaceto
measurement space. A measurement X is mapped (by a mapping 7) to the closest point on the surface
f(Sy) and then back via f~! to the parameter space, providing the ML estimate of the parameters. The
covariance of X istransferred via f ~! o ) to a covariance of the parameters.

d < M. Theformula (5.8), &p = (JTzx'J)}, clearly does not hold, since the matrix
on theright sideis not invertible.

In fact, it is clear that without any further restriction, the elements of the estimated
vector P may vary without bound, namely through multiplication by an arbitrary con-
stant £. Hence the elements have infinite variance. It is usual to restrict the estimated
homography matrix H or more generally the parameter vector P by imposing some con-
straint. The usual constraint isthat ||P|| = 1 though other constraints are possible, such
as demanding that the last parameter should equal 1 (see section 4.4.2(p105)). Thus,
the parameter vector P is constrained to lie on a surface in the parameter space IR, or
generaly RM. In the first case the surface ||P|| = 1 is the unit sphere in IR*. The
constraint P,, = 1 represents aplanein IR. In the general case we may assume that
the estimated vector P lies on some submanifold of IRM asin the following theorem.

Result 5.11. Backward transport of covariance — over-parametrized case. Let
f: IRM™ — RY be a differentiable mapping taking a parameter vector P to a mea-
surement vector X. Let S, be a smooth manifold of dimension d embedded in RM
passing through point P, and such that the map f is one-to-one on the manifold S, in
a neighbourhood of P, mapping S, locally to a manifold f(.S;) in IRY. The function f
hasa local inverse, denoted f~!, restricted to the surface f(S;) in a neighbourhood of
X. Let a Gaussian distribution on IR™ be defined with mean X and covariance matrix
rx and let n : RY — f(S;,) be the mapping that takes a point in IR™ to the closest
point on f(S,) with respect to Mahalanobis norm|| - ||5,. Via f~! o i) the probability
distribution on IR with covariance matrix £x induces a probability distribution on
IRM with covariance matrix, to first-order equal to

£p = (JTot D)™ = A(ATI Tt ga) AT (5.9)
where A isany m x d matrix whose column vectors span the tangent spaceto S; at P.

Thisisillustrated in figure 5.4. The notation (JTz3J)*™*, defined by (5.9), is dis-
cussed further in section A5.2(p590).
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Proof. The proof of result 5.11 is straightforward. Let d be the number of essential
parameters. One defines amap g : R? — IR mapping an open neighbourhood
U in IR? to an open set of S, containing the point P. Then the combined mapping
fog:R?Y — RN is oneto-one on the neighbourhood U. Let us denote the partial
derivative matrices of f by J and of ¢ by A. The matrix of partial derivativesof f o gis
then JA. Result 5.10 now applies, and one sees that the probability distribution function
with covariance matrix £ on IR may be transported backwards to a covariance matrix
(ATJTz=1Ja)~! on IRY. Transporting this forwards again to IRM, applying result 5.6,
we arrive at the covariance matrix A(ATJTz=1JA)~1AT on S;. This matrix, which will
be denoted here by (JTz~1J)*™4, isrelated to the pseudo-inverse of (JTz~1J) asdefined
in section A5.2(p590). The expression (5.9) isnot dependent on the particular choice of
the matrix A aslong as the column span of A isunchanged. In particular, if A isreplaced
by AB for any invertible d x d matrix B, then the value of (5.9) does not change. Thus,
any matrix A whose columns span the tangent space of S, at P will do.

Note that the proof gives a specific way of computing amatrix A spanning the tangent
space — namely the Jacobian matrix of g. In many instances, as we will see, there are
easier ways of finding A. Note that the covariance matrix (5.9) issingular. In particular,
it has dimension M and rank d < M. This is because the variance of the estimated
parameter set in directions orthogonal to the constraint surface S; is zero — there can
be no variation in that direction. Note that whereas JT£~'J is non-invertible, the d x d
matrix ATJTZ~1JA hasrank d and isinvertible.

An important case occurs when the constraint surface is locally orthogonal to the
null-space of the Jacobian matrix. Denote by N (X) the left null-space of matrix X,
namely the space of all vectors x such that x"X = 0. Then (as shown in section A5.2-
(p590)), the pseudo-inverse X is given by

Xt =X = AATXA)'AT

if and only if N (A) = Np(X). The following result then derives directly from
result 5.11.

Result5.12. Let f : IRM — IRY be a differentiable mapping taking P to X, and let J
be the Jacobian matrix of f. Let a Gaussian distribution on IR" be defined at X with
covariance matrix £x and let f~! on : RN — RM asin result 5.11 be the mapping
taking a measurement X to the MLE parameter vector P constrained to lie on a surface
S: locally orthogonal to the null-space of J. Then f~! o n induces a distribution on
IRM with covariance matrix, to first-order equal to

£p = (JTogtd)™. (5.10)

Note that the restriction that P be constrained to lie on a surface locally orthogonal
to the null-space of J is in many cases the natural constraint. For instance, if P is
a homogeneous parameter vector (such as the entries of a homogeneous matrix), the
restriction is satisfied for the usual constraint ||P|| = 1. In such a case, the constraint
surface is the unit sphere, and the tangent plane at any point is perpendicular to the
parameter vector. On the other hand, since P is a homogeneous vector, the function
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f(P) isinvariant to changes of scale, and so J has a null-vector in the radia direction,
thus perpendicular to the constraint surface.

In other cases, it is often not critical what restriction we place on the parameter set
for the purpose of computing the covariance matrix of the parameters. In addition,
since the pseudo-inversion operation is its own inverse, we can retrieve the original
matrix from its pseudo-inverse, according to JTo;!J = £5. One can then compute the
covariance matrix corresponding to any other subspace, according to

where the columns of A span the constrained subspace of parameter space.

5.2.4 Application and examples

Error in oneimage. Let usconsider the application of this theory to the problem of
finding the covariance of an estimated 2D homography H. First, we look at the case
where the error is limited to the second image. The 3 x 3 matrix H is represented by
a 9-dimensiona parameter vector which will be denoted by h instead of P so as to
remind us that it is made up of the entries of H. The covariance of the estimated h
isa9 x 9 symmetric matrix. We are given a set of matched points x; < x.. The
points x; are fixed true values, and the points x, are considered as random variables
subject to Gaussian noise with variance % in each component, or if desired, with a
more genera covariance. The function f : IR — IR?" is defined as mapping a 9-
vector h representing a matrix H to the 2n-vector made up of the coordinates of the
points x; = Hx;. The coordinates of x, make up a composite vector in IR", which we
denote by X’. Aswe have seen, as h varies, the point f(h) traces out an 8-dimensional
surface S, in IR?*". Each point X’ on the surface represents a set of points x/; consistent
with the first-image points x;. Given a vector of measurements X’, one selects the
closest point X’ on the surface S, with respect to Mahal anobis distance. The pre-image
h = f~1(X'), subject to constraint ||h|| = 1, represents the estimated homography
matrix H, estimated using the ML estimator. From the probability distribution of values
of X’ onewishesto derive the distribution of the estimated h. The covariance matrix &,
isgiven by result 5.12. This covariance matrix corresponds to the constraint || h|| = 1.

Thus, a procedure for computing the covariance matrix of the estimated transforma-
tionisasfollows.

(i) Estimate the transformation H from the given data.
(i) Compute the Jacobian matrix J; = 0X'/0h, evaluated at h.
(iii) The covariance matrix of the estimated h is given by (5.10): &, = (J}Z;(}Jf)#

We investigate the two last steps of this method in slightly more detail.
Computation of the derivative matrix. Consider first the Jacobian matrix

J = 0X’/oh. This matrix has a natural decomposition into blocks so that J =
(37,33,...,3],..., 30T where J; = 0x,/0h. A formula for 0x//0h is given in
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(4.21129):
1 [x] o7 —ax/

where x; represents the vector (z;,y;, 1).

Stacking these matrices on top of each other for all points x; gives the derivative
matrix 90X’ /0h. Animportant caseiswhen theimage measurementsx areindependent
random vectors. Inthiscaser = diag(%y, ..., L,) whereeach £; isthe 2 x 2 covariance
matrix of the i-th measured point x;. Then one computes

+
Ih = (JTZ )t = (Z JiTZi_lJZ) : (5.12)

Example5.13. We consider the simple numerical example of a point correspondence
containing just 4 points as follows:

x; = (1,007 < (1,0)T =x]
x;=(0,1)T « (0,1)"T =x,
x3=(—1,0)" « (=1,0)" =x]
X4:(0,—1)T — (O,—l)T—X’

namely, the identity map on the points of a projective basis. We assume that points x;
are known exactly, and points x; have one pixel standard deviation in each coordinate
direction. This means that the covariance matrix I, isthe identity.

Obvioudly, the computed homography will be the identity map. For simplicity we
normalize (scaeit) so that it isindeed the identity matrix, and hence ||H||? = 3 instead
of the usual normalization ||H|| = 1. Inthiscase, al the w) in (5.11) areequal to 1. The
matrix J iseasily computed from (5.11) to equal

1 01 0 00 -1 0 -1
0 00 1 01 0 0 0
0o 11 0 00 0 0 0
;| 0 00 0o 11 0 -1 -1
=!-1 01 0 00 -1 0 1
0 00 -1 01 0 0 0
0 -1 1 0 00 0 0 0
0 00 0 -1 1 0 -1 1]
Then
20 00 0 0 0 0 -27
02 00 0 0 0 0 0
00 40 0 0 -2 0 0
00 02 0 0 0 0 0
J'7=| 00 00 2 0 0 0 -2 (5.13)
00 00 0 4 0 -2 0
00 -20 0 0 2 0 0
00 00 0 -2 0 2 0
20 00 -2 0 0 0 4]
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To take the pseudo-inverse of this matrix, we may use (5.9) where A isamatrix with
columns spanning the tangent plane to the constraint surface. Since H is computed
subject to the condition ||H||> = 3, which represents a hypersphere, the constraint sur-
face is perpendicular to the vector h corresponding to the computed homography H.
A Householder matrix A (see section A4.1.2(p580)) corresponding to the vector h has
the property that Ah = (0,...,0,1)7, so the first 8 columns of A (denoted A, )are per-
pendicular to h as required. This allows the pseudo-inverse to be computed exactly
without using SVD. Applying (5.9) the pseudo-inverse is computed to be

1

Th= (JT)™ = A (AT (JTI)A) 'A] = 8
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5.14)
The diagonals give the individual variances of the entries of H. A

~—~

This computed covariance is used to assess the accuracy of point transfer in
example 5.14.

5.2.5 Error in both images

In the case of error in both images, computation of the covariance of the transformation
isabit more complicated. Asseenin section 4.2.7(p101), one may define aset of 2n+8
parameters, where 8 parameters describe the transformation matrix and 2n parameters
x; represent estimates of the points in the first image. More conveniently, one may
over-parametrize by using 9 parameters for the transformation H. The Jacobian matrix
naturally splits up into two partsas J = [A | B] where A and B are the derivatives with
respect to the camera parameters and the points x; respectively. Applying (5.10) one
computes

Tao1. | ATEX'A ATEL'B
T i) = BTrx'A BTz 'B

The pseudo-inverse of thismatrix isthe covariance of the parameter set and the top-left
block of this pseudo-inverse is the covariance of the entries of H. A detailed discussion
of thisis given in section A6.4.1(p608), where it is shown how one can make use of
the block structure of the Jacobian to simplify the computation.

In example 5.13 on estimating the covariance of H from four points in the previous
section, the covariance turns out to be £, = 2(JTzy7 J)*, namely twice the covariance
computed for noise in one image only. This assumes that points are measured with the
same covariance in both images. This ssimple relationship between the covariancesin
the one and two-image cases does not generally hold.
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5.2.6 Usingthe covariance matrix in point transfer

Once one has the covariance, one may compute the uncertainty associated with agiven
point transfer. Consider a new point x in the first image, not used in the computation
of the transformation, H. The corresponding point in the second image is x’ = Hx.
However, because of the uncertainty in the estimation of H, the correct location of the
point x” will also have associated uncertainty. One may compute this uncertainty from
the covariance matrix of H.

The covariance matrix for the point x’ is given by the formula

Ly = JnZnJp (5.15)

where J;, = 0x’/0h. A formulafor 0x’/0h is given in (4.21-p129).
If in addition, the point x itself is measured with some uncertainty, then one has
instead
T = JnIndp + JxEJr (5.16)

assuming that there is no cross-correlation between x and h, which is reasonable, since
point x is assumed to be anew point not used in the computation of the transformation
H. A formulafor the Jacobian matrix J, = 0x’/0x isgivenin (4.20p129).

The covariance matrix £, given by (5.15) is expressed in terms of the covariance
matrix I, of the transformation H. We have seen that this covariance matrix £;, depends
on the particular constraint used in estimating H, according to (5.9). It may therefore
appear that =,, also depends on the particular method used to constrain H. It may
however be verified that these formulae are independent of the particular constraint A
used to compute the covariance matrix &p = (JT3!J)*A.

Example5.14. To continue example5.13, let the computed 2D homography H be given
by the identity matrix, with covariance matrix £y, asin (5.14). Consider an arbitrary
point (x,y) mapped to the point x’ = Hx. In this case the covariance matrix £, =
JnZnJ{ may be computed symbolically to equal

4 ry(a? +y? — 2) 2 —y? + oyt + 2 + 2?y?

y, = [ Og'a! Oaly ] 1 [ 2 — 2% 42t + y? + 2%y zy(2? +y* —2)
* Oty Oyly!

Notethat o,/,, and o,/,, are even functions of « and y, whereas o/, is an odd func-
tion. Thisis a consequence of the symmetry about the x and y axes of the point set
used to compute H. Also note that o,,» and o, differ by swapping = and y, which is
afurther consequence of the symmetry of the defining point set.

As may be seen, the variance o,/ varies as the fourth power of x, and hence the
standard deviation varies as the square. This shows that extrapolating the values of
transformed points x’ = Hx far beyond the set of points used to compute H is not
reliable. More specifically, the RMS uncertainty of the position of x’ is equa to
(Gar + 0yry)'? = \Jtrace(Z,) which one finds is equal to (1 + (22 + 3%)?)1/2 =
(14 r%)Y/2, wherer istheradial distance from the origin. Note the interesting fact that
the RMS error is only dependent on the radial distance. In fact, one may verify that
the probability distribution for point x” depends only on the radial distance of x/, its
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Fig. 5.5. RMSerror inthe position of a projected point x’ as a function of radial distance of x’ fromthe
origin. The homography H is computed from 4 evenly spaced points on a unit circle around the origin
with errors in the second image only. The RMSerror is proportional to the assumed error in the points
used to compute H, and the vertical axisis calibrated in terms of this assumed error.

two principal axes pointing radially and tangentially. Figure 5.5 shows the graph of the
RMS error in x” asafunction of r. JAN

This example has computed the covariance of atransferred point in the minimal case
of four point correspondences. For more than four correspondences, the situation is
not substantially different. Extrapolation beyond the set of points used to compute the
homography is unreliable. In fact, one may show that if H is computed from » points
evenly spaced around a unit circle (instead of 4 as in the computation above) then the
RMS error is equa to o,/ + o,y = 4(1 4+ 7*)/n, so the error exhibits the same
quadratic growth.

5.3 Monte Carlo estimation of covariance

The method of estimating covariance discussed in the previous sections has relied on
an assumption of linearity. In other words, it has been assumed that the surface f(h)
islocally flat in the vicinity of the estimated point, at |east over aregion corresponding
to the approximate extent of the noise distribution. It has also been assumed that the
method of estimation of the transformation H was the Maximum Likelihood Estimate.
If the surface is not entirely flat then the estimate of covariance may be incorrect. In
addition, a particular estimation method may be inferior to the ML estimate, thereby
introducing additional uncertainty in the values of the estimated transformation H.

A genera (though expensive) method of getting an estimate of the covariance is
by exhaustive smulation. Assuming that the noise is drawn from a given noise dis-
tribution, one starts with a set of point matches corresponding perfectly to a given
transformation. One then adds noise to the points and computes the corresponding
transformation using the chosen estimation procedure. The covariance of the trans-
formation H or a further transferred point is then computed statistically from multiple
trials with noise drawn from the assumed noise distribution. Thisis illustrated for the
case of the identity mapping in figure 5.6.

Both the analytical and the Monte Carlo methods of estimating covariance of the
transformation H may be applied to the estimation of covariance from real data for
which one does not know the true value of H. From the given data, an estimate of
H and the corresponding true values of the points x; and x; are computed. Then the
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Fig. 5.6. Transfer of a point under the identity mapping for the normalized and unnormalized DLT
algorithm. See also figure 4.4(p109) for further explanation.

covariance is computed as if the estimated values were the true values of the matched
data points and the transformation. The resulting covariance matrix is assumed to be
the covariance of the true transformation. Thisidentification isbased on the assumption
that the true values of the data points are sufficiently close to the estimated values that
the covariance matrix is essentially unaffected.

5.4 Closure

An extended discussion of bias and variance of estimated parameters is given in
appendix 3(p568).

5.4.1 Theliterature

The derivations throughout this chapter have been considerably simplified by only us-
ing first-order Taylor expansions, and assuming Gaussian error distributions. Similar
ideas (ML, covariance...) can be developed for other distributions by using the Fisher
Information matrix. Related reading may be found in Kanatani [Kanatani-96], Press et
al. [Press-88], and other statistical textbooks.

Criminisi et al. [Criminisi-99b] give many examples of the computed covariances
in point transfer as the correspondences used to determine the homography vary in
number and position.

5.4.2 Notes and exercises

(i) Consider the problem of computing a best line fit to a set of 2D points in the
plane using orthogonal regression. Suppose that N points are measured with
independent standard deviations of ¢ in each coordinate. What is the expected
RMS distance of each point from afitted line? Answer : o ((n — 2)/n)"/2.

(ii) (Harder) : In section 18.5.2(p450) amethod is given for computing a projective
reconstruction from aset of n+4 point correspondences across m views, where
4 of the point correspondences are presumed to be known to be from a plane.
Suppose the 4 planar correspondences are known exactly, and the other » image
points are measured with 1 pixel error (each coordinate in each image). What
is the expected residual error of [[xi — PiX,||?
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This part of the book concentrates on the geometry of a single perspective camera. It
contains three chapters.

Chapter 6 describes the projection of 3D scene space onto a 2D image plane. The
camera mapping is represented by a matrix, and in the case of mapping pointsitisa
3 x 4 matrix P which maps from homogeneous coordinates of aworld point in 3-space
to homogeneous coordinates of the imaged point on theimage plane. Thismatrix hasin
general 11 degrees of freedom, and the properties of the camera, such asits centre and
focal length, may be extracted from it. In particular the internal camera parameters,
such as the focal length and aspect ratio, are packaged in a 3 x 3 matrix K which
is obtained from P by a simple decomposition. There are two particularly important
classes of camera matrix: finite cameras, and cameras with their centre at infinity such
as the affine camera which represents parallel projection.

Chapter 7 describes the estimation of the camera matrix P, given the coordinates
of a set of corresponding world and image points. The chapter also describes how
constraints on the camera may be efficiently incorporated into the estimation, and a
method of correcting for radial lens distortion.

Chapter 8 has three main topics. First, it covers the action of a camera on geometric
objects other than finite points. These include lines, conics, quadrics and points at
infinity. The image of points/lines at infinity are vanishing pointslines. The second
topic is camera calibration, in which the internal parameters K of the camera matrix
are computed, without computing the entire matrix P. In particular the relation of the
internal parameters to the image of the absolute conic is described, and the calibration
of acamerafrom vanishing points and vanishing lines. Thefinal topicisthe calibrating
conic. Thisisasimple geometric device for visualizing camera calibration.

152



6

CameraModels

A camera is a mapping between the 3D world (object space) and a 2D image. The
principal camera of interest in this book is central projection. This chapter develops a
number of camera models which are matrices with particular properties that represent
the camera mapping.

It will be seen that all cameras modelling central projection are specializations of
the general projective camera. The anatomy of this most genera camera model is
examined using the tools of projective geometry. It will be seen that geometric entities
of the camera, such as the projection centre and image plane, can be computed quite
simply from its matrix representation. Specializations of the general projective camera
inherit its properties, for example their geometry is computed using the same algebraic
expressions.

The specialized models fall into two major classes — those that model cameras with
a finite centre, and those that model cameras with centre “at infinity”. Of the cam-
eras at infinity the affine camera is of particular importance because it is the natural
generalization of parallel projection.

This chapter is principally concerned with the projection of points. The action of a
camera on other geometric entities, such aslines, is deferred until chapter 8.

6.1 Finitecameras

In this section we start with the most specialized and simplest camera model, which is
the basic pinhole camera, and then progressively generalize this model through a series
of gradations.

The models we develop are principally designed for CCD like sensors, but are also
applicable to other cameras, for example X-ray images, scanned photographic nega-
tives, scanned photographs from enlarged negatives, etc.

Thebasic pinhole model. We consider the central projection of pointsin space onto a
plane. Let the centre of projection be the origin of a Euclidean coordinate system, and
consider the plane z = f, which is called the image plane or focal plane. Under the
pinhole camera model, a point in space with coordinates X = (X, Y,z)" is mapped to
the point on the image plane where aline joining the point X to the centre of projection
meets the image plane. Thisis shown in figure 6.1. By similar triangles, one quickly
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2 i
\ - p z
principal axis f

image plane

Fig. 6.1. Pinhole camera geometry. C isthe camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre,

computes that the point (X,Y,z)T is mapped to the point (fx/z, fv/z, f)T on the
image plane. Ignoring the final image coordinate, we see that

(X,¥,2)" = (fX/z. f¥/2)" (6.1)

describes the central projection mapping from world to image coordinates. Thisis a
mapping from Euclidean 3-space IR? to Euclidean 2-space IR?.

The centre of projection is called the camera centre. It is also known as the optical
centre. The line from the camera centre perpendicular to the image plane is called the
principal axis or principal ray of the camera, and the point where the principal axis
meets the image plane is caled the principal point. The plane through the camera
centre parallel to theimage planeis called the principal plane of the camera.

Central projection using homogeneous coordinates. If the world and image points
are represented by homogeneous vectors, then central projection is very simply ex-
pressed as a linear mapping between their homogeneous coordinates. In particular,
(6.1) may be written in terms of matrix multiplication as

fX f 0
— | fY | = f 0
z 10

The matrix in this expresson may be written as diag(f, f,1)[I | o] where
diag(f, f,1) isadiagona matrix and [I | 0] represents a matrix divided upintoa3 x 3
block (the identity matrix) plus a column vector, here the zero vector.

We now introduce the notation X for the world point represented by the homoge-
neous 4-vector (X,Y,z,1)T, x for the image point represented by a homogeneous 3-
vector, and P for the 3 x 4 homogeneous camera projection matrix. Then (6.2) iswritten
compactly as

>

(6.2)

= N <
— N < X

x = PX
which defines the camera matrix for the pinhole model of central projection as
P = diag(f, f,1) [T | 0].
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T Ycam

yO pe —
X cam

Fig. 6.2. Image (x,y) and camera (xcam, ycam) coordinate systems.

Principal point offset. The expression (6.1) assumed that the origin of coordinatesin
the image planeis at the principal point. In practice, it may not be, so that in general
there is amapping

(X,Y,2)" = (fX)Z+ pu, fY/Z + )T

where (p,, p,) " arethe coordinates of the principal point. Seefigure 6.2. Thisequation
may be expressed conveniently in homogeneous coordinates as

X X
X+ Zp, f pz O v
;| ™ fY+zp, | = f p, O . (6.3)
z 1 0
1 1
Now, writing
f Pz
K= [ by (6.4)
1
then (6.3) has the concise form
X = K[I | O]Xcarn. (65)

The matrix K is caled the camera calibration matrix. In (6.5) we have written
(X,Y,2Z,1)T as Xcam to emphasize that the camera is assumed to be located at the
origin of a Euclidean coordinate system with the principal axis of the camera pointing
straight down the z-axis, and the point Xcgm is expressed in this coordinate system.
Such a coordinate system may be called the camera coordinate frame.

Camera rotation and trandlation. In general, points in space will be expressed in
terms of adifferent Euclidean coordinate frame, known as the world coordinate frame.
The two coordinate frames are related via a rotation and a translation. See figure 6.3.
If X isan inhomogeneous 3-vector representing the coordinates of a point in the world
coordinate frame, and X¢cam represents the same point in the camera coordinate frame,
then we may write Xcam = R(X —C), where C represents the coordinates of the camera
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R, t

X

Fig. 6.3. The Euclidean transformation between the world and camera coordinate frames.

centre in the world coordinate frame, and R isa 3 x 3 rotation matrix representing the
orientation of the camera coordinate frame. This equation may be written in homoge-
neous coordinates as

X
R —RC Y R —RC
Xcam_lo 1 . lo LS (6.6)
1
Putting this together with (6.5) leads to the formula
x = KR[I | —C|X (6.7)

where X is nhow in aworld coordinate frame. This is the general mapping given by a
pinhole camera. One seesthat ageneral pinhole camera, P = KR[I | —C], has 9 degrees
of freedom: 3 for K (the elements f, p,,p,), 3 for R, and 3 for C. The parameters
contained in K are called the internal camera parameters, or the internal orientation
of the camera. The parameters of R and C which relate the camera orientation and
position to aworld coordinate system are called the external parameters or the exterior
orientation.

It is often convenient not to make the camera centre explicit, and instead to represent
the world to image transformation as Xcgm = RX + t. In this case the camera matrix is
simply

P =X[R | t] (6.8)

where from (6.7) t = —RC.

CCD cameras. The pinhole camera model just derived assumes that the image coor-
dinates are Euclidean coordinates having equal scales in both axial directions. In the
case of CCD cameras, there isthe additional possibility of having non-square pixels. If
image coordinates are measured in pixels, then this has the extra effect of introducing
unequal scale factors in each direction. In particular if the number of pixels per unit
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distance in image coordinates are m, and m,, in the « and y directions, then the trans-
formation from world coordinates to pixel coordinates is obtained by multiplying (6.4)
on theleft by an extrafactor diag(m.,, m,, 1). Thus, the general form of the calibration
matrix of a CCD camerais
Oy, Zo
K= { ay Yo ] (6.9)

1

where a, = fm, and o, = fm, represent the focal length of the camera in terms
of pixel dimensions in the = and y direction respectively. Similarly, xo = (z¢, y0)
is the principal point in terms of pixel dimensions, with coordinates o = m,p, and
Yo = myp,. A CCD camerathus has 10 degrees of freedom.

Finite projective camera. For added generality, we can consider a calibration matrix

of theform
a; S I
K= ay Yo |- (6.10)

The added parameter s is referred to as the skew parameter. The skew parameter
will be zero for most normal cameras. However, in certain unusual instances which are
described in section 6.2.4, it can take non-zero values.

A camera

P =KR[I | —C] (6.11)

for which the calibration matrix X is of the form (6.10) will be called afinite projective
camera. A finite projective camera has 11 degrees of freedom. Thisisthe same number
of degrees of freedom asa 3 x 4 matrix, defined up to an arbitrary scale.

Note that the left hand 3 x 3 submatrix of P, equal to KR, isnon-singular. Conversely,
any 3 x 4 matrix P for which the left hand 3 x 3 submatrix is non-singular is the
camera matrix of some finite projective camera, because P can be decomposed asP =
KR[I | —C]. Indeed, letting M be the left 3 x 3 submatrix of P, one decomposes M as
aproduct M = KR where X is upper-triangular of the form (6.10) and R is a rotation
matrix. This decomposition is essentially the RQ matrix decomposition, described in
section A4.1.1(p579), of which more will be said in section 6.2.4. The matrix P can
therefore be written P = M[I | M~'p,| = KR[I | —C] where p, isthe last column of P.
In short

e The set of camera matrices of finite projective cameras is identical with the set of
homogeneous 3 x 4 matrices for which the left hand 3 x 3 submatrix isnon-singular.

General projective cameras. The final step in our hierarchy of projective camerasis
to remove the non-singularity restriction on the left hand 3 x 3 submatrix. A general
projective camerais one represented by an arbitrary homogeneous 3 x 4 matrix of rank
3. It has 11 degrees of freedom. The rank 3 requirement arises because if the rank is
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Cameracentre. Thecameracentreisthe 1-dimensional right null-space C of P, i.e. PC = 0.

—M'py

o Finitecamera (M isnot singular) C = 1

o Cameraat infinity (M issingular) C = < Bl > where d is the null 3-vector of M,

i.,e.Md = 0.

Column points. For i = 1,...,3, the column vectors p; are vanishing points in the image
corresponding to the X, Y and z axes respectively. Column p, is the image of the
coordinate origin.

Principal plane. The principal plane of the camerais P?3, the last row of P.

Axisplanes. Theplanes P! and P? (thefirst and second rows of P) represent planesin space
through the camera centre, corresponding to points that map to theimagelinesx = 0
and y = 0 respectively.

Principal point. Theimage point x, = Mm? isthe principal point of the camera, where m3 "
isthe third row of M.

Principal ray. The principal ray (axis) of the camerais the ray passing through the camera
centre C with direction vector m®". The principal axis vector v = det(M)m? is
directed towards the front of the camera.

Table 6.1. Summary of the properties of a projective camera P. The matrix is represented by the block
formP = [M | p4).

less than this then the range of the matrix mapping will be a line or point and not the
whole plane; in other words not a 2D image.

6.2 The projective camera

A general projective camera P maps world points X to image points x according to
x = PX. Building on this mapping we will now dissect the camera model to reveal
how geometric entities, such as the camera centre, are encoded. Some of the properties
that we consider will apply only to finite projective cameras and their specializations,
whilst others will apply to general cameras. The distinction will be evident from the
context. The derived properties of the camera are summarized in table 6.1.

6.2.1 Cameraanatomy

A genera projective cameramay be decomposed into blocks accordingtoP = [M | p4],
whereM isa3 x 3 matrix. It will be seen that if M is non-singular, then thisis afinite
camera, otherwiseit is not.

Camera centre. The matrix P has a 1-dimensiona right null-space because its rank
is 3, whereas it has 4 columns. Suppose the null-space is generated by the 4-vector
C, that isPC = 0. It will now be shown that C is the camera centre, represented as a
homogeneous 4-vector.

Consider the line containing C and any other point A in 3-space. Points on thisline
may be represented by thejoin

X(A) =X+ (1-XNcC .
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<, |

X

Fig. 6.4. The three image points defined by the columns p;,7 = 1,..., 3, of the projection matrix are
the vanishing points of the directions of the world axes.

Under the mapping x = PX points on this line are projected to
x = PX(\) = APA + (1 — A\)PC = A\PA

since PC = 0. That is all points on the line are mapped to the same image point PA,
which means that the line must be a ray through the camera centre. It follows that C
is the homogeneous representation of the camera centre, since for all choices of A the
line X(\) isaray through the camera centre.

This result is not unexpected since the image point (0,0,0)" = PC is not defined,
and the camera centre is the unique point in space for which the image is undefined. In
the case of finite cameras the result may be established directly, sincec = (¢',1)7
is clearly the null-vector of P = KR[I | —C]. Theresult is true even in the case where
thefirst 3 x 3 submatrix M of P issingular. Inthissingular case, though, the null-vector
hastheformc = (d",0)" whereMd = 0. The camera centreisthen apoint at infinity.
Camera models of this class are discussed in section 6.3.

Column vectors. The columns of the projective camera are 3-vectors which have a
geometric meaning as particular image points. With the notation that the columns of P
arep;,i =1,...,4,then py, p2, p3 ae the vanishing points of the world coordinate X,
Y and z axesrespectively. Thisfollows because these points are the images of the axes
directions. For example the z-axis has direction D = (1,0,0,0)T, which isimaged at
p1 = PD. Seefigure 6.4. The column p, isthe image of the world origin.

Row vectors. The rows of the projective camera (6.12) are 4-vectors which may be
interpreted geometrically as particular world planes. These planes are examined next.
We introduce the notation that the rows of P are PT so that

P11 P12 P13 D4 plT
P=|pau P2 D3 pu |=|P |. (6.12)
P31 D32 D33 D34 p3T
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principal plane

Fig. 6.5. Two of the three planes defined by the rows of the projection matrix.

The principal plane. The principal plane is the plane through the camera centre par-
allel to theimage plane. It consists of the set of points X which are imaged on the line
at infinity of the image. Explicitly, PX = (z,y,0)T. Thus apoint lies on the principal
plane of the camera if and only if P3TX = 0. In other words, P? is the vector repre-
senting the principal plane of the camera. If C is the camera centre, then PC = 0, and
soinparticular P2TC = 0. That is C lies on the principal plane of the camera.

Axisplanes. Consider the set of points X onthe planeP'. Thisset satisfiesP! TX = 0,
and so isimaged at PX = (0,y,w)" which are points on the image y-axis. Again it
followsfromPC = 0 that P!TC = 0 and so C lies also on the plane P!. Consequently
the plane P! is defined by the camera centre and the line x = 0 intheimage. Similarly
the plane P? is defined by the camera centre and the line y = 0.

Unlike the principal plane P3, the axis planes P! and P? are dependent on the image
x- and y-axes, i.e. on the choice of the image coordinate system. Thus they are less
tightly coupled to the natural camera geometry than the principal plane. In particular
the line of intersection of the planes P! and P? is aline joining the camera centre and
image origin, i.e. the back-projection of the image origin. This line will not coincide
in general with the camera principal axis. The planes arising from P! are illustrated
infigure 6.5.

The camera centre C lies on all three planes, and since these planes are distinct (as
the P matrix has rank 3) it must lie on their intersection. Algebraically, the condition
for the centre to lie on al three planesisPC = 0 which isthe original equation for the
camera centre given above.

Theprincipal point. The principal axisis the line passing through the camera centre
C, with direction perpendicular to the principal plane P?. The axis intersects theimage
plane at the principal point. We may determine this point as follows. In general, the
normal to aplane m = (7, m, 73, m4) " is the vector (my, 7o, m3) 7. This may alterna
tively be represented by a point (r;, 7, 73, 0) T on the plane at infinity. In the case of
the principal plane P? of the camera, this point is (ps, p32, p33, 0) T, which we denote
P’ Projecting that point using the camera matrix P gives the principa point of the
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cameraPP’. Note that only the left hand 3 x 3 part of P = M | p,] isinvolved in this
formula. In fact the principal point is computed as x, = Mm? where m?T is the third
row of M.

The principal axisvector. Although any point X not on the principal plane may be
mapped to an image point according to x = PX, inreality only half the pointsin space,
those that lie in front of the camera, may be seen in an image. Let P be written as
P = [M | p4). It hasjust been seen that the vector m? points in the direction of the
principal axis. We would like to define this vector in such a way that it points in the
direction towards the front of the camera (the positive direction). Note however that P
is only defined up to sign. This leaves an ambiguity as to whether m?® or —m? points
in the positive direction. We now proceed to resolve this ambiguity.

We start by considering coordinates with respect to the camera coordinate frame.
According to (6.5), the equation for projection of a 3D point to a point in the image
isgiven by x = PcamXcam = K|[I | 0]Xcam, Where Xcam is the 3D point expressed in
camera coordinates. In this case observe that the vector v = det(M)m? = (0,0,1)7
points towards the front of the camera in the direction of the principal axis, irrespective
of the scaling of Pcam. For example, if Pcan — kPcam then v — k*v which has the
same direction.

If the 3D point is expressed in world coordinates then P = kK[R | —RC] = [M | p4],
where M = kKR. Since det(R) > 0 the vector v = det(M)m? is again unaffected by
scaling. In summary,

e v = det(M)m? isa vector in the direction of the principal axis, directed towards the
front of the camera.

6.2.2 Action of a projective camera on points

Forward projection. As we have already seen, a general projective camera maps a
point in space X to an image point according to the mapping x = PX. PointsD =
(dT,0)T on the plane at infinity represent vanishing points. Such points map to

x =PD = M| pyD=Md

and thus are only affected by M, thefirst 3 x 3 submatrix of P.

Back-projection of pointstorays. Given apoint x in an image, we next determine
the set of points in space that map to this point. This set will constitute aray in space
passing through the camera centre. The form of the ray may be specified in severad
ways, depending on how one wishesto represent alinein 3-space. A Plicker represen-
tation is postponed until section 8.1.2(p196). Herethe lineis represented as the join of
two points.

We know two points on the ray. These are the camera centre C (where PC = 0)
and the point P*x, where P is the pseudo-inverse of P. The pseudo-inverse of P isthe
matrix P+ = PT(PPT)~!, for which PP™ = T (see section A5.2(p590)). Point P*x lies
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X.m3

Fig. 6.6. If the camera matrix P = [M | p4] is normalized so that |[m?|| = 1 and detM > 0, and
x = w(zr,y,1)T = PX, where X = (X,v,z,1)7, then w is the depth of the point X from the camera
centre in the direction of the principal ray of the camera.

on the ray because it projects to x, since P(P*x) = Ix = x. Then theray istheline
formed by the join of these two points

X(\) = PTx + AC. (6.13)

In the case of finite cameras an alternative expression can be developed. Writing
P = [M | p4], the camera centre is given by C = —M~!p,. Animage point x back-
projects to aray intersecting the plane at infinity at the point D = ((M~'x)T,0)T, and
D provides a second point on the ray. Again writing the line as the join of two points

on theray,
X(j1) = M( Molx ) n ( —M11p4 > _ ( Ml(m;— P4) ) (6.14)

6.2.3 Depth of points

Next, we consider the distance a point lies in front of or behind the principal
plane of the camera. Consider a camera matrix P = [M | p4], projecting a point
X = (x,Y,z,1)T = (X", 1) in 3-space to theimage point x = w(z, y, 1)T = PX. Let
C = (C,1)" be the cameracentre. Then w = P3TX = P*T(X — C) since PC = 0 for
the camera centre C. However, P?T(X — C) = m*®"(X — C) where m? is the principal
ray direction, so w = m?®T (X — C) can beinterpreted as the dot product of the ray from
the camera centre to the point X, with the principal ray direction. If the camera matrix
isnormalized so that det M > 0 and ||m?|| = 1, then m? is a unit vector pointing in the
positive axial direction. Then w may be interpreted as the depth of the point X from the
camera centre C in the direction of the principal ray. Thisisillustrated in figure 6.6.

Any camera matrix may be normalized by multiplying it by an appropriate factor.
However, to avoid having aways to deal with normalized camera matrices, the depth
of apoint may be computed as follows:

Result6.1. Let X = (X,Y,z,T)" bea3D pointand P = [M | p4| be a camera matrix
for afinite camera. SupposeP(x,Y,z,T)" = w(z,y,1)T. Then

sign(det M)w

(6.15)
T/[m?|

depth(X;P) =
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is the depth of the point X in front of the principal plane of the camera.

Thisformulais an effective way to determineif apoint X isin front of the camera. One
verifies that the value of depth(X;P) is unchanged if either the point X or the camera
matrix P is multiplied by a constant factor k. Thus, depth(X; P) is independent of the
particular homogeneous representation of X and P.

6.2.4 Decomposition of the camera matrix

Let P be acameramatrix representing ageneral projective camera. We wish to find the
camera centre, the orientation of the camera and the internal parameters of the camera
fromP.

Finding the camera centre. The camera centre C is the point for which PC = 0.
Numerically this right null-vector may be obtained from the SVD of P, see section
A4.4(p585). Algebraically, the centre C = (X, Y,z,T)" may be obtained as (see (3.5
p67))

X = det([p2, p3, pa]) Y = —det([p1,Ps, Pal)
z = det([p1,p2,p4]) T = —det([p1, P2, P3))-

Finding the camera orientation and internal parameters. In the case of a finite
camera, according to (6.11),

P = [M| —MC| = K[R | —RC].

We may easily find both K and R by decomposing M as M = KR using the RQ-
decomposition. Thisdecomposition into the product of an upper-triangular and orthog-
onal matrix isdescribed in section A4.1.1(p579). The matrix R gives the orientation of
the camera, whereasK isthe calibration matrix. The ambiguity in the decompositionis
removed by requiring that K have positive diagonal entries.

The matrix K has the form (6.10)

ap S Tg
K=1 0 o w
0 0 1

where

o, 1sthe scale factor in the z-coordinate direction,
o, isthe scale factor in the y-coordinate direction,
s isthe skew,

(wg,10) " arethe coordinates of the principa point.

The aspect ratiois o, / ..
Example6.2. The camera matrix

3.53503 e+2  3.39645 e+2 2.77744 e42 —1.44946 e+6
P=| —1.03528 e+2  2.33212e+1 4.59607 e+2 —6.32525e+5
7.07107e—1 —3.53553e—1 6.12372e—1 —9.18559 e+2
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with P = [M | —MC], has centre C = (1000.0,2000.0, 1500.0)", and the matrix M
decomposes as

4272 200.0 —0.57338  0.22011 0.78917 | .
1.0 0.70711 —0.35355 0.61237

{468.2 91.2 300.0 ] { 0.41380  0.90915 0.04708
M=KR =

A

Wheniss # 0? Aswasshown in section 6.1 atrue CCD camerahasonly four internal
camera parameters, since generally s = 0. If s # 0 then this can be interpreted as
a skewing of the pixel elements in the CCD array so that the z- and y-axes are not
perpendicular. Thisisadmittedly very unlikely to happen.

In realistic circumstances a non-zero skew might arise as aresult of taking an image
of animage, for example if a photograph is re-photographed, or anegative is enlarged.
Consider enlarging an image taken by a pinhole camera (such as an ordinary film cam-
era) where the axis of the magnifying lensis not perpendicular to the film plane or the
enlarged image plane.

The most severe distortion that can arise from this “ picture of a picture” processisa
planar homography. Suppose the original (finite) cameraisrepresented by the matrix P,
then the camera representing the picture of a picture isHP, where H is the homography
matrix. Since H is non-singular, the left 3 x 3 submatrix of HP is non-singular and can
be decomposed as the product KR — and K need not have s = 0. Note however that the
K and R are no longer the calibration matrix and orientation of the original camera.

On the other hand, one verifies that the process of taking a picture of a picture does
not change the apparent camera centre. Indeed, since H isnon-singular, HPC = 0 if and
only if P)C = 0.

Where is the decomposition required? If the camera P is constructed from (6.11)
then the parameters are known and a decomposition is clearly unnecessary. So the
question arises — where would one obtain a camera for which the decomposition is not
known? In fact cameras will be computed in myriad ways throughout this book and
decomposing an unknown camera is a frequently used tool in practice. For example
cameras can be computed directly by calibration —where the camerais computed from
a set of world to image correspondences (chapter 7) — and indirectly by computing a
multiple view relation (such as the fundamental matrix or trifocal tensor) and subse-
quently computing projection matrices from this relation.

A note on coordinate orientation. In the derivation of the camera model and its
parametrization (6.10) it is assumed that the coordinate systems used in both theimage
and the 3D world are right handed systems, as shown in figure 6.1(p154). However,
a common practice in measuring image coordinates is that the y-coordinate increases
in the downwards direction, thus defining a left handed coordinate system, contrary to
figure 6.1(p154). A recommended practice in this case is to negate the y-coordinate of
the image point so that the coordinate system again becomes right handed. However, if
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the image coordinate system is left handed, then the consegquences are not grave. The
relationship between world and image coordinatesis still expressed by a3 x 4 camera
matrix. Decomposition of this camera matrix according to (6.11) with X of the form
(6.10) is still possible with o, and o, positive. The differenceis that R now represents
the orientation of the camera with respect to the negative z-axis. In addition, the depth
of points given by (6.15) will be negative instead of positive for pointsin front of the
camera. If thisisbornein mind then it is permissible to use left handed coordinates in
theimage.

6.2.5 Euclidean vs projective spaces

The development of the sections to this point has implicitly assumed that the world
and image coordinate systems are Euclidean. Ideas have been borrowed from projec-
tive geometry (such as directions corresponding to points on 7r..) and the convenient
notation of homogeneous coordinates has allowed central projection to be represented
linearly.

In subsequent chapters of the book we will go further and use a projective coordinate
frame. Thisis easily achieved, for suppose the world coordinate frame is projective;
then the transformation between the camera and world coordinate frame (6.6) is again
represented by a4 x 4 homogeneous matrix, Xcam = HX, and the resulting map from
projective 3-space IP? to the image is still represented by a3 x 4 matrix P with rank 3.
In fact, at its most general the projective camerais a map from IP? to IP?, and covers
the composed effects of a projective transformation of 3-space, a projection from 3-
space to an image, and a projective transformation of the image. This follows simply
by concatenating the matrices representing these mappings:

1 0 00
P = [3 x 3 homography] [ 0100 ] [4 x 4 homography]
0010

which resultsina3 x 4 matrix.

However, it isimportant to remember that cameras are Euclidean devices and smply
because we have a projective model of acamerait does not mean that we should eschew
notions of Euclidean geometry.

Euclidean and affineinter pretations. Although a (finite) 3 x 4 matrix can always be
decomposed as in section 6.2.4 to obtain arotation matrix, a calibration matrix K, and
so forth, Euclidean interpretations of the parameters so obtained are only meaningful if
the image and space coordinates are in an appropriate frame. In the decomposition case
a Euclidean frame is required for both image and 3-space. On the other hand, the in-
terpretation of the null-vector of P as the camera centreisvalid even if both frames are
projective — the interpretation requires only collinearity, which is a projective notion.
Theinterpretation of P3 asthe principal planerequires at least affine framesfor theim-
age and 3-space. Finally, the interpretation of m? asthe principal ray requires an affine
image frame but a Euclidean world frame in order for the concept of orthogonality (to
the principal plane) to be meaningful.
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Fig. 6.7. Asthefocal length increases and the distance between the camera and object also increases,
the image remains the same size but perspective effects diminish.

6.3 Camerasat infinity

We now turn to consider cameras with centre lying on the plane at infinity. This means
that the left hand 3 x 3 block of the camera matrix P is singular. The camera centre
may be found from PC = 0 just as with finite cameras.

Cameras at infinity may be broadly classified into two different types, affine cameras
and non-affine cameras. We consider first of al the affine class of cameras which are
the most important in practice.

Definition 6.3. An affine camerais one that has acamera matrix P in which the last row
P3T isof theform (0,0,0,1).

Itis called an affine camera because points at infinity are mapped to points at infinity.

6.3.1 Affinecameras

Consider what happens as we apply a cinematographic technique of tracking back
while zooming in, in such a way as to keep objects of interest the same size!. This
is illustrated in figure 6.7. We are going to model this process by taking the limit as
both the focal length and principal axis distance of the camerafrom the object increase.

In analyzing this technique, we start with a finite projective camera (6.11). The

1 See*Vertigo' (Dir. Hitchcock, 1958) and ‘Mishima (Dir. Schrader, 1985).
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cameramatrix may be written as

(6.16)

I.1T _rlTé
I.3T —I‘3T(~j

Po =KR[I | —C] =K [ T —r?TC

wherer'T isthei-th row of the rotation matrix. This cameraislocated at position C and
has orientation denoted by matrix R and internal parameters matrix K of the form given
in (6.10157). From section 6.2.1 the principal ray of the cameraisin the direction
of the vector r?, and the value d, = —r?T C isthe distance of the world origin from the
camera centre in the direction of the principal ray.

Now, we consider what happens if the camera centre is moved backwards along the
principal ray at unit speed for a time ¢, so that the centre of the camera is moved to
C — tr3. Replacing C in (6.16) by C — tr® gives the camera matrix at time ¢:

T PTG ) AT TS
P,=K| r’" —r*T(C—tr¥) | =K | T —r?TC
BT _3T(E — %) BT 4,

-

(6.17)

where the terms ri 'r? are zero for i = 1, 2 because R is a rotation matrix. The scalar
d, = —1r3TC + t isthe depth of the world origin with respect to the camera centre in
the direction of the principal ray r* of the camera. Thus

e Theeffect of tracking along the principal ray isto replacethe (3,4) entry of the matrix
by the depth d; of the camera centre from the world origin.

Next, we consider zooming such that the camerafocal length isincreased by afactor
k. This magnifies the image by afactor k. It is shown in section 8.4.1(p203) that the
effect of zooming by a factor k is to multiply the calibration matrix K on the right by
diag(k, k, 1).

Now, we combine the effects of tracking and zooming. We suppose that the magni-
fication factor is k = d,/d, so that the image size remains fixed. The resulting camera
matrix at time ¢, derived from (6.17), is

d,/dy AT 1T p 17 _lTE
P, =K dy/dy 2T —p2T¢ | = dtK 2T 2T¢
1 I'3T dt 0 r3Td0/dt do

and one can ignore the factor d,/dy,. When t = 0, the camera matrix P, corresponds
with (6.16). Now, in the limit as d; tendsto infinity, this matrix becomes

I.1T _rlTé
Po=limP, =K | r’T —r?TC (6.18)
t—o0 T
0 do

which isjust the original camera matrix (6.16) with thefirst three entries of the last row
set to zero. From definition 6.3 P, 1S an instance of an affine camera.
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6.3.2 Error in employing an affine camera

It may be noted that the image of any point on the plane through the world origin
perpendicular to the principal axis direction r? isunchanged by this combined zooming
and motion. Indeed, such a point may be written as

XZ(arl—i—ﬁr2>‘

One then verifiesthat PoX = P,X = P X for al ¢, sincer®T (ar® + §r?) = 0.

For points not on this plane the images under P, and P, differ, and we will now
investigate the extent of this error. Consider a point X which is at a perpendicular
distance A from this plane. The 3D point can be represented as

X — < ar1+ﬁi‘2+Ar3>

and isimaged by the camerasP, and P, at

T

do + A

< =

|

wherez = o —r'TC, § = 8 — r?TC. Now, writing the calibration matrix as

Koxo Xo
K= ~
[ 0 1 ]

S
S

whereKs.» IS an upper-triangular 2 x 2 matrix, gives

[ KoxoX + (do + A)Xo [ Koxex 4 doXo
Xproj = do + A Xaffine = do

The image point for P, is obtained by dehomogenizing, by dividing by the third
element, as Xprj = Xo + Kowox/(dy + A), and for P, the inhomogeneous image point
ISXgffine = Xo + Kax2X/do. The relationship between the two pointsis therefore

- - do + A
Xaffine — X0 = dy (Xproj — Xo)

which shows that

e The effect of the affine approximation P, to the true camera matrix Py isto move the
image of a point X radially towards or away from the principal point x, by a factor
equal to (do + A)/dy = 1+ A/dy.

Thisisillustrated in figure 6.8.



6.3 Cameras at infinity 169

Affineimaging conditions. From the expressions for Xpoj and Xqfine We can deduce
that

- - A -
Xaffine — Xproj = dy (Xproj — Xo) (6.19)

which shows that the distance between the true perspective image position and the
position obtained using the affine camera approximation P, will be small provided:

(i) Thedepthrelief (A) issmall compared to the average depth (d,), and
(if) The distance of the point from the principal ray issmall.

The latter condition is satisfied by a small field of view. In general, images acquired
using alenswith alonger focal length tend to satisfy these conditions as both the field
of view and the depth of field are smaller than those obtained by a short focal length
lens with the same CCD array.

For scenes at which there are many points at different depths, the affine camerais
not a good approximation. For instance where the scene contains close foreground as
well as background objects, an affine camera model should not be used. However, a
different affine model can be used for each region in these circumstances.

6.3.3 Decomposition of P,
The cameramatrix (6.18) may be written as

b _ Kaxa Xo Rt
>0 1 07 do

where R consists of the two first rows of a rotation matrix, t is the vector
(—r'TC, —r?TC)T, and 0 the vector (0,0)T. The2 x 2 matrix Ky is upper-triangular.
One quickly verifies that

b _ Koyo X R Ot | dy'Kaxa %o Rt

>~ 16 1|0 & || o 1|01
SO we may replace Koo by do‘lKQXQ and assume that d, = 1. Multiplying out this
product gives

KasoR  Kaxat + Xo Kaxz 0 Rt +Kylh%o
P = AT = ~T T
0 1 0 1 0 1
| Kexe Kaxat + Xo R O
Lo 1 or 1]

Thus, making appropriate substitutions for t or %,, we can write the affine camera
matrix in one of the two forms

Koo 0 R t Koxa Xo R 0
s ) e

Consequently, the camera P, can be interpreted in terms of these decompositionsin
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Fig. 6.8. Perspective vs weak perspective projection. The action of the weak perspective camera is
equivalent to orthographic projection onto a plane (at Z = d,), followed by perspective projection from
the plane. The difference between the perspective and weak perspective image point depends both on
the distance A of the point X from the plane, and the distance of the point from the principal ray.

one of two ways, either with %, = 0 or with t = 0. Using the second decomposition
of (6.20), the image of the world origin is P, (0,0,0,1)T = (%J,1)T. Consequently,
the value of x, is dependent on the particular choice of world coordinates, and hence
isnot an intrinsic property of the cameraitself. This means that the camera matrix P,
does not have aprincipal point. Therefore, it ispreferableto use thefirst decomposition
of P, in (6.20), and write

| Koxe 0 Rt
[ I

where the two matrices represent the internal camera parameters and external camera
parameters of P,

Parallel projection. In summary the essential differences between P, and a finite
camera are:

o OO
_ o o

1
e Theparallel projection matrix [ 0 1 replaces the canonical projection ma-
0

0
1
0
trix [I | o] of afinite camera (6.5155)
e The calibration matrix l 5 1 replacesk of a finite camera (6.104157) .

e The principal point isnot defined.

6.3.4 A hierarchy of affine cameras

In a similar manner to the development of the finite projection camera taxonomy
in section 6.1 we can start with the basic operation of parallel projection and build
ahierarchy of cameramodels representing progressively more general cases of paralel
projection.
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Orthographic projection. Consider projection aong the z-axis. This is represented
by amatrix of the form

(6.22)

_|

This mapping takes a point (X,Y,z,1)
z-coordinate.

For a genera orthographic projection mapping, we precede this map by a 3D Eu-
clidean coordinate change of the form

to the image point (x,Y,1)T, dropping the

R t
- [ Bt ]
Writing t = (¢1,t,13) ", we see that ageneral orthographic camerais of the form
I.lT tl
P= I'2T tQ . (623)
0" 1

An orthographic camera has five degrees of freedom, namely the three parameters de-
scribing the rotation matrix R, plusthe two offset parameterst; and ¢,. An orthographic
projection matrix P = [M | t] is characterized by a matrix M with last row zero, with the
first two rows orthogonal and of unit norm, and t; = 1.

Scaled orthographic projection. A scaled orthographic projection is an orthographic
projection followed by isotropic scaling. Thus, in general, its matrix may be written in

the form
k I'lT tl I'lT tl
P = k I'2T tQ = I‘2T tQ
1 0" 1 o' 1/k:

It has six degrees of freedom. A scaled orthographic projection matrix P = [M | t] is
characterized by amatrix M with last row zero, and the first two rows orthogonal and of
equal norm.

(6.24)

Weak per spective projection. Analogous to afinite CCD camera, we may consider
the case of a camera at infinity for which the scale factors in the two axial image
directions are not equal. Such a camera has a projection matrix of the form

Qy r'T ot
P= y 2Tt
1 or 1

It has seven degrees of freedom. A weak perspective projection matrix P = [M | t]
is characterized by a matrix M with last row zero, and first two rows orthogonal (but
they need not have equal norm as is required in the scaled orthographic case). The
geometric action of this cameraisillustrated in figure 6.8.

(6.25)
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The affine camera, P,. Ashas already been seen in the case of P, ageneral camera
matrix of the affine form, and with no restrictions on its elements, may be decomposed

as
a; S r'T 4
P, = y R P
1 or 1

It has elght degrees of freedom, and may be thought of asthe parallel projection version
of the finite projective camera (6.11157).
In full generality an affine camera has the form

mip M1z Mzt
Py= | ma1 may mao3 12 |.
0 0 0 1
It has eight degrees of freedom corresponding to the eight non-zero and non-unit matrix
elements. We denote the top left 2 x 3 submatrix by M, 3. The sole restriction on the
affine cameraisthat M, ;3 hasrank 2. This arises from the requirement that the rank of
Pis3.

The affine camera covers the composed effects of an affine transformation of 3-space,
an orthographic projection from 3-space to an image, and an affine transformation of
the image. Thisfollows simply by concatenating the matrices representing these map-
pings.

1 00
010
000

which resultsin a3 x 4 matrix of the affine form.

Projection under an affine camerais alinear mapping on inhomogeneous coordinates
composed with atrangdation:

X
T\ | M mia M3 131
Yy Mao1 Mg 123 2 to

which is written more concisely as

P, = [3 x 3 affine]

0
0 } [4 x 4 affine]
1

% =MpsX + . (6.26)

Thepointt = (¢,,%,)" istheimage of the world origin.

The cameramodels of this section are seen to be affine cameras satisfying additional
constraints, thus the affine camerais an abstraction of this hierarchy. For example, in
the case of the weak perspective camera the rows of M, 5 are scalings of rows of a
rotation matrix, and thus are orthogonal.

6.3.5 More propertiesof the affine camera
The plane at infinity in space is mapped to points at infinity in theimage. Thisiseasily
seen by computing P,(X,Y,z,0)T = (x,Y,0)T. Extending the terminology of finite
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projective cameras, we interpret this by saying that the principal plane of the camerais
the plane at infinity. The optical centre, since it lies on the principal plane, must also
lie on the plane at infinity. From this we have

(i) Conversely, any projective camera matrix for which the principal plane is the
plane at infinity is an affine camera matrix.

(it) Parallel world lines are projected to parallel image lines. This follows because
paralel world lines intersect at the plane at infinity, and this intersection point
is mapped to apoint at infinity in theimage. Hence theimage lines are parall€l.

(iii) The vector d satisfying My.3d = 0 is the direction of paralel projection, and

(dT,0)T the cameracentresinceP,, < g ) =0.

Any camera which consists of the composed effects of affine transformations (ei-
ther of space, or of the image) with parallel projection will have the affine form. For
example, para-perspective projection consists of two such mappings. the first is par-
alel projection onto a plane 7 through the centroid and parallel to the image plane.
The direction of parallel projection isthe ray joining the centroid to the camera centre.
This parallel projection is followed by an affine transformation (actually a similarity)
between 7 and the image. Thus a para-perspective camerais an affine camera.

6.3.6 General camerasat infinity

An affine camerais one for which the principal plane is the plane at infinity. As such,
its camera centre lies on the plane at infinity. However, it is possible for the camera
centre to lie on the plane at infinity without the whole principal plane being the plane
at infinity.

A camera centre lies at infinity if P = [M | py] with M a singular matrix. Thisis
clearly a weaker condition than insisting that the last row of M is zero, asis the case
for affine cameras. If M issingular, but the last row of M is not zero, then the camerais
not affine, but not a finite projective camera either. Such a camera s rather a strange
object, however, and will not be treated in detail in this book. We may compare the
properties of affine and non-affine infinite cameras:

Affinecamera Non-affine camera

Camera centre on 7, yes yes
Principa planeis m, yes no
Image of pointson 7, onl yes no in generd

In both cases the camera centre is the direction of projection. Furthermore, in the case
of an affine camera all non-infinite points are in front of the camera. For a non-affine
camera space is partitioned into two sets of points by the principal plane.

A general camera at infinity could arise from a perspective image of an image pro-
duced by an affine camera. This imaging process corresponds to left-multiplying the
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Line of motion

>
Image plane
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Orthographic
axis
»
Perspective
axis
I nstantaneous
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Fig. 6.9. Acquisition geometry of a pushbroom camera.

affine camera by a general 3 x 3 matrix representing the planar homography. The re-
sulting 3 x 4 matrix is still a camera at infinity, but it does not have the affine form,
since parale linesin the world will in general appear as converging linesin the image.

6.4 Other camera models
6.4.1 Pushbroom cameras

The Linear Pushbroom (LP) camera is an abstraction of a type of sensor common in
satellites, for instance the SPOT sensor. In such a camera, a linear sensor array is
used to capture a single line of imagery at atime. As the sensor moves the sensor
plane sweeps out a region of space (hence the name pushbroom), capturing the image
asingleline at atime. The second dimension of theimageis provided by the motion of
the sensor. In the linear pushbroom model, the sensor is assumed to move in a straight
line at constant velocity with respect to the ground. In addition, one assumes that the
orientation of the sensor array with respect to the direction of travel is constant. In
the direction of the sensor, the image is effectively a perspective image, whereasin the
direction of the sensor motion it is an orthographic projection. The geometry of the LP
cameraisillustrated in figure 6.9. It turns out that the mapping from object space into
theimage may be described by a3 x 4 cameramatrix, just as with ageneral projective
camera. However, the way in which this matrix is used is somewhat different.

e Let X = (X,vY,2,1)T be an object point, and let P be the camera matrix of the
LP camera. Suppose that PX = (z,y,w)". Then the corresponding image point
(represented as an inhomogeneous 2-vector) is (z, y/w)T.

One must compare this with the projective camera mapping. In that case the point
represented by (z,y,w)" is (z/w,y/w)T. Note the difference that in the LP case, the
coordinate x isnot divided by the factor w to get the image coordinate. In thisformula,
the z-axis in the image is the direction of the sensor motion, whereas the y-axisisin
the direction of the linear sensor array. The camera has 11 degrees of freedom.
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Another way of writing the formulafor LP projectionis

_ P2Tx

T=2=P'TX g:y/Z—P3TX

(6.27)
where (z, 7) isthe image point.

Note that the 7-coordinate behaves projectively, whereasthe 7 is obtained by orthog-
onal projection of the point X on the direction perpendicular to the plane P!. The vector
P! represents the sweep plane of the camera at time ¢t = 0 — that is the moment when
the line with coordinates ¥ = 0 is captured.

Mapping of lines. One of the novel features of the LP cameraisthat straight linesin
space are not mapped to straight lines in the image (they are mapped to straight lines
in the case of a projective camera — see section 8.1.2). The set of points X lying on a
3D line may be written as X, + aD, where X, = (X, Y, z, 1)T isapoint on the line and
D = (Dyx, Dy, Dz,0)" istheintersection of this line with the plane at infinity. In this
case, we compute from (6.27)

=

P'T(X, + tD)
P*T (X, + D)
P3T(Xy +tD)’

<
|

Thismay bewritten asapair of equationsz = a+bt and (c+dt)y = e+ ft. Eliminating
t from these equations leads to an equation of the form azy + 3z + vy + 6 = 0, which
is the equation of a hyperbola in the image plane, asymptotic in one direction to the
line az + v = 0, and in the other direction to the line ay + 3 = 0. A hyperbolais
made up of two curves. However, only one of the curves making up theimage of aline
actually appears in the image — the other part of the hyperbola corresponds to points
lying behind the camera.

6.4.2 Linecameras

This chapter has dealt with the central projection of 3-space onto a 2D image. An
anal ogous devel opment can be given for the central projection of aplaneonto a 1D line
contained in the plane. See figure 22.1(p535). The cameramodel for this geometry is

X
z P11 P12 P13
= Y | =P
[fl/] [p21 D22 P23] {Z} s
which is a linear mapping from homogeneous representation of the plane to a homo-
geneous representation of the line. The camera has 5 degrees of freedom. Again the

null-space, c, of the P, 3 projection matrix is the camera centre, and the matrix can be
decomposed in asimilar manner to the finite projective camera (6.11p157) as

Poys = KaxoRoxa[Ioxa | —€]
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where ¢ is the inhomogeneous 2-vector representing the centre (2 dof), Ro» iSarota
tion matrix (1 dof), and
oy T
Koxo = [ 10 ]

the internal calibration matrix (2 dof).

6.5 Closure

This chapter has covered cameramodels, their taxonomy and anatomy. The subsequent
chapters cover the estimation of camerasfrom a set of world to image correspondences,
and the action of a camera on various geometric objects such as lines and quadrics.
Vanishing points and vanishing lines are also described in more detail in chapter 8.

6.5.1 Theliterature

[Aloimonos-90] defined a hierarchy of camera models including para-perspective.
Mundy and Zisserman [Mundy-92] generalized this with the affine camera. Faugeras
developed properties of the projective camerain his textbook [Faugeras-93]. Further
details on the linear pushbroom camera are given in [Gupta-97], and on the 2D camera
in [Quan-97D].

6.5.2 Notesand exercises

(i) Let I, be aprojective image, and I; be an image of I, (an image of an image).
Let the composite image be denoted by I’. Show that the apparent camera
centre of I’ is the same as that of I,. Speculate on how this explains why a
portrait’s eyes “follow you round the room.” Verify on the other hand that all
other parameters of I’ and I, may be different.

(if) Show that the ray back-projected from an image point x under a projective
cameraP (asin (6.14-p162)) may be written as

L* = P'[x].P (6.28)

where L* isthe dual Plicker representation of aline (3.971).
(itf) The affine camera.

(8) Show that the affine camera is the most general linear mapping on ho-
mogeneous coordinates that maps parallel world lines to parallel image
lines. To do this consider the projection of pointson 7., and show that
only if P has the affine form will they map to points at infinity in the
image.

(b) Show that for parallel lines mapped by an affine camera the ratio of
lengths on line segmentsis an invariant. What other invariants are there
under an affine camera?

(iv) Therational polynomial camera isagenera cameramodel, used extensively
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in the satellite surveillance community. Image coordinates are defined by the
ratios

z = Na(X)/D(X) y = Ny(X)/Dy(X)

where the functions N,, D,, N,,, D,, are homogeneous cubic polynomialsin the
3-space point X. Each cubic has 20 coefficients, so that overall the camera has
78 degrees of freedom. All of the cameras surveyed in this chapter (projective,
affine, pushbroom) are specia cases of the rational polynomial camera. Itsdis-
advantage is that it is severely over-parametrized for these cases. More details
are given in Hartley and Saxena [Hartley-97¢€].

A finite projective camera(6.11157) P may be transformed to an orthographic
camera (6.22) by applying a4 x 4 homography H on the right such that

1000

001 0 0| =Ponog -
0001

(the last row of H is chosen so that H hasrank 4). Then since

PH=KR[I | —-CJH =

x = P(HH )X = (PH)(H 'X) = Porinog X’

imaging under P isequivalent to first transforming the 3-space points X to X’ =
H~!'X and then applying an orthographic projection. Thus the action of any
camera may be considered as a projective transformation of 3-space followed
by orthographic projection.



v

Computation of the Camera Matrix P

This chapter describes numerical methods for estimating the camera projection matrix
from corresponding 3-space and image entities. This computation of the camera matrix
is known as resectioning. The simplest such correspondence is that between a 3D
point X and itsimage x under the unknown camera mapping. Given sufficiently many
correspondences X; « x; the camera matrix P may be determined. Similarly, P may
be determined from sufficiently many corresponding world and image lines.

If additional constraints apply to the matrix P, such as that the pixels are square, then
arestricted cameramatrix subject to these constraints may be estimated from world to
image correspondences.

Throughout this book it is assumed that the map from 3-space to the image s linear.
Thisassumption isinvalid if thereislens distortion. The topic of radial lens distortion
correction is dealt with in this chapter.

The internal parameters K of the camera may be extracted from the matrix P by the
decomposition of section 6.2.4. Alternatively, the internal parameters can be computed
directly, without necessitating estimating P, by the methods of chapter 8.

7.1 Basic equations

We assume a number of point correspondences X; < x; between 3D points X; and
2D image points x; are given. We are required to find a camera matrix P, namely a
3 x 4 matrix such that x; = PX; for all i. The similarity of this problem with that of
computing a 2D projective transformation H, treated in chapter 4, is evident. The only
difference is the dimension of the problem. In the 2D case the matrix H has dimension
3 x 3, whereasin the present case, P isa3 x 4 matrix. Asone may expect, much of the
material from chapter 4 applies almost unchanged to the present case.
Asin section 4.1(p88) for each correspondence X; < x; we derive arelationship

0" —wX]  yX] P!
w; X} o' —zX] P? | =0. (7.1)
—y X! x] o' p3

where each P'T is a 4-vector, the i-th row of P. Alternatively, one may choose to use

178
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only the first two equations:

Pl

0" —wX] yXx] )
T T T P® [ =0 (7.2)

w; X 0 —z;X; p3

since the three equations of (7.1) are linearly dependent. From a set of n point corre-
spondences, we obtain a2n x 12 matrix A by stacking up the equations (7.2) for each
correspondence. The projection matrix P is computed by solving the set of equations
Ap = 0, where p isthe vector containing the entries of the matrix P.

Minimal solution. Since the matrix P has 12 entries, and (ignoring scale) 11 degrees
of freedom, it is necessary to have 11 equations to solve for P. Since each point corre-
spondence leads to two equations, at a minimum 5; such correspondences are required
to solve for P. The , indicates that only one of the equations is used from the sixth
point, so one needs only to know the x-coordinate (or alternatively the y-coordinate)
of the sixth image point.

Given this minimum number of correspondences, the solution is exact, i.e. the space
points are projected exactly onto their measured images. The solution is obtained by
solving Ap = O where Aisan 11 x 12 matrix in this case. In general A will have rank
11, and the solution vector p isthe 1-dimensional right null-space of A.

Over-determined solution. If the data is not exact, because of noise in the point
coordinates, and n > 6 point correspondences are given, then there will not be an exact
solution to the equations Ap = 0. Asin the estimation of a homography a solution for
P may be obtained by minimizing an algebraic or geometric error.

In the case of algebraic error the approach is to minimize ||Ap|| subject to some
normalization constraint. Possible constraints are

@ el =1;
(ii) ||p*|| = 1, where p* isthe vector (ps1, psa, ps3) T, namely the first three entries
in the last row of P.

The first of these is preferred for routine use and will be used for the moment. We
will return to the second normalization constraint in section 7.2.1. In either case, the
residua Ap isknown asthe algebraic error. Using these equations, the complete DLT
algorithm for computation of the cameramatrix P proceeds in the same manner as that
for H given in algorithm 4.1(p91).

Degener ate configurations. Analysis of the degenerate configurations for estimation
of P is rather more involved than in the case of the 2D homography. There are two
types of configurations in which ambiguous solutions exist for P. These configurations
will be investigated in detail in chapter 22. The most important critical configurations
are asfollows:

(i) The cameraand pointsall lie on atwisted cubic.
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(ii) The points al lie on the union of a plane and a single straight line containing
the camera centre.

For such configurations, the camera cannot be obtained uniquely from the images
of the points. Instead, it may move arbitrarily along the twisted cubic, or straight line
respectively. If datais close to a degenerate configuration then a poor estimate for P is
obtained. For example, if the camerais distant from a scene with low relief, such asa
near-nadir aerial view, then this situation is close to the planar degeneracy.

Data normalization. Itisimportant to carry out some sort of data normalization just
asinthe 2D homography estimation case. The points x; in the image are appropriately
normalized in the same way as before. Namely the points should be translated so that
their centroid is at the origin, and scaled so that their RM S (root-mean-squared) dis-
tance from the origin is v/2. What normalization should be applied to the 3D points
X; isalittle more problematical. In the case where the variation in depth of the points
from the cameraisrelatively slight it makes senseto carry out the same sort of normal-
ization. Thus, the centroid of the pointsistranslated to the origin, and their coordinates
are scaled so that the RM S distance from the origin is v/3 (so that the “ average” point
has coordinates of magnitude (1,1,1,1)T). This approach is suitable for a compact
distribution of points, such as those on the calibration object of figure 7.1.

In the case where there are some points that lie at a great distance from the camera,
the previous normalization technique does not work well. For instance, if there are
points close to the camera, as well as points that lie at infinity (which are imaged as
vanishing points) or close to infinity, a may occur in oblique views of terrain, then
it is not possible or reasonable to translate the points so that their centroid is at the
origin. The normalization method described in exercise (iii) on page 128 would be
more appropriately used in such a case, though this has not been thoroughly tested.

With appropriate normalization the estimate of P is carried out in the same manner
as agorithm 4.2(p109) for H.

Line correspondences. It is a simple matter to extend the DLT algorithm to take
account of line correspondencesaswell. A linein 3D may be represented by two points
X and X; through which the line passes. Now, according to result 8.2(p197) the plane
formed by back-projecting from theimage linel isequal to P'1. The condition that the
point X; lies on this planeisthen

1"px; =0 forj =0, 1. (7.3)

Each choice of j gives a single linear equation in the entries of the matrix P, so two
equations are obtained for each 3D to 2D line correspondence. These equations, being
linear in the entries of P, may be added to the equations (7.1) obtained from point
correspondences and a solution to the composite equation set may be computed.

7.2 Geometricerror

Asin the case of 2D homographies (chapter 4), one may define geometric error. Sup-
pose for the moment that world points X; are known far more accurately than the
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Objective
Given n > 6 world to image point correspondences {X; < x;}, determine the Maxi-
mum Likelihood estimate of the camera projection matrix P, i.e. the P which minimizes
Zi d(Xi, PX2)2
Algorithm
(i) Linear solution. Compute an initial estimate of P using a linear method such as
algorithm 4.2(p109):

(@ Normalization: Use a similarity transformation T to normalize the image
points, and a second similarity transformation U to normalize the space points.
Suppose the normalized image points are x; = Tx;, and the normalized space
pointsare X; = UX;.

(b) DLT: Formthe 2n x 12 matrix A by stacking the equations (7.2) generated by

each correspondence X; « x;. Write p for the vector containing the entries of
the matrix P. A solution of Ap = 0, subject to ||p|| = 1, is obtained from the
unit singular vector of A corresponding to the smallest singular value.

(ii) Minimize geometric error. Using the linear estimate as a starting point minimize the
geometric error (7.4):

> d(%;,PX;)?

over P, using an iterative algorithm such as Levenberg-Marquardit.
(iii) Denormalization. The camera matrix for the original (unnormalized) coordinates is
obtained from P as

P =T !pU.

Algorithm 7.1. The Gold Sandard algorithm for estimating P from world to image point correspon-
dences in the case that the world points are very accurately known.

measured image points. For example the points X; might arise from an accurately
machined calibration object. Then the geometric error in theimageis

Z d(X“ )A(l)z

where x; isthe measured point and x; isthe point PX;, i.e. the point which is the exact
image of X; under P. If the measurement errors are Gaussian then the solution of

: 2
min zl: d(x;,PX;) (7.4)

IS the Maximum Likelihood estimate of P.

Just as in the 2D homography case, minimizing geometric error requires the use of
iterative techniques, such as Levenberg—Marquardt. A parametrization of P isrequired,
and the vector of matrix elements p provides this. The DLT solution, or a minimal
solution, may be used as a starting point for the iterative minimization. The complete
Gold Standard algorithm is summarized in algorithm 7.1.

Example7.1. Camera estimation from a calibration object
We will compare the DLT algorithm with the Gold Standard algorithm 7.1 for data
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Fig. 7.1. Animage of a typical calibration object. The black and white checkerboard pattern (a “ Tsai
grid’) is designed to enable the positions of the corners of the imaged squares to be obtained to high
accuracy. A total of 197 points were identified and used to calibrate the camera in the examples of this
chapter.

fy fo/fy SKkew  xg Yo residual

linear 16733 10063 139 37996 30578 0.365
iterative 16755 1.0063 143 379.79 30525 0.364

Table7.1. DLT and Gold Sandard calibration.

from the calibration object shown in figure 7.1. The image points x; are obtained from
the calibration object using the following steps:

(i) Canny edge detection [Canny-86].
(if) Straight linefitting to the detected linked edges.
(iii) Intersecting the lines to obtain the imaged corners.

If sufficient care is taken the points x; are obtained to a localization accuracy of far
better than 1/10 of a pixel. A rule of thumb is that for a good estimation the number
of constraints (point measurements) should exceed the number of unknowns (the 11
camera parameters) by a factor of five. This means that at least 28 points should be
used.

Table 7.1 shows the calibration results obtained by using the linear DLT method
and the Gold Standard method. Note that the improvement achieved using the Gold
Standard algorithm is very dight. The difference of residual of one thousandth of a
pixel isinsignificant. JAN

Errorsin theworld points

It may be the case that world points are not measured with “infinite” accuracy. In this
case one may choose to estimate P by minimizing a 3D geometric error, or an image
geometric error, or both.

If only errors in the world points are considered then the 3D geometric error is de-
fined as

> d(X;,X;)?
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c

f w

Fig. 7.2. The DLT algorithm minimizes the sum of squares of geometric distance A between the point
X and the point X, mapping exactly onto x; and lying in the plane through X; parallel to the principal
plane of the camera. A short calculation showsthat wd = fA.

where X; isthe closest point in space to X; that maps exactly onto x; viax; = PX,.

More generally, if errorsin both the world and image points are considered, then a
weighted sum of world and image errorsis minimized. Asin the 2D homography case,
this requires that one augment the set of parameters by including parameters X;, the
estimated 3D points. One minimizes

> dman(xi, PXi)? + dyvan(Xs, Xi)?

=1
where dyan represents Mahalanobis distance with respect to the known error covari-
ance matrices for each of the measurements x; and X;. In the simplest case, the Maha-
lanobis distanceis simply aweighted geometric distance, where the weights are chosen
to reflect the relative accuracy of measurements of the image and 3D points, and also
the fact that image and world points are typically measured in different units.

7.2.1 Geometricinterpretation of algebraic error

Suppose al the points X; in the DLT algorithm are normalized such that

X; = (X4, Y4, 2, )T, and x; = (24,43, 1)7. In this case, it was seen in section 4.2.4-
(p95) that the quantity being minimized by the DLT algorithm is 3, (w;d(x;, X;))?,
where w; (15, 9;, 1) T = PX;. However, according to (6.15162),

i = £[|p°| depth(x:P) .

Thus, the value w; may be interpreted as the depth of the point X; from the camerain
the direction along the principal ray, provided the cameraisnormalized so that | p* || =
p3, + p3s + P35 = 1. Referring to figure 7.2 one sees that w;d(x;, X;) is proportional to
fd(X',X), where f isthe focal length and X’ is a point mapping to x; and lying in a
plane through X; parallel to the principal plane of the camera. Thus, the algebraic error
being minimized isequal to f Y, d(X;, X%)?.

The distance d(X;, X}) is the correction that needs to be made to the measured 3D
pointsin order to correspond precisely with the measured image points x;. Therestric-
tion is that the correction must be made in the direction perpendicular to the principal
axis of the camera. Because of thisrestriction, the point X’ is not the same as the clos-
est point X; to X; that maps to x,. However, for points X; not too far from the principal
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ray of the camera, the distance d(X;, X/) is areasonable approximation to the distance
d(X;,X;). The DLT dightly weights the points farther avay from the principal ray by
minimizing the squared sum of d(X;, X}), which is slightly larger than d(X;,X;). In
addition, the presence of the focal length f in the expression for algebraic error sug-
gests that the DLT agorithm will be biased towards minimizing focal length at a cost
of adlight increasein 3D geometric error.

Transformation invariance. We have just seen that by minimizing ||Ap|| subject
to the constraint ||p*|| = 1 one may interpret the solution in terms of minimizing 3D
geometric distances. Such an interpretation isnot affected by similarity transformations
in either 3D space or the image space. Thus, one is led to expect that carrying out
trandation and scaling of the data, either in the image or in 3D point coordinates, will
not have any effect on the solutions. Thisisindeed the case as may be shown using the
arguments of section 4.4.2(p105).

7.2.2 Estimation of an affine camera

The methods developed above for the projective cameras can be applied directly to
affine cameras. An affine camera is one for which the projection matrix has last row
(0,0,0,1). Inthe DLT estimation of the camera in this case one minimizes ||Ap|| sub-
ject to this condition on the last row of P. Asin the case of computing 2D affine trans-
formations, for affine cameras, algebraic error and geometric image error are equal.
This means that geometric image distances may be minimized by alinear algorithm.
Suppose as above that all the points X; are normalized such that X; = (X, Y4, 2;,1)7,
and x; = (z;,v;,1)T, and also that the last row of P has the affine form. Then (7.2) for

asingle correspondence reduces to
p! ;
() () "9

o" x|
l xT oT

which shows that the squared algebraic error in this case equals the squared geometric

error

lapl? = 3 (2 — P Tx.) "+ (5~ PPTX,) = > d(xi, %)

2

This result may aso be seen geometrically by comparison of figure 6.8(p170) and
figure 7.2.

A linear estimation algorithm for an affine camera which minimizes geometric error
isgiven in algorithm 7.2. Under the assumption of Gaussian measurement errors this
isthe Maximum Likelihood estimate of P,.

7.3 Restricted camer a estimation

The DLT agorithm, as it has so far been described, computes a general projective
camera matrix P from a set of 3D to 2D point correspondences. The matrix P with
centre a a finite point may be decomposed asP = K[R | —RC] whereRisa3 x 3
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Objective

Given n > 4 world to image point correspondences {X; < x;}, determine the Maximum
Likelihood Estimate of the affine camera projection matrix P,, i.e. the camera P which mini-
mizes >, d(x;,PX;)? subject to the affine constraint P*T = (0,0, 0,1).

Algorithm

(i) Normalization: Useasimilarity transformation T to normalize the image points, and a
second similarity transformation U to normalize the space points. Suppose the normal-
ized image points are x; = Tx;, and the normalized space points are X, = UX;, with
unit last component.

(i) Each correspondence X; < x; contributes (from (7.5)) equations

X, of P\ (&
T PQ gl
which are stacked into a 2n x 8 matrix equation Agps = b, where ps is the 8-vector

0" X,
containing the first two rows of P,.
(iii) The solution is obtained by the pseudo-inverse of Ag (see section A5.2(p590))

Ps = A;b

and P°T = (0,0,0,1).
(iv) Denormalization: The camera matrix for the original (unnormalized) coordinates is
obtained fromP, as

p, =T 1p,U

Algorithm 7.2. The Gold Standard Algorithm for estimating an affine camera matrix P, fromworld to
image correspondences.

rotation matrix and K has the form (6.10157):

Oy S Zo
K = ay yo . (7.6)
1

The non-zero entries of K are geometrically meaningful quantities, the internal cali-
bration parameters of P. One may wish to find the best-fit camera matrix P subject to
restrictive conditions on the camera parameters. Common assumptions are

(i) Theskew s iszero.
(i) Thepixelsare square: o, = o,.
(iii) Theprincipa point (zo, o) is known.
(iv) The complete camera calibration matrix K is known.

In some cases it is possible to estimate a restricted camera matrix with a linear algo-
rithm (see the exercises at the end of the chapter).

As an example of restricted estimation, suppose that we wish to find the best pinhole
camera model (that is projective camera with s = 0 and o, = o) that fits a set of
point measurements. This problem may be solved by minimizing either geometric or
algebraic error, as will be discussed next.



186 7 Computation of the Camera Matrix P

Minimizing geometric error. To minimize geometric error, one selects a set of pa-
rameters that characterize the cameramatrix to be computed. For instance, suppose we
wish to enforce the constraints s = 0 and a, = «,,. One can parametrize the camera
matrix using the remaining 9 parameters. These are xq, vy, «, plus 6 parameters rep-
resenting the orientation R and location C of the camera. Let this set of parameters be
denoted collectively by q. The camera matrix P may then be explicitly computed in
terms of the parameters.

The geometric error may then be minimized with respect to the set of parameters
using iterative minimization (such as Levenberg—Marquardt). Note that in the case
of minimization of image error only, the size of the minimization problem is9 x 2n
(supposing 9 unknown camera parameters). In other words the LM minimization is
minimizing afunction f : IR? — IR*". In the case of minimization of 3D and 2D error,
the function £ isfrom IR***? — IR°", since the 3D points must be included among the
measurements and minimization also includes estimation of the true positions of the
3D points.

Minimizing algebraic error. It is possible to minimize algebraic error instead, in
which case the iterative minimization problem becomes much smaller, as will be ex-
plained next. Consider the parametrization map taking a set of parameters q to the
corresponding camera matrix P = K[R | —RC]. Let this map be denoted by ¢. Ef-
fectively, one hasamap p = ¢(q), where p is the vector of entries of the matrix P.
Minimizing algebraic error over all point matchesis equivalent to minimizing ||Ag(q)||.

The reduced measurement matrix. In general, the 2n x 12 matrix A may have a
very large number of rows. It ispossibleto replace A by asquare 12 x 12 matrix A such
that ||Ap|| = p"ATAp = ||Ap|| for any vector p. Such a matrix A is called a reduced
measurement matrix. One way to do this is using the Singular Value Decomposition
(SVD). Let A = UDV' bethe SVD of A, and define A = DV'. Then

ATA = (vDUT)(UDVT) = (VD)(DVT) = A'A

asrequired. Another way of obtaining A isto use the QR decomposition A = QA, where
Q has orthogonal columns and A is upper triangular and square.

Note that the mapping q — Ag(q) is a mapping from IR? to IR'2. Thisis asimple
parameter-minimization problem that may be solved using the Levenberg—-Marquardt
method. The important point to note is the following:

e Given a set of n world to image correspondences, X; < x;, the problem of find-
ing a constrained camera matrix P that minimizes the sum of algebraic distances
>, dalg(xi, PX;)? reduces to the minimization of a function IR — IR'?, independent
of the number n of correspondences.

Minimization of ||Ag(q)| takes place over all values of the parameters q. Note that if
P = K[R | —RC] withK asin (7.6) then P satisfiesthe condition p2, +p2,+p2, = 1, since
these entries are the same as the last row of the rotation matrix R. Thus, minimizing
Ag(q) will lead to amatrix P satisfying the constraints s = 0 and o, = «,, and scaled
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such that p%, + p3, + p3; = 1, and which in addition minimizes the algebraic error for
all point correspondences.

Initialization. One way of finding camera parameters to initialize the iteration is as
follows.

(i) Usealinear agorithm such as DLT to find an initial camera matrix.
(if) Clamp fixed parameters to their desired values (for instance set s = 0 and set
a, = «a to the average of their values obtained using DLT).
(i) Set variable parametersto their values obtained by decomposition of theinitial
camera matrix (see section 6.2.4).

Ideally, the assumed values of the fixed parameters will be close to the values ob-
tained by the DLT. However, in practice thisis not always the case. Then altering these
parametersto their desired values resultsin an incorrect initial camera matrix that may
lead to large residuals, and difficulty in converging. A method which works better in
practice is to use soft constraints by adding extra terms to the cost function. Thus, for
the casewhere s = 0 and o, = «,,, One adds extraterms ws* + w(a, — a,)? to the cost
function. In the case of geometric image error, the cost function becomes

> d(x;, PX;)? + ws® + w(ag — ay)”

One begins with the values of the parameters estimated using the DLT. The weights
begin with low values and are increased at each iteration of the estimation procedure.
Thus, the values of s and the aspect ratio are drawn gently to their desired values.
Finally they may be clamped to their desired values for afinal estimation.

Exterior orientation. Suppose that al the internal parameters of the camera are
known, then all that remains to be determined are the position and orientation (or pose)
of the camera. This s the “exterior orientation” problem, which is important in the
analysis of calibrated systems.

To compute the exterior orientation a configuration with accurately known position
in aworld coordinate frame is imaged. The pose of the camera is then sought. Such
a sSituation arises in hand—eye calibration for robotic systems, where the position of
the cameraisrequired, and also in model-based recognition using alignment where the
position of an object relative to the camerais required.

There are six parameters that must be determined, three for the orientation and three
for the position. As each world to image point correspondence generates two con-
straints it would be expected that three points are sufficient. Thisis indeed the case,
and the resulting non-linear equations have four solutionsin general.

Experimental evaluation

Results of constrained estimation for the calibration grid of example 7.1 are given in
table 7.2.
Both the algebraic and geometric minimization involve an iterative minimization
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fl/ fac/fy skew Zo Yo residua

algebraic 16334 1.0 00 37121 293.63 0.601
geometric  1637.2 1.0 00 37132 293.69 0.601

Table 7.2. Calibration for arestricted camera matrix.

over 9 parameters. However, the algebraic method is far quicker, since it minimizes
only 12 errors, instead of 2n = 396 in the geometric minimization. Note that fixing
skew and aspect ratio has altered the values of the other parameters (comparetable 7.1)
and increased the residual.

Covariance estimation. The techniques of covariance estimation and propagation of
the errorsinto an image may be handled in just the same way asin the 2D homography
case (chapter 5). Similarly, the minimum expected residual error may be computed
as in result 5.2(p136). Assuming that al errors are in the image measurements, the
expected ML residual error is equal to

eres = o(1 —d/2n)Y? .

where d is the number of camera parameters being fitted (11 for a full pinhole camera
model). This formula may also be used to estimate the accuracy of the point mea-
surements, given a residua error. In the case of example 7.1 where n = 197 and
eres = 0.365 thisresultsin avalue of ¢ = 0.37. Thisvaue is greater than expected.
The reason, as we will see later, lies in the camera model — we are ignoring radial
distortion.

Example7.2. Covariance ellipsoid for an estimated camera

Suppose that the camera is estimated using the Maximum Likelihood (Gold Stan-
dard) method, optimizing over a set of camera parameters. The estimated covari-
ance of the point measurements can then be used to compute the covariance of
the camera model by back-propagation, according to result 5.10(p142). This gives
Tcamera = (JTZEéintsJ)_l where J is the Jacobian matrix of the measured points in
terms of the camera parameters. Uncertainty in 3D world points may also be taken
into account in thisway. If the camerais parametrized in terms of meaningful param-
eters (such as camera position), then the variance of each parameter can be measured
directly from the diagonal entries of the covariance matrix.

Knowing the covariance of the camera parameters, error bounds or ellipsoids can
be computed. For instance, from the covariance matrix for al the parameters we may
extract the subblock representing the 3 x 3 covariance matrix of the camera position,
~c. A confidence ellipsoid for the camera centre is then defined by

(c—-0C)'gc'(c—¢C) = k?

where k? is computed from the inverse cumulative x? distribution in terms of the de-
sired confidence level o: namely k? = F!(«) (see figure A2.1(p567)). Here n isthe
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Fig. 7.3. Camera centre covariance ellipsoids. (a) Five images of Stanislas square (Nancy, France),
for which 3D calibration points are known. (b) Camera centre covariance ellipsoids corresponding to
each image, computed for cameras estimated from the imaged calibration points. Note, the typical cigar
shape of the ellipsoid aligned towards the scene data. Figure courtesy of Vincent Lepetit, Marie-Odile
Berger and Gilles Simon.

number of variables —that is 3 in the case of the camera centre. With the chosen level
of certainty «, the camera centre lies inside the ellipsoid.

Figure 7.3 shows an exampl e of ellipsoidal uncertainty regions for computed camera
centres. Given the estimated covariance matrix for the computed camera, the tech-
niques of section 5.2.6(p148) may be used to compute the uncertainty in the image
positions of further 3D world points. A

7.4 Radial distortion

The assumption throughout these chapters has been that a linear model is an accurate
model of the imaging process. Thus the world point, image point and optical centre
are collinear, and world lines are imaged as lines and so on. For real (non-pinhole)
lenses this assumption will not hold. The most important deviation is generally aradial
distortion. In practicethiserror becomes more significant asthefocal length (and price)
of the lens decreases. Seefigure 7.4.

The cure for this distortion isto correct the image measurements to those that would
have been obtained under a perfect linear camera action. The cameraisthen effectively
again alinear device. This process is illustrated in figure 7.5. This correction must
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Fig. 7.4. (a) Short vs (b) long focal lengths. Note the curved imaged lines at the periphery in (a) which
are images of straight scene lines.

radial distortion linear image

correction

—

Fig. 7.5. The image of a square with significant radial distortion is corrected to one that would have
been obtained under a perfect linear lens.

be carried out in the right place in the projection process. Lens distortion takes place
during theinitial projection of the world onto the image plane, according to (6.2—154).
Subsequently, the calibration matrix (7.6) reflects a choice of affine coordinates in the
image, trandating physical locations in the image plane to pixel coordinates.

We will denote the image coordinates of a point under ideal (non-distorted) pinhole
projection by (z, y), measured in units of focal-length. Thus, for a point X we have

(see (6.5155))
(:i'vga 1)T = [I | O]Xcam
where X cgm isthe 3D point in cameracoordinates, rel ated to world coordinates by (6.6—

p156). The actual projected point isrelated to the ideal point by aradial displacement.
Thus, radia (lens) distortion is modelled as

(1)

e (,7) istheideal image position (which obeys linear projection).

e (z4,yq) isthe actual image position, after radial distortion.

e 7 istheradial distance /72 + 2 from the centre for radial distortion.
e L(7) isadistortion factor, which is afunction of the radius 7 only.

7.7)

<
N———

where
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Correction of distortion. In pixel coordinates the correction iswritten
T=wxc+ L(r)(x —xc)  §=ye+Lr)(y —ye)-

where (z,y) are the measured coordinates, (z,y) are the corrected coordinates, and
(7.,y.) isthe centre of radial distortion, with 72 = (x — z.)? + (y — v.)?. Note, if the
aspect ratio is not unity then it is necessary to correct for this when computing ». With
this correction the coordinates (z, ) are related to the coordinates of the 3D world
point by alinear projective camera.

Choice of the distortion function and centre. The function L(r) is only defined for
positive values of » and L(0) = 1. An approximation to an arbitrary function L(r)
may be given by a Taylor expansion L(r) = 1 + k17 + kor? + k3r® + .. .. The coef-
ficients for radial correction {x1, ko, k3, ..., ., y.} are considered part of the interior
calibration of the camera. The principa point is often used as the centre for radia
distortion, though these need not coincide exactly. This correction, together with the
camera calibration matrix, specifies the mapping from an image point to aray in the
camera coordinate system.

Computing the distortion function. The function L(r) may be computed by mini-
mizing a cost based on the deviation from alinear mapping. For example, algorithm
7.1(p181) estimates P by minimizing geometric image error for calibration objects such
asthe Tsai grids of figure 7.1. The distortion function may be included as part of the
imaging process, and the parameters «; computed together with P during the iterative
minimization of the geometric error. Similarly, the distortion function may be com-
puted when estimating the homography between asingle Tsai grid and itsimage.

A simple and more general approach is to determine L(r) by the requirement that
images of straight scene lines should be straight. A cost function is defined on the
imaged lines (such as the distance between the line joining the imaged line's ends and
its mid-point) after the corrective mapping by L(r). This cost is iteratively minimized
over the parameters «; of the distortion function and the centre of radial distortion. This
isavery practical method for images of urban scenes since there are usually plenty of
linesavailable. It has the advantage that no special calibration patternis required asthe
scene provides the calibration entities.

Example7.3. Radial correction. The function L(r) is computed for the image of
figure 7.6a by minimizing a cost based on the straightness of imaged scene lines. The
imageis640 x 480 pixelsand the correction and centre are computed as <, = 0.103689,
ke = 0.00487908, k3 = 0.00116894, x4, = 0.000841614, x. = 321.87, y. = 241.18
pixels, where pixels are normalized by the average half-size of the image. Thisis a
correction by 30 pixels at the image periphery. The result of warping the image is
shown in figure 7.6b. JAN

Example7.4. We continue with the example of the calibration grid shown in figure 7.1
and discussed in example 7.1(p181). Radial distortion was removed by the straight line
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Fig. 7.6. Radial distortion correction. (a) The original image with lines which are straight in the
world, but curved in the image. Several of these lines are annotated by dashed curves. (b) The image
warped to remove theradial distortion. Note that the linesin the periphery of theimage are now straight,
but that the boundary of the image is curved.

method, and then the camera calibrated using the methods described in this chapter.
Theresultsare given in table 7.3.

Note that the residuals after radial correction are substantially smaller. Estimation of
the error of point measurements from the residual leadsto avalue of o = 0.18 pixels.
Since radia distortion involves selective stretching of the image, it is quite plausible
that the effective focal length of the image is changed, as seen here. A

fy fe/fy skew o Yo residual

linear 15805 1.0044 075 37753 29912 0.179
iterative  1580.7 1.0044 0.70 37742 299.02 0.179
algebraic 15560 1.0000 0.00 37242 29186 0.381
iterative  1556.6 1.0000 0.00 37241 291.86 0.380

linear 16733 10063 139 37996 30578 0.365
iterative 16755 1.0063 143 379.79 30525 0.364
algebraic 16334 1.0000 000 37121 293.63 0.601
iterative  1637.2 1.0000 0.00 37132 293.69 0.601

Table 7.3. Calibration with and without radial distortion correction. The results above the line
are after radial correction — the results below for comparison are without radial distortion (from the
previous tables). The upper two methodsin each case solve for the general camera model, the lower two
are for a constrained model with square pixels.

In correcting for radia distortion, it is often not actually necessary to warp theimage.
M easurements can be made in the original image, for example the position of a corner
feature, and the measurement simply mapped according to (7.7). The question of where
features should be measured does not have an unambiguous answer. Warping the im-
age will distort noise models (because of averaging) and may well introduce aliasing
effects. For this reason feature detection on the unwarped image will often be prefer-
able. However, feature grouping, such as linking edgels into straight line primitives,
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is best performed after warping since thresholds on linearity may well be erroneously
exceeded in the original image.

7.5 Closure
7.5.1 Theliterature

The original application of the DLT in [Sutherland-63] was for camera computation.
Estimation by iterative minimization of geometric errors is a standard procedure of
photogrammetrists, e.g. see [Slama-80].

A minimal solution for a calibrated camera (pose from the image of 3 points) wasthe
original problem studied by Fischler and Bolles [Fischler-81] in their RANSAC paper.
Solutions to this problem reoccur often in the literature; a good treatment is given in
[Wolfe-91] and also [Haralick-91]. Quasi-linear solutions for one more than the mini-
mum number of point correspondences X; < x; arein [Quan-98] and [Triggs-99a)].

Another class of methods, which are not covered here, istheiterative estimation of a
projective camera starting from an affine one. The algorithm of “Model based posein
25 lines of code” by Dementhon and Davis [Dementhon-95] is based on thisidea. A
similar method is used in [Christy-96].

Devernay and Faugeras [Devernay-95] introduced a straight line method for com-
puting radia distortion into the computer vision literature. In the photogrammetry
literature the method is known as “ plumb line correction”, see [Brown-71].

7.5.2 Notesand exercises
(i) Given 5 world-to-image point correspondences, X; < x;, show that there are
in general four solutionsfor acamera matrix P with zero skew that exactly maps
the world to image points.

(if) Given 3 world-to-image point correspondences, X; < x;, show that there are
in general four solutions for a camera matrix P with known calibration K that
exactly maps the world to image points.

(iii) Find alinear algorithm for computing the camera matrix P under each of the
following conditions:

() The cameralocation (but not orientation) is known.

(b) Thedirection of the principal ray of the camerais known.

(c) The cameralocation and the principal ray of the camera are known.

(d) The cameralocation and complete orientation of the camera are known.

(e) The cameralocation and orientation are known, as well as some subset
of the internal camera parameters (o, oy, s, o and yp).

(iv) Conflation of focal length and position on principal axis. Compare the im-
aged position of a point of depth d before and after an increase in camerafocal
length A f, or adisplacement At; of the camera backwards along the principal
axis. Let (z,y)" and (2/, )" be the image coordinates of the point before and



194

(v)

7 Computation of the Camera Matrix P

after the change. Following a similar derivation to that of (6.19-p169), show

T ()

where k/ = Af/f for afocal length change, or k'* = —At3/d for adisplace-
ment (hereskew s = 0, and o, = o, = f).

For a set of calibration points X; with depth relief (A;) small compared to the
average depth (dy),

i.e. k* is approximately constant across the set. It follows that in calibrating
from such a set, similar image residuals are obtained by changing the focal
length &/ or displacing the camera k*:. Consequently, the estimated parameters
of focal length and position on the principal axis are correlated.

Pushbroom camera computation.  The pushbroom camera, described in
section 6.4.1, may also be computed using aDLT method. The x (orthographic)
part of the projection matrix has 4 degrees of freedom which may be determined
by four or more point correspondences X; < x;; the y (perspective) part of the
projection matrix has 7 degrees of freedom and may be determined from 7 cor-
respondences. Hence, a minimal solution requires 7 points. Details are given
in [Gupta-97].



8

More Single View Geometry

Chapter 6 introduced the projection matrix as the model for the action of a camera
on points. This chapter describes the link between other 3D entities and their images
under perspective projection. These entities include planes, lines, conics and quadrics;
and we develop their forward and back-projection properties.

The camera is dissected further, and reduced to its centre point and image plane.
Two properties are established: images acquired by cameras with the same centre are
related by a plane projective transformation; and images of entities on the plane at
infinity, 7., do not depend on camera position, only on camera rotation and internal
parameters, K.

The images of entities (points, lines, conics) on 7, are of particular importance. It
will be seen that the image of a point on 7, is a vanishing point, and the image of
aline on 7, avanishing line; their images depend on both X and camera rotation.
However, the image of the absolute conic, w, depends only on X; it is unaffected by the
camera s rotation. The conic w isintimately connected with camera calibration, K, and
the relation w = (KKT)~! is established. It follows that w defines the angle between
rays back-projected from image points.

These properties enable camera relative rotation to be computed from vanishing
points independently of camera position. Further, since K enables the angle between
rays to be computed from image points, in turn X may be computed from the known
angle between rays. In particular K may be determined from vanishing points corre-
sponding to orthogonal scene directions. This means that a camera can be calibrated
from scene features, without requiring known world coordinates.

A final geometric entity introduced in this chapter is the calibrating conic, which
enables a geometric visualization of K.

8.1 Action of a projective camera on planes, lines, and conics

In this section (and indeed in most of thisbook) itisonly the 3 x 4 formand rank of the
camera projection matrix P that is important in determining its action. The particular
properties and relations of its elements are often not relevant.

195
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Fig. 8.1. Perspective image of points on a plane. The xYy-plane of the world coordinate frame is
aligned with the plane . Points on the image and scene planes are related by a plane projective
transformation.

8.1.1 On planes

The point imaging equation x = PX isamap from apoint in aworld coordinate frame,
to a point in image coordinates. We have the freedom to choose the world coordinate
frame. Suppose it is chosen such that the XY-plane corresponds to a plane 7 in the
scene, so that points on the scene plane have zero z-coordinate as shown in figure 8.1
(it is assumed that the camera centre does not lie on the scene plane). Then, if the
columns of P are denoted as p;, the image of apoint on 7 is given by

X:PX:[M P2 D3 P4}

— o < X

So that the map between points x, = (X,Y,1)T on 7 and their image x is a general
planar homography (a plane to plane projective transformation): x = Hx,, withH a
3 x 3 matrix of rank 3. This shows that:

e Themost general transformation that can occur between a scene plane and an image
plane under perspective imaging is a plane projective transformation.

If the camerais affine, then asimilar derivation shows that the scene and image planes
arerelated by an affine transformation.

Example8.1. For a calibrated camera (6.8156) P = K[R | t|, the homography be-
tween aworld planeat z = 0 and theimageis

H=K|[ry,ro,t] (8.1)

where r; are the columns of R. A

8.1.2 Onlines

Forward projection. A linein 3-space projects to aline in the image. Thisis easily
seen geometrically — the line and camera centre define a plane, and the image is the
intersection of this plane with the image plane (figure 8.2) —and is proved algebraically
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L

Fig. 8.2. Lineprojection. AlineL in 3-spaceisimaged asa line 1 by a perspective camera. The image
line 1is the intersection of the plane 7r, defined by L and the camera centre C, with the image plane.
Conversely an image line 1 back-projects to a plane = in 3-space. The plane is the “ pull-back” of the
line.

by noting that if A, B are pointsin 3-space, and a, b their images under P, then a point
X(u) = A + pB onalinewhichisthejoin of A, B in 3-space projects to a point

x(u) = P(A+ puB)=PA+ PB
= a+ub
whichisonthelinejoining a and b.

Back-projection of lines. The set of pointsin space which map to alinein theimage
isaplane in space defined by the camera centre and image line, as shown in figure 8.2.
Algebraically,

Result 8.2. The set of pointsin space mapping to alinel via the camera matrix P isthe
planeP'l.

Proof. A point x lieson 1 if and only if x"1 = 0. A space point X maps to a point
PX, which lieson thelineif and only if XTPT1 = 0. Thus, if PT1istaken to represent a
plane, then X lies on this plane if and only if X maps to a point on the linel. In other
words, P'1 isthe back-projection of thelinel.

Geometrically thereisastar (two-parameter family) of planes through the camera cen-
tre, and the three rows of the projection matrix P*T (6.12—159) are abasisfor this star.
The plane PT1 is alinear combination of this basis corresponding to the element of the
star containing the camera centre and the line 1. For example, if 1 = (0,1,0)T then the
planeis P2, and isthe back projection of the image z-axis.

Plucker linerepresentation. Understanding this material on Plicker line mapping is
not required for following the rest of the book.

We now turn to forward projection of lines. If aline in 3-space is represented by
Plicker coordinates then its image can be expressed as a linear map on these coordi-
nates. We will develop this map for both the 4 x 4 matrix and 6-vector line representa-
tions.
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Result 8.3. Under the camera mapping P, a line in 3-space represented as a Pliicker
matrix L, as defined in (3.870), isimaged as the line1 where

1], =PLP". (8.2)
where the notation [1] . is defined in (A4.5581).

Proof. Suppose as above that a = PA, b = PB. The Plucker matrix L for the line
through A, B in 3-spaceisL = AB"T — BAT. Thenthematrix M = PLP" = ab" — ba'
is3 x 3 and antisymmetric, with null-space a x b. Consequently, M = [a x b],, and
since the line through the image pointsisgiven by 1 = a x b, this compl etes the proof.

It is clear from the form of (8.2) that there is alinear relation between the image line
coordinates {; and the world line coordinates L;;, but that this relation is quadratic
in the elements of the point projection matrix P. Thus, (8.2) may be rearranged such
that the map between the Pliicker line coordinates, £ (a 6-vector), and the image line
coordinates1 (a 3-vector) is represented by asingle 3 x 6 matrix. It can be shown that

Definition 8.4. Theline projection matrix P isthe 3 x 6 matrix of rank 3 given by

P2 AP
P3 A P!
P! A P2

P = (8.3)

where P'T are the rows of the point camera matrix P, and P’ A P/ are the Pliicker line
coordinates of the intersection of the planes P! and P/,

Then the forward line projection is given by

Result 8.5. Under the line projection matrix P, a line in IP? represented by Pliicker
line coordinates £, as defined in (3.11-p72), is mapped to the image line

(P2 AP3IL)
(P3APLL)
(P' AP2L)

1=PL = (84)

where the product (51/3) Is defined in (3.13-p72).

Proof. Suppose the linein 3-space isthejoin of the points A and B, and these project
to a = PA,b = PB respectively. Then theimagelinel = a x b = (PA) x (PB).
Consider the first element
L = (P*TA)(P’TB) — (P*TB)(P*TA)
(P> AP?|L)
where the second equality follows from (3.14—73). The other components follow in a
similar manner.
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Theline projection matrix P playsthe samerolefor linesasP doesfor points. Therows
of P may be interpreted geometrically aslines, in asimilar manner to the interpretation
of the rows of the point camera matrix P as planes given in section 6.2.1(p158). The
rows P'T of P are the principal plane and axis planes of the camera. The rows of P
are the lines of intersection of pairs of these camera planes. For example, the first
row of P isP? A P3, and thisis the 6-vector Pliicker line representation of the line of
intersection of the y = 0 axis plane, P2, and the principa plane, P3. The three lines
corresponding to the three rows of P intersect at the camera centre. Consider lines £
in 3-space for which PL = 0. These lines are in the null-space of P. Since each row
of P isaline, and from result 3.5(p72) the product (£|L,) = 0 if two lines intersect,
if follows that £ intersects each of the lines represented by the rows of P. These lines
are the intersection of the camera planes, and the only point on all 3 camera planesis
the camera centre. Thus we have

e Thelines £ in 1P for which PL = 0 pass through the camera centre.

The 3 x 6 matrix P has a 3-dimensiona null-space. Allowing for the homogeneous
scale factor, this null-space is a two-parameter family of lines containing the camera
centre. Thisisto be expected since thereis a star (two parameter family) of linesin IP3
concurrent with a point.

8.1.3 On conics

Back-projection of conics. A conic C back-projectsto acone. A coneisadegenerate
quadric, i.e. the 4 x 4 matrix representing the quadric does not have full rank. The cone
vertex, in this case the camera centre, is the null-vector of the quadric matrix.

Result 8.6. Under the camera P the conic C back-projects to the cone

Qeo = P'CP.

Proof. A point x lieson ¢ if and only if x"Cx = 0. A space point X maps to a point
PX, which lieson the conic if and only if XTPTCPX = 0. Thus, if Q., = PTCP istaken
to represent a quadric, then X lies on this quadric if and only if X maps to a point on
the conic C. In other words, Q. is the back-projection of the conic C.

Note the camera centre C is the vertex of the degenerate quadric since
Q.C = PTC(PC) = 0.

Example8.7. Supposethat P = K[I | 0]; then the conic C back-projects to the cone
KT KTCK 0
= | o7 Jemio=| G 0|

The matrix Q., hasrank 3. Its null-vector isthe cameracentreC = (0,0,0,1)T. A
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Contour Apparent
generator I contour Y
a b

Fig. 8.3. Contour generator and apparent contour. (a) for parallel projection; (b) for central projec-
tion. The ray from the camera centre through x is tangent to the surface at X. The set of such tangent
points X defines the contour generator, and their image defines the apparent contour. In general the
contour generator is a space curve. Figure courtesy of Roberto Cipolla and Peter Giblin.

8.2 Images of smooth surfaces

The image outline of a smooth surface S results from surface points at which the imag-
ing rays are tangent to the surface, as shown in figure 8.3. Similarly, lines tangent to
the outline back-project to planes which are tangent planes to the surface.

Definition 8.8. The contour generator T is the set of points X on .S at which rays are
tangent to the surface. The corresponding image apparent contour ~y isthe set of points
x which aretheimage of X, i.e. v istheimage of T.

The apparent contour isalso called the “outling” and “profile”. If the surface is viewed
in the direction of X from the camera centre, then the surface appearsto fold, or to have
aboundary or occluding contour.

It is evident that the contour generator ' depends only on the relative position of the
camera centre and surface, not on the image plane. However, the apparent contour ~y
is defined by the intersection of the image plane with the rays to the contour generator,
and so does depend on the position of the image plane.

In the case of parallel projection with direction k, consider all the rays parallel to k
which are tangent to S, see figure 8.3a. These rays form a*“cylinder” of tangent rays,
and the curve along which this cylinder istangent to S is the contour generator T. The
curve in which the cylinder meets the image plane is the apparent contour ~. Note that
both T and ~ depend in an essential way on k. The set T dlips over the surface as the
direction of k changes. For example, with .S a sphere, T is the great circle orthogonal
to k. In this case, the contour generator T is a plane curve, but in general T is a space
curve.

We next describe the projection properties of quadrics. For this class of surface
algebraic expressions can be devel oped for the contour generator and apparent contour.
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Fig. 8.4. Thecone of raysfor a quadric. The vertex of the cone is the camera centre. (a) The contour
generator T of a quadric is a plane curve (a conic) which is the intersection of the quadric with the
polar plane of the camera centre, C.

8.3 Action of a projective camera on quadrics

A quadric is a smooth surface and so its outline curve is given by points where the
back-projected rays are tangent to the quadric surface as shown in figure 8.4.

Suppose the quadric is a sphere, then the cone of rays between the camera centre
and quadric is right-circular, i.e. the contour generator is a circle, with the plane of
the circle orthogonal to the line joining the camera and sphere centres. This can be
seen from the rotational symmetry of the geometry about this line. The image of the
sphere is obtained by intersecting the cone with the image plane. It isclear that thisisa
classical conic section, so that the apparent contour of a sphereisaconic. In particular
if the sphere centre lies on the principal (z) cameraaxis, then the conicisacircle.

Now consider a 3-space projective transformation of this geometry. Under this map
the sphere is transformed to a quadric and the apparent contour to a conic. However,
since intersection and tangency are preserved, the contour generator is a (plane) conic.
Consequently, the apparent contour of ageneral quadricisaconic, and the contour gen-
erator is also a conic. We will now give algebraic representations for these geometric
results.

Forward projection of quadrics. Since the outline arises from tangency, it is not
surprising that the dual of the quadric, Q*, isimportant here since it defines the tangent
planes to the quadric Q.

Result 8.9. Under the camera matrix P the outline of the quadric Q isthe conic C given
by
C* =PQ*P". (8.5)

Proof. This expression is simply derived from the observation that lines 1 tangent to

the conic outline satisfy 17C*1 = 0. These lines back-project to planes w = P'1 that are
tangent to the quadric and thus satisfy 7 'Q*m = 0. Then it follows that for each line

o'Q'r = 1"pQ*P"1
= 1"¢*1=0
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and since thisistruefor all lines tangent to C the result follows.

Note the similarity of (8.5) with the projection of aline represented by a Plicker ma-
trix (8.2). An expression for the projection of the point quadric Q can be derived
from (8.5) but it is quite complicated. However, the plane of the contour generator
iseasily expressed in terms of Q:

e The plane of T for a quadric Q and camera with centre C isgiven by - = QC.

This result follows directly from the pole—polar relation for a point and quadric of
section 3.2.3(p73). Its proof is |eft as an exercise. Note, the intersection of a quadric
and planeisaconic. SoT isaconic and itsimage ~, which is the apparent contour, is
also a conic as has been seen above.

We may also derive an expression for the cone of rays formed by the camera centre
and quadric. This cone is a degenerate quadric of rank 3.

Result 8.10. The cone with vertex v and tangent to the quadric Q is the degenerate
quadric

Qo = (V'QAV)Q — (QV)(QV)T.

Note that Q..V = 0, so that V is the vertex of the cone as required. The proof is
omitted.

Example8.11. We write the quadric in block form:

Q= Usxs d
a’ qu |
Thenif v = (0,0,0,1)T, which corresponds to the cone vertex being at the centre of

the world coordinate frame,

Q. — | Q=3 —aq’ O
0 0" 0

which is clearly a degenerate quadric. YAN

8.4 Theimportance of the camera centre

An object in 3-space and camera centre define a set of rays, and an image is obtained
by intersecting these rays with a plane. Often this set is referred to as a cone of rays,
even though it is not a classical cone. Suppose the cone of rays is intersected by two
planes, as shown in figure 8.5, then the two images, I and I’, are clearly related by a
perspective map. This means that images obtained with the same camera centre may
be mapped to one another by a plane projective transformation, in other words they are
projectively equivalent and so have the same projective properties. A camera can thus
be thought of as a projective imaging device — measuring projective properties of the
cone of rays with vertex the camera centre.

The result that the two images I and I’ are related by a homography will now be
derived algebraically to obtain aformula for this homography. Consider two cameras

P=KR[I| —-C|, P =KR[I|—-C]
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X

Fig. 8.,5. The cone of rays with vertex the camera centre. An image is obtained by intersecting this
cone with a plane. A ray between a 3-space point X and the camera centre C pierces the planesin the
image points x and x’. All such image points are related by a planar homography, x’ = Hx.

with the same centre. Note that since the cameras have a common centre there is a
simple relation between them, namely P’ = (K'R’)(KR)~'P. It then follows that the
images of a 3-space point X by the two cameras are related as

x' = P'X = (K'R')(KR)'PX = (K'R')(KR) 'x.

That is, the corresponding image points are related by a planar homography (a3 x 3
matrix) as x’ = Hx, whereH = (K'R’)(KR) ..

We will now investigate several cases of moving the image plane whilst fixing the
camera centre. For simplicity the world coordinate frame will be chosen to coincide
with the camera's, so that P = X[I | o] (and it will be assumed that the image plane
never contains the centre, as the image would then be degenerate).

8.4.1 Movingtheimage plane

Consider first an increase in focal length. To a first approximation this corresponds
to a displacement of the image plane along the principal axis. The image effect is a
simple magnification. This is only a first approximation because with a compound
lens zooming will perturb both the principal point and the effective camera centre.
Algebraicaly, if x, x’ are the images of apoint X before and after zooming, then

x = K[I|0]X
x = K[I|ox=KK'(K[I|0]x)=KK'x

so that x’ = Hx with H = K’K~L. If only the focal lengths differ between K and K’ then
ashort calculation shows that

K/K—l — [

kI (1 — k)%
or 1 '

where x, is the inhomogeneous principal point, and & = f’/f is the magnification
factor. This result follows directly from similar triangles: the effect of zooming by a
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]

Fig. 8.6. Between images (a) and (b) the camera rotates about the camera centre. Corresponding points
(that is images of the same 3D point) are related by a plane projective transformation. Note that 3D
points at different depths which are coincident in image (a), such as the mug lip and cat body, are also
coincident in (b), so there is no motion parallax in this case. However, between images (a) and (c) the
camera rotates about the camera centre and translates. Under this general motion coincident points of
differing depth in (a) are imaged at different pointsin (c), so there is motion parallax in this case due to
the camera trandlation.

factor k£ isto move the image point x on aline radiating from the principal point x, to
the point x’ = kx + (1 — k)x,. Algebraicaly, using the most general form (6.10p157)
of the calibration matrix X, we may write

Ko [kI (1—/<;)5<0]K_lk1 (1—k)5<OHA 5(0]

o 1 — 10T 1
B kA X X kI
o o' 1 o 1|

This shows that

e The effect of zooming by a factor % isto multiply the calibration matrix X on the right
by diag(k, k, 1).

8.4.2 Camerarotation

A second common example is where the camera is rotated about its centre with
no change in the internal parameters. Examples of this “pure’ rotation are given
in figure 8.6 and figure 8.9. Algebraicaly, if x, x’ are the images of a point X be-
fore and after the pure rotation

x = K[I|0]X
x' = K[R|0]X =KRK 'K[I | 0]X = KRK 'x

so that x’ = Hx with H = KRK~!. This homography is a conjugate rotation and is
discussed further in section A7.1(p628). For now, we mention a few of its properties
by way of an example.

Example8.12. Propertiesof a conjugaterotation

The homography H = KRK~! has the same eigenvalues (up to scale) as the rotation
matrix, namely {, ue, pe=*}, where u isan unknown scale factor (if His scaled such
that det H = 1, then . = 1). Consequently the angle of rotation between views may be
computed directly from the phase of the complex eigenvalues of H. Similarly, it can be
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Fig. 8.7. Synthetic views. (a) Source image. (b) Fronto-parallel view of the corridor floor generated
from (@) using the four corners of a floor tile to compute the homography. (c) Fronto-parallel view of the
corridor wall generated from (a) using the four corners of the door frame to compute the homography.

..C

shown (see exercises) that the eigenvector of H corresponding to the real eigenvalueis
the vanishing point of the rotation axis.

For example, between images (a) and (b) of figure 8.6 there is a pure rotation
of the camera. The homography H is computed by algorithm 4.6(p123), and from
this the angle of rotation is estimated as 4.66°, and the axis vanishing point as
(—0.0088,1,0.0001)T, i.e. virtually at infinity in the y direction, so the rotation axis
isalmost parallel to the y-axis. A

The transformation H = KRK~! is an example of the infinite homography mapping
H,., that will appear many times through this book. It is defined in section 13.4(p338).
The conjugation property is used for auto-calibration in chapter 19.

8.4.3 Applications and examples

The homographic relation between images with the same camera centre can be ex-
ploited in several ways. Oneisthe creation of synthetic images by projective warping.
Another is mosaicing, where panoramic images can be created by using planar homo-
graphiesto “sew” together views obtained by arotating camera.

Example8.13. Synthetic views

New images corresponding to different camera orientations (with the same camera

centre) can be generated from an existing image by warping with planar homographies.
In a fronto-parallel view a rectangle is imaged as a rectangle, and the world and

Image rectangle have the same aspect ratio. Conversely, a fronto-parallel view can be

synthesized by warping an image with the homography that maps a rectangle imaged

as aquadrilateral to arectangle with the correct aspect ratio. The algorithmiis:

(i) Compute the homography H which maps the image quadrilateral to arectangle
with the correct aspect ratio.
(ii) Projectively warp the source image with this homography.

Examples are shown in figure 8.7. A
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Fig. 8.8. Threeimages acquired by a rotating camera may be registered to the frame of the middle one,
as shown, by projectively warping the outer images to align with the middie one.

Example8.14. Planar panoramic mosaicing

Images acquired by a camera rotating about its centre are related to each other by a
planar homography. A set of such images may be registered with the plane of one of
the images by projectively warping the other images, asillustrated in figure 8.8.

Fig. 8.9. Planar panoramic mosaicing. Eight images (out of thirty) acquired by rotating a camcorder
about its centre. The thirty images are registered (automatically) using planar homographies and com-
posed into the single panoramic mosaic shown. Note the characteristic “ bow tie” shape resulting from
registering to an image at the middle of the sequence.

In outline the algorithm is:

(i) Choose oneimage of the set as areference.
(if) Compute the homography H which maps one of the other images of the set to
this reference image.
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(iii) Projectively warp the image with this homography, and augment the reference
image with the non-overlapping part of the warped image.
(iv) Repeat the last two steps for the remaining images of the set.

The homographies may be computed by identifying (at least) four corresponding
points, or by using the automatic method of algorithm 4.6(p123). An example mo-
saic isshown in figure 8.9. JAN

8.4.4 Projective (reduced) notation

It will be seen in chapter 20 that if canonical projective coordinates are chosen for
world and image points, i.e.

X1 = (1707070)T7 X9 = (07 17070)T7 X3 = (0707 1>O)T7 Xy = (070707 1)T7
and
X1 = (17070)Ta X9 = (07 170)Ta X3 = (0707 1)T7 X4 = (]-7 1a ]->T7

then the camera matrix
a 0 0 —d
P=|00b 0 —d (8.6)

00 ¢ —d

satisfiesx; = PX;, i = 1,...,4,anddsothatP(a=t,b7 %, ¢ 1, d™1)T = 0, whichmeans
that the camera centreis ¢ = (a=%,b71, ¢ 1, d~H)T. This is known as the reduced
camera matrix, and it is clearly completely specified by the 3 degrees of freedom of
the camera centre C. Thisis a further illustration of the fact that all images acquired
by cameras with the same camera centre are projectively equivalent — the camera has
been reduced to its essence: a projective device whose action isto map IP? to IP? with
only the position of the camera centre affecting the result. This camera representation
isused in establishing duality relations in chapter 20.

8.4.5 Moving the cameracentre

The cases of zooming and camerarotation illustrate that moving theimage plane, whilst
fixing the camera centre, induces a transformation between images that depends only
on the image plane motion, but not on the 3-space structure. Conversely, no information
on 3-space structure can be obtained by this action. However, if the camera centre is
moved then the map between corresponding image points does depend on the 3-space
structure, and indeed may often be used to (partially) determine the structure. Thisis
the subject of much of the remainder of this book.

How can one determine from the images alone whether the camera centre has
moved? Consider two 3-space points which have coincident images in the first view,
i.e. the points are on the same ray. If the camera centre is moved (not along that ray)
the image coincidence islost. This relative displacement of previously coincident im-
age pointsis termed parallax, and is illustrated in figure 8.6 and shown schematically
in figure 8.10. If the scene is static and motion parallax is evident between two views
then the camera centre has moved. Indeed, a convenient method for obtaining acamera
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Fig. 8.10. Motion parallax. The images of the space points X; and X, are coincident when viewed by
the camera with centre C. However, when viewed by a camera with centre C’, which does not lie on the
line LL through X; and X5, the images of the space points are not coincident. In fact the line through
the image points x| and x, is the image of the ray L, and will be seen in chapter 9 to be an epipolar
line. The vector between the points x| and x}, isthe parallax.

motion that is only arotation about its centre (for example for a camera mounted on a
robot head) is to adjust the motion until there is no parallax.

An important special case of 3-space structure is when al scene points are coplanar.
In this case the images of corresponding points are related by a planar homography
even if the camera centre is moved. The map between images in this case is discussed
in detail in chapter 13 on planes. In particular vanishing points, which are images of
points on the plane 7., are related by a planar homography for any camera motion.
We return to thisin section 8.6.

8.5 Camera calibration and theimage of the absolute conic

Up to this point we have discussed projective properties of the forward and back-
projection of various entities (point, lines, conics...). These properties depend only
on the 3 x 4 form of the projective cameramatrix P. Now we describe what isgained if
the camera internal calibration, K, is known. It will be seen that Euclidean properties,
such as the angle between two rays, can then be measured.

What doescalibration give? Animage point x back-projectsto aray defined by x and
the camera centre. Calibration relates the image point to the ray’s direction. Suppose
points on theray arewritten as X = \d in the camera Euclidean coordinate frame, then
these points map to the point x = K[I | 0](AdT,1)T = Kd up to scale. Conversely the
direction d is obtained from theimage point x asd = K~!'x. Thuswe have established:

Result 8.15. The camera calibration matrix X is the (affine) transformation between
x and the ray's direction d = K~'x measured in the camera’s Euclidean coordinate
frame.

Note, d = K~ !x isin genera not a unit vector.
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Fig. 8.11. The angle # between two rays.

The angle between two rays, with directions d,, d, corresponding to image points
X1, Xo respectively, may be obtained from the familiar cosine formula for the angle
between two vectors:

d—lrdQ (K71X1)T(K71X2)

\/(Hdl\/dg(b ) \/(Kilxl)T(Kflxl)\/<K71X2)T(K*1X2)
= X1 (K~TK™)xs
: \/XI(K_TK_l))q\/x;(K—TK—l)XQ ' (8.7)

The formula (8.7) shows that if X, and consequently the matrix K- TK~!, is known,
then the angle between rays can be measured from their corresponding image points.
A camerafor which K isknown istermed calibrated. A calibrated cameraisadirection
sensor, able to measure the direction of rays—like a 2D protractor.

The calibration matrix K also provides a relation between an image line and a scene
plane:

cosf =

Result 8.16. An image line 1 defines a plane through the camera centre with normal
direction n = K'1 measured in the camera’s Euclidean coordinate frame.

Note, the norma n will not in general be a unit vector.

Proof. Pointsx onthelinel back-project to directionsd = K~'x which are orthogonal
to the plane normal n, and thus satisfy d'n = x"K~"n = 0. Since points on 1 satisfy
x'l =0, itfollowsthat1 = K~ "n, and hencen = K'1.

8.5.1 Theimage of the absolute conic

We now derive a very important result which relates the calibration matrix X to the
image of the absolute conic, w. First we must determine the map between the plane
at infinity, 7., and the camera image plane. Points on 7., may be written as X, =
(dT,0)T, and areimaged by ageneral cameraP = KR[I | —C] as

x:PXOO:KR[I|—(~J]<g>:KRd.

This shows that
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e the mapping between 7, and an image is given by the planar homography x = Hd
with
H = KR. (8.8)

Note that this map is independent of the position of the camera, C, and depends only
on the camerainternal calibration and orientation with respect to the world coordinate
frame.

Now, since the absolute conic Q. (section 3.6(p81)) is on 7., we can compute its
image under H, and find

Result8.17. The image of the absolute conic (the IAC) is the conic
w=(KKT)"1 =K TK L

Proof. From result 2.13(p37) under a point homography x +— Hx aconic C maps as
C+ H-TCH™!. It follows that Q.., which is the conic C = @, = I on .., mapsto
w = (KR)"TI(KR)"' =K TRR'K! = (KK")"!. Sothe IACw = (KK)~ ..

Like @, the conic w isan imaginary point conic with no real points. For the moment it
may be thought of as a convenient algebraic device, but it will be used in computations
later in this chapter, and also in chapter 19 on camera auto-calibration.

A few remarks here:

(i) Theimage of the absolute conic, w, depends only on the internal parameters K
of the matrix P; it does not depend on the camera orientation or position.
(i) It follows from (8.7) that the angle between two rays is given by the smple

expression
-
X1 WX
cosf) = 1 . (8.9
\/Xlwal \/X—QerQ

This expression isindependent of the projective coordinate framein the image,
that is, it isunchanged under projective transformation of theimage. To seethis
consider any 2D projective transformation, H. The points x; are transformed
to Hx;, and w transforms (as any image conic) to H-"wH™!. Thus, (8.9) is
unchanged, and hence holds in any projective coordinate frame in the image.

(iii) A particularly important specialization of (8.9) is that if two image points x;
and x, correspond to orthogonal directions then

X] wxy = 0. (8.10)

This equation will be used at several points later in the book as it provides a
linear constraint on w.
(iv) We may also define the dual image of the absolute conic (the DIAC) as

w'=wl=KK'. (8.11)

Thisisadual (line) conic, whereasw isapoint conic (though it contains no real
points). The conic w* isthe image of Q*_ and is given by (8.5) w* = PQ* _P".
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(v) Result 8.17 shows that once w (or equivalently w*) is identified in an image
then K is also determined. This follows because a symmetric matrix w may be
uniquely decomposed into a product w* = KK' of an upper-triangular matrix
with positive diagonal entries and its transpose by the Cholesky factorization
(seeresult A4.5(p582)).

(vi) It was seen in chapter 3 that a plane = intersects ., in aline, and this line
intersects Q.. in two points which are the circular points of . The imaged
circular points lie on w at the points at which the vanishing line of the plane 7
intersects w.

These final two properties of w are the basis for a calibration algorithm, as shown in
the following example.

Example8.18. A simple calibration device

The image of three squares (on planes which are not paralel, but which need not be
orthogonal) provides sufficiently many constraints to compute K. Consider one of the
squares. The correspondences between its four corner points and their images define
the homography H between the plane = of the square and the image. Applying this
homography to circular points on 7 determines their images as H(1, 4-i,0)". Thus we
have two points on the (as yet unknown) w. A similar procedure applied to the other
squares generates atotal of six pointson w, from which it may be computed (since five
points are required to determine a conic). In outline the algorithm has the following
steps:

(i) For each square compute the homography H that maps its corner points,
(0,0)T,(1,0)7,(0,1)T,(1,1)T, to their imaged points. (The alignment of the
plane coordinate system with the squareis asimilarity transformation and does
not affect the position of the circular points on the plane).

(ii) Compute theimaged circular points for the plane of that square asH(1, 4-i,0).
Writing H = [hy, ho, hs), theimaged circular pointsare h; + ih,.

(iii) Fit aconic w to the six imaged circular points. The constraint that the imaged
circular points lie on w may be rewritten as two real constraints. If h; + ih,
lieson w then (h; + z’hg)Tw (h; +ihy) = 0, and the imaginary and real parts
give respectively:

h{why, =0 and h{wh; = hywh, (8.12)

which are equations linear in w. The conic w is determined up to scale from
five or more such equations.
(iv) Computethe cdibration K from w = (KK)~! using the Cholesky factorization.

Figure 8.12 shows a calibration object consisting of three planes imprinted with
squares, and the computed matrix K. For the purpose of internal calibration, the squares
have the advantage over a standard calibration object (e.g. figure 7.1(p182)) that no
measured 3D co-ordinates are required. A
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Fig. 8.12. Calibration from metric planes. (a) Three squares provide a simple calibration object. The
planes need not be orthogonal. (b) The computed calibration matrix using the algorithm of example 8.18.
Theimage sizeis 1024 x 768 pixels.

image e image

Fig. 8.13. Orthogonality represented by conjugacy and pole—polar relationships. (a) Image points
x1, X9 back-project to orthogonal raysif the points are conjugate with respect to w, i.e. x] wx, = 0. (b)
The point x and line 1 back-project to a ray and plane that are orthogonal if x and 1 are pole—polar with
respect to w, i.e. 1 = wx. For example (see section 8.6.3), the vanishing point of the normal direction to
a plane and the vanishing line of the plane are pole—polar with respect to w.

We will return to camera calibration in section 8.8, where vanishing points and lines
provide constraints on X. The geometric constraints that are used in example 8.18 are
discussed further in section 8.8.1.

8.5.2 Orthogonality and w

The conic w isadevice for representing orthogonality in an image. It has already been
seen (8.10) that if two image points x; and x, back-project to orthogonal rays, then the
points satisfy x| wx, = 0. Similarly, it may be shown that

Result 8.19. A point x and line 1 back-projecting to a ray and plane respectively that
are orthogonal arerelated by 1 = wx.

Geometrically these relations express that image points back-projecting to orthogonal
rays are conjugate with respect to w (x]wx, = 0), and that a point and line back-
projecting to an orthogonal ray and plane are in a pole—polar relationship (1 = wx).
See section 2.8.1(p58). A schematic representation of these two relations is given
infigure 8.13.
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These geometric representations of orthogonality, and indeed the projective repre-
sentation (8.9) of the angle between two rays measured from image points, are simply
specializations and a recapitulation of relations derived earlier in the book. For ex-
ample, we have already developed a projective representation (3.23-p82) of the angle
between two linesin 3-space, namely

d!lQ..ds
JaT.d\/d]0.cds

where d; and d, are the directions of the lines (which are the points at which the lines
intersect ). Raysarelinesin 3-space which are coincident at the camera centre, and
S0 (3.2382) may be applied directly to rays. Thisis precisely what (8.9) does—it is
simply (3.23-82) computed in the image.

Under the map (8.8) H = KR, which is the homography between the plane 7, in
the world coordinate frame and the image plane, Q.. — H'wH = (KR)"w(KR) and
d; = H'x; = (KR) 'x;. Substituting these relations into (3.2382) gives (8.9).
Similarly the conjugacy and pole—polar relations for orthogonality in the image are
a direct image of those on w,, as can be seen by comparing figure 3.8(p83) with
figure 8.13.

In practice these orthogonality results find greatest application in the case of vanish-
ing points and vanishing lines.

cosf =

8.6 Vanishing pointsand vanishing lines

One of the distinguishing features of perspective projection is that the image of an
object that stretches off to infinity can have finite extent. For example, an infinite scene
lineisimaged as aline terminating in avanishing point. Similarly, parallel world lines,
such as railway lines, are imaged as converging lines, and their image intersection is
the vanishing point for the direction of the railway.

8.6.1 Vanishing points

The perspective geometry that givesriseto vanishing pointsisillustrated in figure 8.14.
It is evident that geometrically the vanishing point of aline is obtained by intersecting
the image plane with aray paralel to the world line and passing through the camera
centre. Thus a vanishing point depends only on the direction of a line, not on its
position. Consequently a set of parallel world lines have a common vanishing point, as
illustrated in figure 8.16.

Algebraically the vanishing point may be obtained as a limiting point as follows:
Points on aline in 3-space through the point A and with direction D = (dT,0)T are
writtenasX(\) = A+ AD, seefigure 8.14b. Asthe parameter A variesfrom 0 to oo the
point X(\) varies from the finite point A to the point D at infinity. Under a projective
cameraP = X[I | 0], apoint X()\) isimaged at

x(\) = PX(\) = PA + \PD = a + AKd

where a is the image of A. Then the vanishing point v of the line is obtained as the



214 8 More Single View Geometry

X
X/

v D
;(1 'X2 'X3 ;(4 —» X

a
J,.*’——d—"/’i(.i

X(A)
d \2
Co——>— |
b
Fig. 8.14. Vanishing point formation. (a) Plane to line camera. The points X;,7 = 1,...,4 are

equally spaced on the world line, but their spacing on the image line monotonically decreases. In the
limit X — oo the world point isimaged at x = v on the vertical image line, and at X’ = v’ on the
inclined image line. Thus the vanishing point of the world line is obtained by intersecting the image
plane with a ray parallel to the world line through the camera centre C. (b) 3-space to plane camera.
Thevanishing point, v, of alinewith direction d istheintersection of theimage planewith aray parallel
to d through C. The world line may be parametrized as X(\) = A + AD, where A isa point on the
line,and D = (d7,0)7.

limit

v = /\11_)1210 x(A) = /\11_)1210 (a+ AKd) = Kd.
From result 8.15, v = Kd means that the vanishing point v back-projectsto aray with
direction d. Note that v depends only on the direction d of the line, not on its position
specified by A.

In the language of projective geometry this result is obtained directly: In projective
3-space the plane at infinity 7., is the plane of directions, and al lines with the same
direction intersect 7, in the same point (see chapter 3). The vanishing point issimply
the image of thisintersection. Thusif aline has direction d, then it intersects 7w, in
the point X, = (d',0)". Then v istheimage of X,

V—PXOO—K[I\O]<(01>—Kd.

To summarize:

Result 8.20. The vanishing point of lineswith direction d in 3-spaceis the intersection
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v of the image plane with a ray through the camera centre with direction d, namely
v = Kd.

Note, lines parallel to the image plane areimaged as paralel lines, since v isat infinity
intheimage. However, the converse —that parallel image lines are theimage of parale
scenelines— does not hold since lineswhich intersect on the principal plane areimaged
asparalel lines.

Example8.21. Camera rotation from vanishing points

Vanishing points are images of points at infinity, and provide orientation (attitude) in-
formation in asimilar manner to that provided by the fixed stars. Consider two images
of a scene obtained by calibrated cameras, where the two cameras differ in orientation
and position. The points at infinity are part of the scene and so are independent of the
camera. Their images, the vanishing points, are not affected by the change in camera
position, but are affected by the camera rotation. Suppose both cameras have the same
calibration matrix K, and the camera rotates by R between views.

Let a scene line have vanishing point v; in the first view, and v/ in the second. The
vanishing point v; has direction d; measured in the first camera’s Euclidean coordi-
nate frame, and the corresponding vanishing point v, has direction d; measured in the
second camera’s Euclidean coordinate frame. These directions can be computed from
the vanishing points, for example d; = K~'v,/||K~'v;||, where the normalizing fac-
tor |[K~'v;|| isincluded to ensure that d; is a unit vector. The directions d; and d’
are related by the camerarotation as d; = Rd;, which represents two independent con-
straintson R. Thusthe rotation matrix R can be computed from two such corresponding
directions. JAN

The angle between two scene lines. We have seen that the vanishing point of a scene
line back-projects to a ray parallel to the scene line. Consequently (8.9), which de-
termines the angle between rays back-projected from image points, enables the angle
between the directions of two scene lines to be measured from their vanishing points:

Result 8.22. Let v, and v, be the vanishing points of two linesin an image, and let w
be the image of the absolute conic in the image. If 6 is the angle between the two line

directions, then

-
VWV

cosf = .
\/Vfwvl \/V—QerQ

(8.13)

A note on computing vanishing points

Often vanishing points are computed from the image of a set of parallel line segments,
though they may be determined in other ways for example by using equal length in-
tervals on a line as described in example 2.18(p50) and example 2.20(p51). In the
case of imaged parallel line segments the objective is to estimate their common image
intersection — which is the image of the direction of the paralel scene lines. Due to
measurement noise the imaged line segments will generally not intersect in a unique
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Fig. 8.15. ML estimate of a vanishing point from imaged parallel scene lines. (a) Estimating the
vanishing point v involvesfitting a line (shown thin here) through v to each measured line (shown thick
here). The ML estimate of v is the point which minimizes the sum of squared orthogonal distances
between the fitted lines and the measured lines end points. (b) Measured line segments are shown in
white, and fitted lines in black. (c) A close-up of the dashed square in (b). Note the very slight angle
between the measured and fitted lines.

point. Commonly the vanishing point is then computed by intersecting the lines pair-
wise and using the centroid of these intersections, or finding the closest point to all the
measured lines. However, these are not optimal procedures.

Under the assumption of Gaussian measurement noise, the maximum likelihood es-
timate (MLE) of the vanishing point and line segments is computed by determining a
set of lines that do intersect in a single point, and which minimize the sum of squared
orthogonal distances from the endpoints of the measured line segments as shown in
figure 8.15(a). This minimization may be computed numerically using the L evenberg—
Marquardt algorithm (section A6.2(p600)). Note that if the lines are defined by fitting
to many points, rather than just their end points, one can use the method described in
section 16.7.2(p404) to reduce each line to an equivalent pair of weighted end points
which can then be used in this algorithm. Figure 8.15(b)(c) shows an example of a
vanishing point computed in this manner. It is evident that the residuals between the
measured and fitted lines are very small.

8.6.2 Vanishinglines

Parallel planes in 3-space intersect 7., in a common line, and the image of this line
is the vanishing line of the plane. Geometrically the vanishing line is constructed,
as shown in figure 8.16, by intersecting the image with a plane parallel to the scene
plane through the camera centre. It is clear that a vanishing line depends only on the
orientation of the scene plane; it does not depend on its position. Since lines parallel
to a plane intersect the plane at 7, it is easily seen that the vanishing point of a
line parallél to a plane lies on the vanishing line of the plane. An example is shown
infigure 8.17.

If the camera calibration K is known then a scene plane’s vanishing line may be used
to determine information about the plane, and we mention three examples here:

(i) The plan€e's orientation relative to the camera may be determined from its van-
ishing line. From result 8.16 a plane through the camera centre with normal
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Fig. 8.16. Vanishing line formation. (a) The two sets of parallel lines on the scene plane converge to
the vanishing points v; and v, in the image. The line 1 through v; and v is the vanishing line of the
plane. (b) The vanishing line 1 of a plane = is obtained by intersecting the image plane with a plane
through the camera centre C and parallel to 7.

Cc

Fig. 8.17. Vanishing points and lines. The vanishing line of the ground plane (the horizon) of the
corridor may be obtained from two sets of parallél lines on the plane. (a) The vanishing points of lines
which are nearly parallel to the image plane are distant from the finite (actual) image. (b) Note the
monotonic decrease in the spacing of the imaged equally spaced parallel lines corresponding to the
sides of the floor tiles. (c) The vanishing point of lines parallel to a plane (here the ground plane) lies
on the vanishing line of the plane.
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direction n intersects the image plane in the line1 = K~ "n. Consequently, 1
is the vanishing line of planes perpendicular to n. Thus a plane with vanishing
linel has orientation n = K'1 in the camera's Euclidean coordinate frame.

(if) The plane may be metrically rectified given only its vanishing line. This can be
seen by considering a synthetic rotation of the camerain the manner of example
8.13(p205). Since the plane normal is known from the vanishing line, the cam-
era can be synthetically rotated by a homography so that the plane is fronto-
paralld (i.e. paralle to theimage plane). The computation of this homography
isdiscussed in exercise (ix).

(iii) The angle between two scene planes can be determined from their vanishing
lines. Suppose the vanishing lines are 1; and 1,, then the angle 6 between the
planesis given by

1—1[_(.0*12

Ve /Twl,

cosf = (8.14)

The proof isleft as an exercise.

Computing vanishing lines

A common way to determine a vanishing line of a scene plane is first to determine
vanishing points for two sets of lines paralel to the plane, and then to construct the
line through the two vanishing points. This construction is illustrated in figure 8.17.
Alternative methods of determining vanishing points are shown in example 2.19(p51)
and example 2.20(p51).

However, the vanishing line may be determined directly, without using vanishing
points as an intermediate step. For exampl e, the vanishing line may be computed given
an imaged set of equally spaced coplanar paralel lines. This is a useful method in
practice because such sets commonly occur in man-made structures, such as: stairs,
windows on thewall of abuilding, fences, radiators and zebra crossings. Thefollowing
example illustrates the projective geometry involved.

Example8.23. Thevanishinglinegiven theimage of three coplanar equally spaced
parallel lines
A set of equally spaced lines on the scene plane may be represented as ax’ + by’ +
= 0, 