$$H = 7390 HL \left[\frac{9}{Ghw} + 0.00015 \frac{1}{\chi^{0.66}} \right]$$

$$\Rightarrow H = \frac{0.00015/\chi^{0.66}}{\left(\frac{1}{7390HL} - \frac{Tp-Tsa+}{GRLV}\right)}$$

with
$$G = \frac{4m}{4D^2} = 763 \text{ kg/m}^2/\text{s}$$

$$H_{L} = \frac{\lambda}{D} 0.023 \left(G(1-x) D \right)^{0.8} P_{r}^{1/3}$$

Filting
$$q = f(x)$$
 $q = -3487670c + 316408$
 $q = ax + b$

Pr = MCP

$$\frac{dx}{d3} = \frac{49}{56ku} = \frac{4}{50ku} (axc+5)$$

at
$$3=0$$
 $\infty=0$

$$\Rightarrow \infty=-\frac{b}{a}\left(1-e^{\frac{3}{2}}\right)$$

$$DC = \frac{348767 \times 43}{348767} \left(1 - e^{\frac{348767 \times 43}{348767}} \right) E_{9} I$$

$$j_{L} = \frac{G(\lambda - x)}{\ell_{L}}$$

DC ,	(slm)	Jc(m15)	PL 1L	[P, jv]	flow patrem
0.2	0,64	3,00	329	448	annul
0-3	0,47	4,59	250	1048	annular
0.4	ا ای کا	6,17	147	2512	anntar
0.6	0, 27	9,22	60	5048	Commular

3) Annalæ flow without droplet entaimment 2 mannentuer bælance équations

$$\frac{d}{ds} \frac{G^2 \pi^2}{R^2 GR^2} = -RG \frac{dP}{ds} + GiaSi + NGUi - RGRGg$$

$$\frac{d}{d3} \frac{G^2(1-\alpha)^2}{P_L R_L} = -R_L \frac{df}{d3} + \frac{4Gp}{5} - \frac{G_{iG}S_i}{A} \frac{P_GU_i}{P_L R_{IG}}$$

By elimination de between the 2 équations and neglecting la jields to: an explicite equation to compute RGA

$$Eq(2)$$
 - $(P_L-P_r)R_GR_{Lg} + G^2 \int \frac{2\pi R_L}{d3} \left(\frac{2\pi R_L}{e_R_G} + (1-\pi)(2R_{G-1})\right)$ calculated with $E_{q,1}$

Ghw
$$\frac{dx}{ds} = \frac{49p}{D}$$
 with $9p = \lambda \frac{(Tp-Tsat)}{S}$

$$\frac{dx}{d3} = \frac{4}{2} \frac{\lambda \left(T_{p}-T_{sa}^{v}\right)}{\frac{2}{2} \left(1-1R_{6}^{v}\right)}$$
 Eq(3)

Resolution using Eq2 with de computed with Eq(3) -> gives the value of RGO

5) Dry-out observed when
$$\alpha = 1$$
, RG=1, $\delta = 0$
6) Pressure gradient

6) Pressure gradient

$$\frac{dP}{dS} = \frac{4GP}{D} - \left(P_L R_L + P_G R_G\right) g - \frac{d}{dS} \left[\frac{G^2 x^2}{P_G R_G} + \frac{G^2 (1-x)^2}{P_L R_L}\right]$$