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Abstract--This is an experimental, numerical and analytical study of the optimal spacing between cylinders 
in cross-flow forced convection. The cylinder array occupies a fixed volume and is exposed to a free stream 
of given velocity and temperature. The optimal cylinder-to-cylinder spacing is determined by maximizing 
the overall thermal conductance between all the cylinders and the free stream. In the first part, the optimal 
spacing and corresponding maximum thermal conductance are determined based on experiments with 
forced air for HID = 6.2 and in the ReD range 50-4000, where ReD is based on the free-stream approach 
velocity and cylinder diameter D, and H is the array length in the flow direction. In the second part, similar 
results are developed based on numerical simulations for Pr = 0.72, 10 ~< HID <~ 20 and 40 ~< ReD <~ 200. 
In the concluding section, the experimental and numerical results for optimal spacing and maximum 
thermal conductance are explained and correlated analytically by intersecting the small-spacing and large- 

spacing asymptotes of the thermal conductance function. 

INTRODUCTION 

The development of cooling techniques for electronic 
packages is illustrated by the emergence of fun- 
damental results that apply to entire classes of geo- 
metric configurations [1, 2]. Clear examples are the 
design rules for selecting the spacing between the geo- 
metric features of a package of fixed volume such that 
the overall thermal conductance between package and 
coolant is maximized. Optimal spacings have been 
reported already for several geometries, in both natu- 
ral convection [3-6] and forced convection [7-13]. The 
objective of the present study was to determine the 
optimal spacing for another basic configuration : the 
array of cylinders with cross-flow forced convection. 
We did this work experimentally and numerically, and 
in the end we used scale analysis to organize the results 
in dimensionless form. 

EXPERIMENTAL RESULTS 

As shown in Fig. 1, the test section of the exper- 
imental apparatus was a bundle of cylindrical heaters 
mounted in a volume that was approximately the same 
in all the experiments. Bundles with 12, 14, 16 and 23 
cylinders were tested with the flow oriented in the H 
direction. The corresponding spacings were S/D = 1, 
0.75, 0.50 and 0.25. The spacing S is defined such that 
S = 0 when the cylinders touch. The cylinder diameter 
was fixed, D = 6.35 mm. End losses were minimized 
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by holding the cylinders between two wooden walls 
separated by the distance L = 134 mm. 

The cylindrical heaters were connected in parallel 
and powered by a variable autotransformer that pro- 
duced voltages between 0 and 140 V. Each cylinder 
consisted of a helically wound heating element (resist- 
ance 96 f~) held in a ceramic insulator fitted with 
conductive magnesium oxide. The outer cover was 
polished 304 stainless steel. As the heating was dis- 
tributed uniformly throughout the array, the 
maximum temperature was registered on the trailing 
row of cylinders (Tw.,). The temperature was uniform 
(within 0.07°C) around the cylinder circumference: 
we found this by running the experiment with a single 
cylinder at ReD = 200, and rotating the cylinder to 
change the circumferential position of the Tw., read- 
ing. The temperatures Tw.l, Tw,2 and T~ were measured 
half-way between the two wooden walls. Copper-con- 
stantan type T thermocouples referenced to an ice- 
water mixture were placed in 1 mm hemispherical 
depressions machined into the steel sheath of the 
heater. 

At relatively high Reynolds numbers, 2000 ~< 
ReD <~ 4000, we tested only three of the bundles, 
S/D = 0.25, 0.5 and 0.75, because the optimal S/D 
ratio was always in the S/D range 0.25-0.75 (Fig. 
2). The dimensions of the bundle cross-section varied 
slightly from one setup to the next, in order to accom- 
modate an integral number of cylinders in a relatively 
fixed volume. The swept length H was equal to 39.2 
mm within 2%, while the width W was equal to 33.4 
mm within 7o/o ". Each bundle was installed in the middle 

311 



312 G. STANESCU et al. 

NOMENCLATURE 

Cp specific heat at constant pressure 
D cylinder diameter T 
H length in the flow direction, Fig. 1 Tw 
k thermal conductivity T~, 
K permeability of the array as a porous u, v 

medium ~7, g 
L cylinder length U 

mass flow rate U~ 
n total number of cylinders W 
NUD Nusselt number x v 

~ ~ 

p pressure x, y 
p dimensionless pressure 
Pr Prandtl number 
q total heat transfer rate 
q~ heat transfer rate of a single cylinder 0 
q dimensionless overall thermal p 

conductance v 
ReD Reynolds number, U~D/v p 
S cylinder-to-cylinder spacing ~p 

relative spacing, S/D 
temperature 
cylinder surface temperature 
free-stream temperature 
velocity components 
dimensionless velocity components 
volume averaged longitudinal velocity 
free-stream velocity 
transversal dimension, Fig. 1 
Cartesian coordinates 
dimensionless coordinates. 

Greek symbols 
thermal diffusivity 
dimensionless temperature 
viscosity 
kinematic viscosity 
density 
porosity. 

of the test section of a suction-type wind tunnel. The 
test section was a 1.8 m long channel with a cross- 
section of 0.76 m (width) × 0.5 m (height). The free- 
stream velocity Us was measured using a calibrated 
Pitot tube and an inclined manometer. The uncer- 
tainty in U~ was 2.5%. 

At lower Reynolds numbers, 50 ~< ReD <~ 200, we 
tested the bundles with S/D = 0.50, 0.75 and 1, as 
shown in the lower part of Fig. 2. The test section of 
the suction-type wind tunnel used for this series was 
0.9 m long, 0.134 m wide and 0.13 m tall. The bundle 
dimensions were H = 39.2 mm (within 2%) and 
W = 35.2 mm (within 12%). This time U~: was mea- 
sured using a calibrated Taylor anemometer. The 
uncertainty in Us was 0.58%. 

The radiation contribution to the total heat transfer 
rate was estimated to be less than 0.2% for 2000 ~< 
ReD <~ 4000 and 1.5% for 50 ~< ReD <~ 200. This insig- 
nificant level is due to the moderate temperature of 
the cylinder surface : the highest temperature reading 
was 37.7°C, while the background temperature in the 
wind tunnel was 25°C. 

We started each run by setting the voltage and cur- 
rent for the resistance heaters and the air free-stream 
velocity. We then waited for 2-4 h while monitoring 
the changes in voltage, current, T,~.L, Tw.2 and T~. 
We took final readings when the relative changes in 
voltage, current and temperature were less than 0.2, 
0.2 and 0.06%, respectively. These relative changes 
were estimated by repeating the run for the same S/D 
and ReD values, letting the run last 10 h. It is worth 
noting that these relative changes are small when com- 
pared with the uncertainties in the corresponding 
measurements. 

The calculation of the dimensionless overall thermal 
conductance q, or volumetric heat transfer density, 

q/(Tw., - T~,) 
q - ( l )  

ki lL  W/D 2 

was based on measuring the power dissipated in all 
the heaters (q), the maximum temperature (Tw.0 and 
the free-stream temperature (T~). The air properties 
were evaluated at the film temperature (Tw+ T~)/2, 
where Tw = (Tw.~+ Tw.2)/2. The error analysis was 
based on the method of Kline and McClintock [14]. 
The estimated uncertainty in q is between 5 and 8.8% 
when 2000 ~< ReD <<, 4000, and between 3.2 and 8.6% 
when 50 ~< ReD <~ 200. The uncertainty in ReD is 3.2% 
in the high ReD range and 2.1% in the low ReD range. 
These estimates are also based on the following uncer- 
tainties: 0.5% in voltage and 1% in current, 1% in 
air thermal conductivity [15] and 2% in air viscosity 
[15]. 

Figure 2 summarizes the results from the 33 cases 
(S/D, ReD) investigated experimentally. These results 
show that the overall thermal conductance can be 
maximized by selecting the spacing or the number of 
cylinders. We curve fitted the data and found Soot/D 
by solving ~gl/O(S/D) = 0. The Sopt/D results of this 
operation are shown in Fig. 3. The group used on 
the abscissa was determined based on an order-of- 
magnitude analysis designed to correlate on the same 
plot both the experimental and the numerical results. 
The maximum overall thermal conductance that cor- 
responds to the optimal spacing is reported in Fig. 4. 

NUMERICAL RESULTS 

In the second phase of our study we simulated 
numerically the flow and heat transfer through the 
array at low Reynolds numbers, 40 ~< ReD <~ 200. It 
was shown in ref. [16] that in the laminar regime the 
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Fig. 1. The test section of the experimental apparatus. 

end wall 
(wood) 

flow through a large bank of cylinders can be simu- 
lated accurately by calculating the flow through a 
single channel, such as that illustrated in Fig. 5. 
Because of  symmetry, there was no fluid exchange 
and no heat transfer between adjacent channels. The 
cylinders were arranged in an equilateral triangular 
array. 

The mass, momentum and energy equations were 
simplified in accordance with the assumptions of two- 
dimensional steady-state flow with constant proper- 
ties : 

t3u t3v 
+ -a-- = 0 (2) 

0x ay 

au du [32u d2u~_ 1 ap 
U~x x +v~-Ty = v~-x2 + Oy2/ p Ox (3) 

Ov Ov / OZv OZv'~ 1 t3p 
U~x x + V~yy = v~-x2 + ~ y 2 ) -  p dy (4) 

dT+v~7 = /a2T ~_7) 
U~x ~,~Tx~ + . (s) 

With reference to Fig. 5, the velocity components u 
and v are aligned with x and y, respectively. The com- 
putational domain contains the actual channel (flow 
length H) plus an upstream section and a downstream 
section. Accuracy tests showed that the calculated 
total heat transfer rate from the channel was relatively 
insensitive (with changes less than 1%) to further 
doubling of the upstream and downstream lengths. 

The non-dimensionalization of equations (2)-(5) 
was based on recognizing that the parameter that does 
not change with S is the upstream velocity U~. Rela- 
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Fig. 2. Experimental results for the overall thermal con- 
ductance. 

10 

Sopt I 
D 

0.1 

i 

0 

Equation (20) ° 

| | =  

Fig. 3. 
maximum 

J * R%-  40 
I ,~, Reo= 100 Numerlca 

• R%- 200 
50<_ Reo <_200 
2000-< R% :~4000 Experimental 

0.1 1 10 

0.13 rD ~5 3/10 Pr [~) R% 

The optimal cylinder-to-cylinder spacing for 
overall thermal conductance: experimental, 

numerical and scaling results. 

tive to the computa t iona l  domain  of  Fig. 5, where the 
channel  shown is one of  a large n u m b e r  of  identical 
channels  s tacked in the y direct ion (i.e. W >> D),  the 
fixed U~ means  tha t  the s tagnat ion  excess pressure at  
the channel  entrance is fixed, 

Ap ~- ½PU~. (6) 

10 2 . _ _  

/ 
Equation (21) - - /  D @  

10 / / 
/ 

q m a x  / 
/ • 
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Fig. 4. The maximum overall thermal conductance: exper- 
imental, numerical and scaling results. 
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Fig. 5. Scale drawing of the computational domain for one 
fluid channel in an array of parallel cylinders in cross-flow. 

This cons t ra in t  captures the physics of  the con- 
f iguration optimized in the experiment,  which is tha t  
larger S/D values permit  larger flow rates th rough  
each channel ,  bu t  smaller heat  t ransfer  contac t  area. 
The  assumpt ion  in equa t ion  (6) is part icularly good 
in the case of  arrays with many  cylinders in the flow 
direct ion (HID >> 1), which was the case in the present  
numerical  simulations.  The dimensionless variables 
used in reformulat ing equat ions  (2)-(5) were : 

(ti, g) = ( u , t , ) { P )  ~2 ( . '~ ,9 ) -  (x,y) (7) 
~ \ A p ]  " D 

p T--  T~ 
~=Spp 0= T,~-r~ Cs) 

Reo ''2 (9) 
v \ p /  

The flow bounda ry  condi t ions  were:  p = 1 at  the 
inlet to the computa t iona l  domain  ; zero normal  stress 
at  the out le t ;  free slip, no penet ra t ion  at  the fluid 
channel - to-channel  interfaces (planes of  symmetry)  
between two consecutive cyl inders;  no  slip, no  pen- 
e t ra t ion  at the cylinder surfaces;  and  free slip, no 
penet ra t ion  on  the longi tudinal  boundar ies  of  the 
upst ream and  downs t ream sections. The tempera ture  
boundary  condi t ions  were 0 = 1 on the cylinder 
surfaces, and  0 = 0 at  the inlet (ff = 0). The remaining 
por t ions  of  the computa t iona l  doma in  were modeled 
as adiabatic.  

The system of  equat ions  was solved using a finite 
element package [ 17] and  a combina t ion  of  D E C  5000 
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workstations, DEC alpha workstations, and a CRAY 
C90. The larger HID solutions required the use of 
a supercomputer due to the large amount of space 
occupied by temporary files created by the solver. The 
computational cost for the solutions was fairly small 
(90 s of C90 cpu time per solution), because the equa- 
tions are weakly coupled. Grid refinement tests indi- 
cated that the solution was insensitive to further grid 
doubling (change in total heat transfer was less than 
1%) if the velocity solution was generated on a grid 
with 20 nodes per unit D in the x and y directions, 
and the temperature solution was generated on a grid 
with 40 nodes per unit D in x and y. The velocity 
solution from the coarser grid was interpolated onto 
the finer grid before the temperature solution was 
calculated. 

All the numerical solutions were developed for 
Pr = 0.72. The flow length of the array was fixed at 
three different values, HID = 10, 15 and 20. Three 
flows were calculated for each HID value, namely 
Reo = 40, 100 and 200. These ReD values were chosen 
because they resulted in Reynolds numbers based on 
channel mean velocity that ranged from 10 to approxi- 
mately 100. Solutions for such Reynolds numbers 
greater than 100 would not have been accurate 
because our numerical formulation suppresses the 
waviness of the wakes in the transition regime between 
laminar and turbulent flow [18]. 

To find the optimal S/D for a given ReD, we moni- 
tored the total heat transfer from the channel while 
varying the number of cylinders but holding HID 
fixed. Note that the channel width (Fig. 5) also varied 
with the number of cylinders because the equilateral 
triangle arrangement did not change. The number of 
cylinders (or S/D) was varied until the dimensionless 
overall thermal conductance • of equation (1) exhi- 
bited a maximum. 

The results are illustrated in Fig. 6 for HID = 20. 
The Sopt/D and qmax values were refined by fitting the 

Re o - 200 

R%- 100 

R%- 40 

2 3 4 5 

S 
D 

Fig. 6. Numerical results for the overall thermal conduc- 
tance. 

three highest t 7 points with a parabola and solving 
Ofl/O(S/D) = 0. The nine numerical data obtained in 
this manner have been added to the experimental data 
in Figs. 3 and 4. Worth noting is the good alignment 
of the numerical and experimental sets. The agreement 
is remarkable if we think that in the experiments the 
array was short (HID = 6.2) and with uniform flux, 
while in the numerical simulations it was longer, infi- 
nitely wider and with isothermal cylinders. Together, 
the experiments and the numerical simulations cover 
a wider parametric domain, 6.2 ~< H/D <~ 20 and 
40 ~< ReD <~ 4000. 

DISCUSSION 

In conclusion, Fig. 3 shows that the optimal spacing 
decreases as the free-stream velocity (or ReD) 
increases, and as the flow length of the array (H) 
decreases. Figure 4 shows the corresponding behavior 
of the maximum overall thermal conductance between 
the array and the coolant. These trends can be explained 
based on a simple order-of-magnitude argument of 
the same type as that used in ref. [13]. The analysis 
consists of determining the S --+ 0 and S -* oo asymp- 
totes of the function @(S) and intersecting the asymp- 
totes. 

Consider the free-stream of velocity U~ and tem- 
perature To~, and a number of parallel cylinders 
oriented perpendicularly to the approaching fluid. The 
cylinders occupy the fixed volume H x L x W, where 
His  aligned with Uo~. We are interested in the cylinder- 
to-cylinder spacing S that maximizes the overall ther- 
mal conductance between the fixed volume and the 
free stream, q/(Tw-To~). To optimize the spacing S 
is equivalent to determining the optimal number of 
cylinders n in the fixed volume HLW, namely 
n = H W / ( S + D )  2 cos 30 °, or the optimal porosity of 
the HL W space 

n(~/4)D: 
q, = 1 H w  ( lO) 

In the small-spacing limit, the cylinders almost 
touch, the fluid spends a long time in the HL Wvolum¢ 
and the fluid outlet temperature is practically the same 
as the cylinder temperature. The total heat transfer 
rate between the volume and the fluid is 

qsmaUS = rhcp(Tw -- To~) (11) 

where rh is the total mass flow rate, m = p WLU. The 
volume averaged longitudinal velocity U can be esti- 
mated by assuming Darcy flow : 

KAp 
U = -- - -  (12) 

# H  

where the permeability of the equilateral triangle array 
is represented adequately by the Carman-Kozeny 
model [19] 

D2(p 3 
K - - -  (13) 

C ( I  - ~o) 2 
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where C ~ 100 in an order of magnitude sense. In the 
small-S limit the pressure difference between the front 
and back planes of the fixed volume, Ap, is controlled 
by the dynamic pressure of the approaching stream, 
in accordance with equation (6). Combining these 
equations we find that in the small-S limit the volume 
averaged velocity U behaves as 

where 

pU , ~p3 
U = 200/~H (1 -~0) 2 (14) 

0.907 
99 = l -- (1 +S/D)  2 " (15) 

Since we are especially interested in the limit S/D ---, 0 
where the cylinders touch and the interstitial flow 
stops (U-*O),  we adjust equation (15) slightly by 
replacing 0.907 with 1, and equation (14) becomes 

pU2. D 2 (~2 +2~)3 
U~_ (16) 

200#H ( i f + l )  2 

where ~q= S/D. Finally, we combine equation (16) 
with equation (l 1), recognize that ~q<< 1, and deter- 
mine the asymptote of the overall thermal con- 
ductance of the array : 

( q )  ' W L 2 ~ 3 .  
~ 25PCpv~-ReD (17) 

smallS 

In the opposite extreme, S >> D, each cylinder is 
bathed by free-stream fluid (U~., T~). The heat trans- 
fer from a single cylinder is 

k 
q~ = NUD-D~ZDL(T~- T_, ) (18) 

for which Zukauskas [20] recommended the cor- 
relation NuD = 0.52 Pr °3v Re~/2, which is valid in the 
range Pp'/> 0.5 and 40 < ReD < 1000. Combining 
q = nq~ with equation (18), and recognizing that 
5~>> 1, we obtain the large-S asymptote 

( ) H L W ° 3 7  
q ~ 1.89k DT_p  r..  Re~2~ e. 

largeS 

(19) 

In summary, we note that as Sincreases, the thermal 
conductance increases when Sis  small [equation (17)] 
and decreases when 5~ is large [equation (19)]. This 
means that the optimal spacing for maximum thermal 
conductance can be located approximately by inter- 
secting equations (17) and (19) : 

(') .~ 2.2Pr- 013 ReD 31° (20) 
O opt " 

This relation has been plotted in Fig. 3, and is respon- 
sible for the group used on the abscissa. The trend 
predicted with equation (20) is the same as in the 
experimental and numerical data : the optimal spacing 
decreases noticeably as ReD increases. 

Figure 3 also shows that, as expected, the scaling 
result (20) agrees approximately with the experimental 
and numerical Sop,/D data. This is remarkable in view 
of the fact that : (a) the analytical method of inter- 
secting the asymptotes is by definition approximate;  
(b) equation (20) is based on a Nuo correlation valid 
only for 40 < Reo < 1000 ; and (c) in the scale analysis 
the cylinders were assumed to be at the same tem- 
perature, while in the experiments the cylinders had 
equal heat transfer rates. Point (c) strengthens a con- 
clusion reached in ref. [13], where it was shown that 
in stacks of smooth plates the optimal spacing for 
isothermal plates is nearly the same as the optimal 
spacing for uniform flux plates. 

An approximate estimate for the maximum overall 
thermal conductance that corresponds to the optimal 
spacing can be obtained by substituting ( S / O ) o p t  in 
either equation (17) or equation (19): 

Dt4'5 qmax ~ 0.4Pr°62 Re~ 1/ (21) 

Equation (21) with an equal sign is plotted in Fig. 4. 
The inequality sign in equation (21) is a reminder that 
the intersection of asymptotes (17) and (19) on the 

plane occurs above the true maximum of the ~(S) 
curve [13]. In other words, equation (21) anticipates 
the scaling trends with respect to changes in (H/D) 
and ReD, and provides an upper bound for the actual 
value of tTm,x. 

These predictions are in good agreement with the 
alignment of the experimental and numerical data in 
Fig. 4. That  the high-ReD experimental data begin to 
deviate from the theoretical trend may be due to the 
fact that equation (21) is based on an empirical cor- 
relation that is not  valid above ReD = 1000. This devi- 
ation is actually a stimulus for further experimental 
studies at high ReD values, so that the path outlined 
by the present data in Figs. 3 and 4 can be completed. 
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